research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 582-587

Crystal packing in three related disaccharides: precursors to heparan sulfate oligosaccharides

aCallaghanInnovation, PO Box 31-310, Lower Hutt 5040, New Zealand, and bFerrier Research Institute, Victoria University of Wellington, PO Box 33 436, Petone, Lower Hutt 5046, New Zealand
*Correspondence e-mail: g.gainsford@glycosyn.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 April 2015; accepted 30 April 2015; online 9 May 2015)

The three title compounds form part of a set of important precursor dissacharides which lead to novel therapeutics, in particular for Alzheimer's disease. All three crystallize as poorly diffracting crystals with one independent mol­ecule in the asymmetric unit. Two of them are isostructural: 4-meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-(9-fluor­en­yl­methyl­oxycarbon­yl)-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-chloro­acetyl-α-L-ido­pyran­oside, C59H56ClN3O16, (I), the ido-relative of a reported gluco-disaccharide [Gainsford et al., 2013[Gainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679-682.]). Acta Cryst. C69, 679–682] and 4-meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-(9-fluorenyl­methyl­oxycarbon­yl)-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-meth­oxy­acetyl-α-L-ido­pyran­oside, C60H59N3O17, (II). Both exhibit similar conformational disorder of pendant groups. The third compound 4-meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-de­oxy-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-meth­oxy­oacetyl-β-D-gluco­pyran­oside, C52H55N3O15, (III), illustrates that a slightly larger set of weak inter­molecular inter­actions can result in a less disordered mol­ecular arrangement. The mol­ecules are bound by weak C—H⋯O(ether) hydrogen bonds in (I) and (II), augmented by C—H⋯π inter­actions in (III). The absolute configurations were determined, although at varying levels of significance from the limited observed data.

1. Chemical context

Heparan sulfate (HS) is a linear polysaccharide with a disaccharide repeating unit of D-glucosa­mine and L-iduronic or D-glucuronic acid, which can be O- or N-sulfated or N-acetyl­ated. HS is involved in the regulation of many important biological processes (Bishop et al., 2007[Bishop, J. R., Schuksz, M. & Esko, J. D. (2007). Nature, 446, 1030-1037.]; Turnbull et al., 2001[Turnbull, J., Powell, A. & Guimond, S. (2001). Trends Cell Biol. 11, 75-82.]). Synthetic HS-oligosaccharides with high potency as β-secretase (BACE1) inhibitors might have an application as novel therapeutics for Alzheimer's disease (Schwörer et al., 2013[Schwörer, R., Zubkova, O. V., Turnbull, J. E. & Tyler, P. C. (2013). Chem. Eur. J. 19, 6817-6823.]; Scholefield et al., 2003[Scholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W. & Turnbull, J. E. (2003). J. Cell Biol. 163, 97-107.]).

In our recent paper (Schwörer et al., 2013[Schwörer, R., Zubkova, O. V., Turnbull, J. E. & Tyler, P. C. (2013). Chem. Eur. J. 19, 6817-6823.]), we described the synthesis and inhibition data of a library of such oligosaccharides. At the centre of the synthetic methodology are highly orthogonally protected disaccharide building blocks, three of them being the subjects of this paper. The disaccharides can be converted into glycosyl donors by hydrolysis of the meth­oxy­phenyl glycoside and formation of the corresponding tri­chloro­acemidate; while the azide and the orthogonal ester protecting groups provide selective access to further functionalization later in the synthesis.

While pursuing precursor disaccharides with possible application in the treatment of Alzheimer's disease, we have prepared some ido- and gluco-related crystals of the published gluco-derivative 4-meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-(9-fluorenyl­methyl­oxycarbon­yl)-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-chloro­acetyl-β-D-gluco­pyran­oside, hereafter RSTE (Gainsford et al., 2013[Gainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679-682.]). We have been intrigued that no unambiguous defining set of inter­molecular attractive inter­actions has been observed (Gainsford et al., 2012[Gainsford, G. J., Cameron, S. A. & Schwörer, R. (2012). AsCA 12/Crystal 28 Abstract booklet, p. 54.]) for these four structures and three other in-house examples.

[Scheme 1]

2. Structural commentary

4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-(9-fluorenyl­methyl­oxycarbon­yl)-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-chloro­acetyl-α-L-ido­pyrano­side, (I) (hereafter OZTF)

The asymmetric unit contains one independent mol­ecule of the title compound (Fig. 1[link]) with the pyran­ose rings in chair conformations (Table 1[link]). The determined absolute configuration confirmed the expected stereochemistry: C1(S), C2(R), C3(S), C4(S), C5(S), C30(S), C31(R), C32(S), C33(R), C34(R), C47(R). Conformational two-site disorder models were required for the pendant 6-O-chloro­acetyl and methyl of the 6-O-acetyl groups.

Table 1
Conformational parameters (Å, °) (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for iodo-pyran­ose rings

Head_D and Foot_D represent the distance from the four-atom `seat' plane.

Compound ring Q Θ φ Head_D Foot_D
(I) C1–C5,O5 0.54 (3) 161 (3) 150 (8) 0.685 (17) −0.47 (2)
(II) C1–C5,O5 0.532 (8) 161.8 (9) 140 (3) 0.669 (4) −0.478 (7)
(I) C30–C34,O10 0.57 (3) 4(3) 241 (38) 0.67 (3) −0.68 (3)
(II) C30–C34,O10 0.564 (8) 1.2 (8) 10 (24) 0.646 (5) −0.651 (8)
ADOGIWa   0.562 5.5 329 0.656 (4) −0.622 (7)
Notes: (a) AQOGIW (Lee et al., 2004[Lee, J.-C., Lu, X.-A., Kulkarni, S. S., Wen, Y.-S. & Hung, S.-C. (2004). J. Am. Chem. Soc. 126, 476-477.]).
[Figure 1]
Figure 1
An ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) view of (I) showing the asymmetric unit and labels with 20% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the two disordered conformations for atoms C28, C29, O9 and Cl1, and C37, C37 and O12 (see text) are shown.

(I4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-(9-fluorenyl­methyl­oxycarbon­yl)-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-meth­oxy­oacetyl-α-L-idopyran­oside, (II) (hereafter RNSB)

This mol­ecule (Fig. 2[link]) crystallized in an isostructural cell to (I), as shown in Fig. 3[link]. A comparison of the mol­ecules of (I) and (II) shows that intra­molecular inter­actions seem to determine the near identical atomic configurations (see Figs. 1[link], 2[link] and 3[link]). As might be expected, only one other weak packing inter­molecular inter­action is found.

[Figure 2]
Figure 2
An ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) view of (II) showing the asymmetric unit and labels with 30% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the disordered conformations for atoms C36 and O12 (see text) are shown.
[Figure 3]
Figure 3
An overlap view (Mercury; Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the cell and asymmetric-unit atoms for the isostructural mol­ecules (I) (atom colours) and (II) (in purple). The Cl atom in (I) is labelled to highlight the different pendant groups.

4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3,4-O-benzyl-2-de­oxy-α-D-gluco­pyranos­yl]-2-O-benzoyl-3-O-benzyl-6-O-meth­oxy­acetyl-β-D-gluco­pyran­oside, (III) (hereafter RSTN)

Compound (III) (Fig. 4[link]) crystallizes with one independent mol­ecule in the asymmetric unit but with disorder on one of the terminal benz­yloxy groups and the 2-meth­oxy­acet­oxy methyl group, modelled by two-site disorder models. The absolute configuration was not ambiguously determined but is known from the synthetic chemistry.

[Figure 4]
Figure 4
An ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) view of (III) showing the asymmetric unit and labels with 30% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the disordered conformations for atoms C13–C19 and O6, and C29, C52 and O52 (see text) are shown.

The conformational data given in Tables 1[link] and 2[link] show the essential pyran­ose chair conformations have not been disturbed significantly in the title compounds.

Table 2
Conformational parameters (Å, °) (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for gluco-pyran­ose ringsa

Head_D and Foot_D represent the distance from the four-atom `seat' plane.

Compound ring Q Θ φ Head_D Foot_D
(III) C1–C5,O5 0.613 (3) 7.3 (3) 323 (2) 0.714 (2) −0.662 (3)
RSTE-1a   0.588 (8) 11.8 (8) 293 (4) 0.748 (8) −0.586 (8)
RSTE-2a   0.594 (8) 14.6 (8) 288 (3) 0.768 (8) −0.566 (8)
(III) C30–C34,O10 0.591 (3) 1.7 (3) 150 (6) 0.716 (3) −0.639 (2)
RSTE-1b   0.582 (8) 0.0 (8) 202 (41) 0.666 (8) −0.692 (8)
RSTE-1b   0.561 (3) 3.9 (9) 116 (13) 0.675 (8) −0.648 (8)
RAVNAD-1   0.597 (3) 7.5 (3) 89 (2) 0.727 (4) −0.652 (4)
RAVNAD-2   0.577 (3) 13.8 (3) 340.8 (13) 0.713 (4) −0.555 (5)
Notes: (a) RSTE mol­ecules 1 and 2 (Gainsford et al., 2013[Gainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679-682.]); (b) RAVNAD (Abboud et al., 1997[Abboud, K. A., Toporek, S. S. & Horenstein, B. A. (1997). Acta Cryst. C53, 742-744.]).

3. Supra­molecular features

The crystal packing in (I) is provided by weak C—H⋯O(ether), C—H⋯O (carbon­yl) hydrogen bonds and one C—H⋯π inter­action (Table 3[link]). These inter­actions form a three-dimensional network in which the base motifs are C(8), C(12) and C(20) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Fig. 5[link]). Given the unusual pseudo-dimeric nature of the hydrogen bonding in the gluco­pyran­oside crystal (Gainsford et al., 2013[Gainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679-682.]) and the chloro­acet­oxy group disorder, it is not surprising that there is only one common C—H⋯O(carbon­yl) inter­action involving the C1—H1 atoms. In the isostructural compound (II), the same inter­actions are observed plus one additional methyl­ene-H⋯O(ether) (C29—H29⋯O12A) interaction (Table 4[link]); this is only possible in (II) with the difference in composition of the two mol­ecules (the chloro­acetyl being replaced by the meth­oxy­acetyl group).

Table 3
Hydrogen-bond geometry (Å, °) for OZTF[link]

Cg9 is the centroid of the C54–C59 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O10i 1.00 2.53 3.51 (3) 169
C20—H20A⋯O7ii 0.99 2.57 3.44 (3) 146
C52—H52⋯O6iii 0.95 2.46 3.26 (3) 142
C16—H16⋯Cg9iv 0.95 2.65 3.520 (12) 152
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z].

Table 4
Hydrogen-bond geometry (Å, °) for RNSB[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O10i 1.00 2.43 3.395 (9) 161
C3—H3⋯O6 1.00 2.63 3.114 (10) 110
C11—H11⋯O5 0.95 2.37 2.987 (10) 122
C20—H20A⋯O7ii 0.99 2.50 3.370 (11) 147
C29—H29B⋯O12Aiii 0.99 2.53 3.503 (14) 168
C29—H29B⋯O12Biii 0.99 2.60 3.55 (4) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 5]
Figure 5
Cell-packing view (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of (I) showing representative hydrogen-bonding inter­actions (see Table 3[link]). The C—H⋯π inter­action is shown by atoms H16 and C59. [Symmetry codes: (i) x, y − 1, z; (ii) −x + 1, y − [{1\over 2}], −z + 1; (iii) x − 1, y, z; (iv) x − 1, y − 1, z + 1.]

In (III), the five C—H⋯O(ether and ketone) inter­actions are augmented by five C—H⋯π inter­actions (Table 5[link]). These inter­actions form stacks of twofold-related mol­ecules along the b axis in which R22(18) and C(n) (n = 5,17) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) are present.

Table 5
Hydrogen-bond geometry (Å, °) for RSTN[link]

Cg3, Cg5 and Cg6 are the centroids of the C6–C11, C21–C26 and C39–C44 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 1.00 2.46 3.439 (4) 168
C27—H27B⋯O11 0.99 2.55 3.499 (4) 161
C45—H45A⋯O12ii 0.99 2.51 3.488 (5) 168
C47—H47⋯O52Aiii 0.95 2.59 3.269 (4) 128
C48—H48⋯O9iii 0.95 2.65 3.569 (6) 164
C3—H3⋯Cg3i 1.00 2.96 3.915 (3) 161
C4—H4⋯Cg3iv 1.00 2.96 3.920 (3) 161
C12—H12BCg5i 0.98 2.71 3.563 (3) 145
C16A—H16ACg6v 0.95 2.88 3.713 (3) 147
C25—H25⋯Cg5v 0.95 2.94 3.717 (4) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (ii) -x+1, y, -z; (iii) -x+1, y+1, -z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].

4. Database survey

There are only a few reported 2-azido pyran­ose-based disaccharide structures in the Cambridge Structural Database (Version 5.36, with February 2015 update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]): our published gluco­pyran­oside (Gainsford et al., 2013[Gainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679-682.]; BILJAJ), a manno­pyran­oside (Luger & Paulsen, 1981[Luger, P. & Paulsen, H. (1981). Acta Cryst. B37, 1693-1698.]; BABHUH) and one ido­pyran­ose (Lee et al., 2004[Lee, J.-C., Lu, X.-A., Kulkarni, S. S., Wen, Y.-S. & Hung, S.-C. (2004). J. Am. Chem. Soc. 126, 476-477.]; AQOGIW). We note another disaccharide gluco­pyran­ose (Abboud et al., 1997[Abboud, K. A., Toporek, S. S. & Horenstein, B. A. (1997). Acta Cryst. C53, 742-744.]; RAVNAD) for comparison. The conformational data given in Tables 1[link] and 2[link] show the pyran­ose essential chair conformations have not been disturbed significantly, although the ring with the bound azide seems to be closer to a `pure' chair conformation by the θ criteria (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

5. Synthesis and crystallization

The title compounds were prepared as described in Schwörer et al. (2013[Schwörer, R., Zubkova, O. V., Turnbull, J. E. & Tyler, P. C. (2013). Chem. Eur. J. 19, 6817-6823.]). Crystals were obtained by vapour diffusion of petroleum ether into a solution of the title compounds in ethyl acetate (I) or toluene (II) and (III).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Subject to variations noted below, the methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) or 1.00 (tertiary) Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (for methyl C) of their parent atom. Specific variations were:

Table 6
Experimental details

  OZTF RNSB RSTN
Crystal data
Chemical formula C59H56ClN3O16 C60H59N3O17 C52H55N3O15
Mr 1098.51 1094.10 961.99
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, C2
Temperature (K) 123 120 118
a, b, c (Å) 14.8343 (11), 8.4771 (6), 21.8112 (17) 14.8595 (17), 8.3873 (6), 22.0138 (18) 38.3346 (13), 8.0744 (3), 16.1659 (6)
β (°) 91.780 (7) 90.939 (10) 91.222 (2)
V3) 2741.5 (4) 2743.2 (4) 5002.7 (3)
Z 2 2 4
Radiation type Cu Kα Cu Kα Mo Kα
μ (mm−1) 1.24 0.81 0.09
Crystal size (mm) 0.6 × 0.05 × 0.02 0.36 × 0.06 × 0.01 0.75 × 0.32 × 0.30
 
Data collection
Diffractometer Rigaku Spider Agilent SuperNova (Dual, Cu at zero, Atlas) Bruker APEXII CCD
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.68, 1.0 1.080, 1.638 0.645, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19701, 3962, 2294 17226, 7922, 4977 51621, 9796, 9128
Rint 0.101 0.101 0.035
θmax (°) 43.5 72.1 26.1
(sin θ/λ)max−1) 0.446 0.617 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.280, 1.09 0.083, 0.201, 1.04 0.048, 0.129, 1.08
No. of reflections 3962 7922 9796
No. of parameters 666 730 662
No. of restraints 55 38 43
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25 0.36, −0.32 0.33, −0.45
Absolute structure Parsons & Flack (2004[Parsons, S. & Flack, H. D. (2004). Acta Cryst. A60, s61.]), 1721 Friedel pairs Flack x determined using 810 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. D. (2004). Acta Cryst. A60, s61.]) Flack x determined using 3878 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. D. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter 0.01 (8) −0.3 (4) 0.0 (2)
Computer programs: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), FSProcess (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELX-D and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

(I) Data at resolution less than 1.12 Å was not significantly above the noise level and was excluded from the refinement. One other reflection (1,0,9) was OMITted as an outlier. Data analysis shows that there are many data in the resolution range 1.40–1.12 Å that are in poor agreement reflecting crystal quality.

There was conformational disorder in the chloro­acet­oxy (atoms C28, C29, O9 and Cl1) and the meth­oxy­carbon­yloxy (atoms C37, C37 and O12) groups which was modelled as two (A and B) groups. Because of proximity, and poor data quality, these atoms were unable to be refined with anisotropic thermal parameters. It proved advisable to add additional restraints to retain known geometries based on published structures for these groups. So (SHELXL DFIX) C28–C29 pairs were held to 1.50 (3) Å; C28—O9 to 1.20 Å and same-distance constraints (SADI, 0.02) were applied to C29–Cl1, C36–C37 and C36–O11. Thermal parameters were also linked using SIMU for ring atoms C6–C11 and atom pairs C53 and C54, O12A and O12B, C37A and C37B, and C36A and C36B. Finally, rings C6–C11 and C14–C19 were constrained to hexa­gonal geometry with C—C = 1.390 Å. Final A:B occupancies for the chloro­acet­oxy group were 0.509 (17):0.491 (17) and for the meth­oxy­carbon­yloxy, 0.44 (4):0.56 (4).

(II) Data at resolution less than 0.81 Å was not significantly above the noise level and was excluded from the refinement. Two reflections ([\overline{1}]7,1,7; [\overline{6}],[\overline{9}],5) were OMITted as clear outlier data. There was two-site conformational disorder for the meth­oxy­lacetyl atoms C36 and O12 (labelled A and B, respectively). Atoms C13, C33, C34, C30, C361 and C36B were restrained to isotropic-like behaviour (using ISOR) and the two-model disordered atoms (O12A, O12B; C36A, C36B) were given the same anisotropic thermal parameters. Distance constraints (SADI, 0.3) were applied to the C36A—O12A and C36B—O12B bonds. Final A:B occupancies for the meth­oxy­acetyl atoms were 0.797 (16):0.203 (16).

(III) One reflection was removed as an outlier as well as nine low angle reflections affected by the beamstop (Fo<<Fc). The mol­ecule showed two major orientations for the benzyl group (atoms C13–C19) refined by two refining set occupancies [A:B 0.793 (6):0.207 (6)] coupled with equivalent U values (SIMU for each ring set) and with each ring restrained to a regular hexa­gon (C—C 1.39 Å). In a similar manner, two orientations of atoms C29, O52 and C52 were refined as two conformations: final A:B ratio 0.687 (8):0.313 (8).

Supporting information


Chemical context top

\ Heparan sulfate (HS) is a linear polysaccharide with a disaccharide repeating unit of D-glucosamine and L-iduronic or D-glucuronic acid, which can be O- or N-sulfated or N-acetyl­ated. HS is involved in the regulation of many important biological processes (Bishop et al., 2007; Turnbull et al., 2001). Synthetic HS-oligosaccharides with high potency as BACE1 inhibitors might have an application as novel therapeutics for Alzheimer's disease (Schwörer et al., 2013; Scholefield et al., 2003).

In our recent paper (Schwörer et al., 2013), we described the synthesis and inhibition data of a library of such oligosaccharides. At the centre of the synthetic methodology are highly orthogonally protected disaccharide building blocks, three of them being the subjects of this paper. The disaccharides can be converted into glycosyl donors by hydrolysis of the meth­oxy­phenyl glycoside and formation of the corresponding tri­chloro­acemidate; while the azide and the orthogonal ester protecting groups provide selective access to further functionalization later in the synthesis.

While pursuing precursor disaccharides with possible application in the treatment of Alzheimer's disease, we have prepared some ido- and gluco-related crystals of the published gluco-derivative 4-meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-de­oxy-4-O-\ (9-fluorenyl­methyl­oxycarbonyl)-α-D-gluco­pyran­osyl]-2-O-\ benzoyl- 3-O-benzyl-6-O-chloro­acetyl-β-D-gluco­pyran­oside, hereafter RSTE (Gainsford et al., 2013). We have been intrigued that no unambiguous defining set of inter­molecular attractive inter­actions has been observed (Gainsford et al., 2012) for these four structures and three other in-house examples.

Structural commentary top

\ 4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-\ O-benzyl-2-de­oxy-4-O-(9-\ fluorenyl­methyl­oxycarbonyl)-α-D-gluco­pyran­osyl]-2-\ O-benzoyl-3-O-benzyl-6-\ O-chloro­acetyl-α-L-ido­pyran­oside, (I) (hereafter OZTF)

The crystal contains one independent molecule of the title compound (Fig. 1) with the pyran­ose rings in chair conformations (Table 1). The determined absolute configuration confirmed the expected stereochemistry: C1(S), C2(R), C3(S), C4(S), C5(S), C30(S), C31(R), C32(S), C33(R), C34(R), C47(R). Conformational two-site disorder models were required for the pendant 6-O-chloro­acetyl and methyl of the 6-O-acetyl groups.

(I4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3-\ O-benzyl-2-de­oxy-4-O-(9-\ fluorenyl­methyl­oxycarbonyl)-α-D-gluco­pyran­osyl]-2-\ O-benzoyl-3-O-benzyl-6-\ O-methoxyo­acetyl-α-L-\ ido­pyran­oside, (II) (hereafter RNSB)

This molecule (Fig. 2) crystallized in an isostructural cell to (I), as shown in Fig. 3. A comparison of the molecules of (I) and (II) shows that intra­molecular inter­actions seem to determine the near identical atomic configurations (see Figs 1, 2 and 5). As might be expected, only one other weak packing inter­molecular inter­action is found.

4-Meth­oxy­phenyl 4-O-[6-O-acetyl-2-azido-3,4-\ O-benzyl-2-de­oxy-α- D-gluco­pyran­osyl]-2-O-benzoyl-3-\ O-benzyl-6-O-meth­oxy­acetyl-β-\ D-gluco­pyran­oside, (III) (hereafter RSTN)

Compound (III) (Fig. 4) crystallizes with one independent molecule but with disorder on one of the terminal benzyl­oxy groups and the 2-meth­oxy­acet­oxy methyl group, modelled by two-site disorder models. The absolute configuration was not ambiguously determined but is known from the synthetic chemistry.

The conformational data given in Tables 1 and 2 show the essential pyran­ose chair conformations have not been disturbed significantly in the title compounds.

Supra­molecular features top

The crystal packing in (I) is provided by weak C—H···O(ether), C—H···O (carbonyl) hydrogen bonds and one C—H···π inter­action (Table 3). These inter­actions form a three-dimensional network in which the base motifs are C(8), C(12) and C(20) (Bernstein et al., 1995; Fig. 5). Given the unusual pseudo-dimeric nature of the hydrogen bonding in the gluco­pyran­oside crystal (Gainsford et al., 2013) and the chloro­acet­oxy group disorder, it is not surprising that there is only one common C—H···O(carbonyl) inter­action involving the C1—H1 atoms. In the isostructural compound (II), the same inter­actions are observed plus one additional methyl­ene-H···O(ether) (C29—H29···O12A) (Table 4); this is only possible in (II) with the difference in composition of the two molecules (the chloro­acetyl being replaced by the meth­oxy­acetyl group).

In (III), the five C—H···O(ether and ketone) inter­actions are augmented by five C—H···π inter­actions (Table 5). These inter­actions form stacks of twofold-related molecules along the b axis in which R22(18) and C(n) (n = 5,17) motifs (Bernstein et al., 1995) are present.

Database survey top

There are only a few reported 2-azido pyran­ose-based disaccharide structures in the Cambridge Structural Database (Version 5.36, with February 2015 update; Groom & Allen, 2014): our published gluco­pyran­oside (Gainsford et al., 2013; BILJAJ), a manno­pyran­oside (Luger & Paulsen, 1981; BABHUH) and one ido­pyran­ose (Lee et al., 2004; AQOGIW). We note another disaccharide gluco­pyran­ose (Abboud et al., 1997; RAVNAD) for comparison. The conformational data given in Tables 1 and 2 show the pyran­ose essential chair conformations have not been disturbed significantly, although the ring with the bound azide seems to be closer to a `pure' chair conformation by the θ criteria (Cremer & Pople, 1975).

Synthesis and crystallization top

The title compounds were prepared as described in Schwörer et al. (2013). Crystals were obtained by vapour diffusion of petroleum ether into a solution of the title compounds in ethyl acetate (I) or toluene (II) and (III).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 6. Subject to variations noted below, the methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) or 1.00 (tertiary) Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (for methyl C) of their parent atom. Specific variations were:

(I) Data at resolution less than 1.12 Å was not significantly above the noise level and was excluded from the refinement. One other reflection (1,0,9) was OMITted as an outlier. Data analysis shows that there are many data in the resolution range 1.40–1.12 Å that are in poor agreement reflecting crystal quality.

There was conformational disorder in the chloro­acet­oxy (atoms C28, C29, O9 and Cl1) and the meth­oxy­carbonyl­oxy (atoms C37, C37 and O12) groups which was modelled as two (A and B) groups. Because of proximity, and poor data quality, these atoms were unable to be refined with anisotropic thermal parameters. It proved advisable to add additional restraints to retain known geometries based on published structures for these groups. So (SHELXL DFIX) C28–C29 pairs were held to 1.50 (3) Å; C28—O9 to 1.20 Å and same-distance constraints (SADI, 0.02) were applied to C29–Cl1, C36–C37 and C36–O11. Thermal parameters were also linked using SIMU for ring atoms C6–C11 and atom pairs C53 and C54, O12A and O12B, C37A and C37B, and C36A and C36B. Finally, rings C6–C11 and C14–C19 were constrained to hexagonal geometry with C—C = 1.390 Å. Final A:B occupancies for the chloro­acet­oxy group were 0.509 (17):0.491 (17) and for the meth­oxy­carbonyl­oxy, 0.44 (4):0.56 (4).

(II) Data at resolution less than 0.81 Å was not significantly above the noise level and was excluded from the refinement. Two reflections (17,1,7; 6,9,5) were OMITted as clear outlier data. There was two-site conformational disorder for the methoxyl­acetyl atoms C36 and O12 (labelled A and B, respectively). Atoms C13, C33, C34, C30, C361 and C36B were restrained to isotropic-like behaviour (using ISOR) and the two-model disordered atoms (O12A, O12B; C36A, C36B) were given the same anisotropic thermal parameters. Distant constraints (SADI, 0.3) were applied to the C36A—O12A and C36B—O12B bonds. Final A:B occupancies for the meth­oxy­acetyl atoms were 0.797 (16):0.203 (16).

(III) One reflection was removed as an outlier as well as nine low angle reflections affected by the beamstop (Fo<<Fc). The molecule showed two major orientations for the benzyl group (atoms C13–C19) refined by two refining set occupancies [A:B 0.793 (6):0.207 (6)] coupled with equivalent U values (SIMU for each ring set) and with each ring restrained to a regular hexagon (C—C 1.39 Å). In a similar manner, two orientations of atoms C29, O52 and C52 were refined as two conformations: final A:B ratio 0.687 (8):0.313 (8).

Related literature top

For related literature, see: Abboud et al. (1997); Bernstein et al. (1995); Bishop et al. (2007); Cremer & Pople (1975); Gainsford et al. (2012, 2013); Groom & Allen (2014); Lee et al. (2004); Luger & Paulsen (1981); Scholefield et al. (2003); Schwörer et al. (2013); Turnbull et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2005) for OZTF; CrysAlis PRO (Agilent, 2013) for RNSB; APEX2 (Bruker, 2005) for RSTN. Cell refinement: FSProcess (Rigaku, 1998) for OZTF; CrysAlis PRO (Agilent, 2013) for RNSB; SAINT (Bruker, 2005) for RSTN. Data reduction: FSProcess (Rigaku, 1998) for OZTF; CrysAlis PRO (Agilent, 2013) for RNSB; SAINT and SADABS (Bruker, 2005) for RSTN. Program(s) used to solve structure: SHELX-D (Sheldrick, 2008) for OZTF; SHELXS97 (Sheldrick, 2008) for RNSB, RSTN. For all compounds, program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015). Molecular graphics: ORTEP-3 in WinGX (Farrugia, 2012) for OZTF; ORTEP-3 in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008) for RNSB; ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008) for RSTN. For all compounds, software used to prepare material for publication: SHELXL2012 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) view of (I) showing the asymmetric unit and labels with 20% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the two disordered conformations for atoms C28, C29, O9 and Cl1, and C37, C37 and O12 (see text) are shown.
[Figure 2] Fig. 2. An ORTEP-3 (Farrugia, 2012) view of (II) showing the asymmetric unit and labels with 30% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the disordered conformations for atoms C36 and O12 (see text) are shown.
[Figure 3] Fig. 3. An overlap view (Mercury; Macrae et al. (2008) of the cell and asymmetric-unit atoms for the isostructural molecules (I) (atom colours) and (II) (in purple). The Cl atom in (I) is labelled to highlight the different pendant groups.
[Figure 4] Fig. 4. An ORTEP-3 (Farrugia, 2012) view of (III) showing the asymmetric unit and labels with 30% probability ellipsoids. H atoms have been omitted for clarity. Only one (A) of the disordered conformations for atoms C13–C19 and O6, and C29, C52 and O52 (see text) are shown.
[Figure 5] Fig. 5. Cell-packing view (Macrae et al., 2008) of (I) showing representative hydrogen-bonding interactions (see Table 3). The C—H···π interaction is shown by atoms H16 and C59. [Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, y - 1/2, -z + 1; (iii) x - 1, y, z; (iv) x - 1, y - 1, z + 1.]
(OZTF) 4-Methoxyphenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-(9-fluorenylmethyloxycarbonyl)-α-D-glucopyranosyl]-2-O-benzoyl-3-O-benzyl-6-O-chloroacetyl-α-L-iodopyranoside top
Crystal data top
C59H56ClN3O16Z = 2
Mr = 1098.51F(000) = 1152
Monoclinic, P21Dx = 1.331 Mg m3
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 14.8343 (11) ŵ = 1.24 mm1
b = 8.4771 (6) ÅT = 123 K
c = 21.8112 (17) ÅNeedle, colourless
β = 91.780 (7)°0.6 × 0.05 × 0.02 mm
V = 2741.5 (4) Å3
Data collection top
Rigaku Spider
diffractometer
3962 independent reflections
Radiation source: Rigaku MM007 rotating anode2294 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.101
Detector resolution: 10 pixels mm-1θmax = 43.5°, θmin = 6.6°
ω–scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.68, Tmax = 1.0l = 1919
19701 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.088 w = 1/[σ2(Fo2) + (0.1736P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.280(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.29 e Å3
3962 reflectionsΔρmin = 0.25 e Å3
666 parametersExtinction correction: SHELXL2012 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
55 restraintsExtinction coefficient: 0.0110 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Parsons & Flack (2004), 1721 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (8)
Crystal data top
C59H56ClN3O16V = 2741.5 (4) Å3
Mr = 1098.51Z = 2
Monoclinic, P21Cu Kα radiation
a = 14.8343 (11) ŵ = 1.24 mm1
b = 8.4771 (6) ÅT = 123 K
c = 21.8112 (17) Å0.6 × 0.05 × 0.02 mm
β = 91.780 (7)°
Data collection top
Rigaku Spider
diffractometer
3962 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2294 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 1.0Rint = 0.101
19701 measured reflectionsθmax = 43.5°
Refinement top
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.280Δρmax = 0.29 e Å3
S = 1.09Δρmin = 0.25 e Å3
3962 reflectionsAbsolute structure: Parsons & Flack (2004), 1721 Friedel pairs
666 parametersAbsolute structure parameter: 0.01 (8)
55 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6023 (10)0.4612 (18)0.4054 (7)0.087 (4)
O20.6713 (9)0.5629 (17)0.2568 (9)0.083 (4)
O30.4899 (10)0.7299 (17)0.3450 (6)0.089 (4)
O40.7060 (9)0.898 (2)0.3050 (7)0.093 (5)
O50.7223 (10)0.627 (2)0.3832 (7)0.092 (5)
O60.5503 (13)0.546 (2)0.1899 (6)0.106 (5)
O70.7099 (13)0.057 (2)0.5924 (7)0.120 (6)
O80.7842 (13)0.789 (2)0.4871 (8)0.118 (6)
O100.7549 (11)1.159 (2)0.3127 (7)0.093 (5)
O110.8860 (10)1.394 (2)0.3282 (8)0.110 (5)
O130.8501 (13)1.017 (2)0.1475 (8)0.129 (6)
O140.9718 (12)1.0557 (19)0.2549 (8)0.115 (5)
O151.0271 (10)1.266 (2)0.2053 (8)0.113 (5)
O161.1160 (11)1.068 (2)0.2435 (7)0.113 (5)
N10.669 (2)0.923 (4)0.1826 (14)0.150 (11)
N20.662 (2)0.933 (4)0.129 (2)0.156 (11)
N30.6536 (18)0.919 (5)0.0750 (18)0.169 (13)
C10.660 (2)0.515 (3)0.3614 (13)0.093 (8)
H10.69540.42210.34790.112*
C20.6048 (17)0.571 (3)0.3053 (12)0.089 (7)
H20.55320.49830.29620.107*
C30.5723 (15)0.735 (3)0.3119 (10)0.080 (7)
H30.55930.78040.27020.095*
C40.6363 (16)0.845 (3)0.3470 (12)0.082 (7)
H40.60140.93890.36020.098*
C50.6779 (17)0.768 (4)0.4036 (10)0.089 (7)
H50.62960.73890.43260.107*
C60.6354 (13)0.3663 (17)0.4527 (6)0.093 (7)
C70.5739 (10)0.2666 (19)0.4799 (7)0.088 (7)
H70.51240.26760.46640.106*
C80.6023 (10)0.1655 (18)0.5267 (7)0.103 (7)
H80.56030.09740.54530.123*
C90.6923 (10)0.1640 (16)0.5465 (6)0.115 (9)
C100.7539 (9)0.2637 (18)0.5193 (7)0.117 (9)
H100.81540.26270.53280.140*
C110.7254 (12)0.3648 (18)0.4724 (7)0.096 (7)
H110.76750.43300.45390.115*
C120.8015 (15)0.047 (3)0.6153 (9)0.155 (11)*
H12A0.80690.03730.64590.233*
H12B0.81900.14780.63420.233*
H12C0.84120.02430.58130.233*
C130.633 (2)0.547 (3)0.2014 (15)0.105 (8)
C140.6979 (9)0.5065 (12)0.1521 (6)0.099 (8)
C150.6717 (10)0.501 (2)0.0904 (6)0.118 (9)
H150.61050.52000.07830.141*
C160.7349 (12)0.469 (2)0.0464 (6)0.130 (11)
H160.71700.46540.00420.157*
C170.8244 (11)0.4416 (17)0.0641 (7)0.124 (10)
H170.86760.41940.03400.149*
C180.8506 (10)0.4467 (19)0.1258 (8)0.099 (8)
H180.91170.42810.13790.119*
C190.7874 (9)0.4792 (18)0.1698 (7)0.096 (8)
H190.80530.48270.21200.115*
C200.4107 (12)0.797 (3)0.3127 (9)0.096 (8)
H20A0.35550.75230.33030.116*
H20B0.41150.76570.26900.116*
C210.4065 (16)0.973 (3)0.3166 (17)0.090 (8)
C220.4360 (15)1.054 (5)0.2668 (12)0.097 (8)
H220.45510.99790.23180.117*
C230.4383 (13)1.221 (5)0.2671 (12)0.108 (9)
H230.46291.27820.23410.130*
C240.4033 (18)1.298 (4)0.3172 (15)0.120 (9)*
H240.40051.41030.31780.144*
C250.3723 (16)1.211 (4)0.3667 (12)0.105 (8)
H250.35151.26480.40180.126*
C260.3716 (18)1.052 (5)0.3650 (14)0.118 (10)
H260.34670.99470.39780.142*
C270.7463 (17)0.877 (3)0.4356 (13)0.104 (8)
H27A0.79410.90720.40710.125*
H27B0.71630.97410.44980.125*
C300.699 (2)1.057 (4)0.2811 (12)0.099 (8)
H300.63501.09410.28280.119*
C310.8492 (13)1.119 (3)0.3138 (12)0.088 (7)
H310.85771.01160.33230.106*
C320.8812 (17)1.117 (3)0.2484 (11)0.092 (7)
H320.88011.22470.22970.110*
C330.824 (2)0.999 (3)0.2106 (12)0.106 (8)
H330.83440.88860.22520.127*
C340.727 (2)1.042 (3)0.2128 (12)0.103 (8)
H340.71681.14610.19180.124*
C350.8947 (16)1.241 (4)0.3555 (12)0.102 (8)
H35A0.86631.24120.39600.123*
H35B0.95931.21500.36180.123*
C380.887 (2)0.876 (5)0.1199 (14)0.147 (11)*
H38A0.84660.78450.12730.177*
H38B0.94700.85210.13820.177*
C390.893 (2)0.906 (5)0.0497 (12)0.107 (9)
C400.944 (2)0.799 (4)0.022 (2)0.136 (11)
H400.97430.71750.04400.164*
C410.9504 (19)0.813 (5)0.045 (2)0.125 (10)
H410.98420.73900.06720.150*
C420.907 (2)0.934 (6)0.0734 (17)0.130 (10)
H420.91250.94480.11650.157*
C430.857 (2)1.039 (4)0.0438 (19)0.118 (9)
H430.82691.12100.06570.141*
C440.8507 (19)1.027 (4)0.020 (2)0.123 (10)
H440.81691.10170.04190.148*
C451.041 (3)1.146 (5)0.2311 (14)0.111 (9)*
C461.1930 (18)1.125 (4)0.2112 (13)0.123 (9)
H46A1.24771.12010.23830.148*
H46B1.18321.23540.19840.148*
C471.2043 (15)1.024 (4)0.1575 (14)0.106 (8)
H471.14971.03400.12970.127*
C481.222 (2)0.848 (4)0.1713 (12)0.103 (8)
C491.167 (2)0.744 (5)0.2026 (13)0.129 (10)
H491.10940.77630.21660.155*
C501.199 (2)0.588 (4)0.2126 (10)0.111 (8)
H501.16330.51350.23360.133*
C511.285 (2)0.542 (4)0.1916 (12)0.117 (9)*
H511.30420.43620.19840.140*
C521.3403 (18)0.643 (4)0.1616 (12)0.108 (9)
H521.39860.61360.14900.130*
C531.306 (2)0.791 (4)0.1513 (11)0.094 (8)
C541.3472 (19)0.934 (5)0.1211 (12)0.109 (9)
C551.428 (2)0.953 (4)0.0919 (11)0.120 (10)
H551.46770.86500.08930.144*
C561.453 (2)1.098 (4)0.0658 (13)0.115 (9)*
H561.51081.10760.04820.138*
C571.3968 (17)1.223 (4)0.0655 (11)0.125 (10)
H571.41291.31750.04540.150*
C581.3155 (18)1.212 (4)0.0946 (12)0.107 (8)*
H581.27671.30050.09720.129*
C591.292 (2)1.065 (3)0.1202 (11)0.104 (8)
Cl1A0.9494 (7)0.4701 (16)0.5565 (6)0.110 (6)0.509 (17)
O9A0.905 (2)0.692 (5)0.4541 (17)0.136 (13)*0.509 (17)
C28A0.856 (3)0.696 (7)0.495 (2)0.117 (19)*0.509 (17)
C29A0.871 (3)0.628 (6)0.556 (2)0.068 (17)*0.509 (17)
H29A0.81220.58820.57020.102*0.509 (17)
H29B0.89220.71050.58450.102*0.509 (17)
O12A0.956 (3)1.500 (3)0.3990 (17)0.100 (17)0.44 (4)
C36A0.935 (5)1.517 (8)0.343 (3)0.11 (3)*0.44 (4)
C37A0.926 (4)1.667 (7)0.317 (3)0.06 (2)*0.44 (4)
H37A0.93101.74740.34970.092*0.44 (4)
H37B0.86741.67600.29600.092*0.44 (4)
H37C0.97421.68420.28810.092*0.44 (4)
Cl1B0.8673 (9)0.645 (2)0.5910 (8)0.116 (6)0.491 (17)
O9B0.927 (2)0.886 (5)0.4500 (15)0.127 (13)*0.491 (17)
C28B0.876 (3)0.803 (8)0.482 (3)0.13 (2)*0.491 (17)
C29B0.932 (3)0.705 (6)0.529 (2)0.110 (17)*0.491 (17)
H29C0.98390.76940.54430.164*0.491 (17)
H29D0.95670.61130.50800.164*0.491 (17)
O12B1.029 (2)1.428 (4)0.3464 (15)0.130 (16)0.56 (4)
C36B0.956 (4)1.486 (7)0.334 (3)0.11 (2)*0.56 (4)
C37B0.936 (5)1.631 (8)0.305 (3)0.13 (3)*0.56 (4)
H37D0.97011.71520.32590.193*0.56 (4)
H37E0.87101.65260.30810.193*0.56 (4)
H37F0.95151.62600.26210.193*0.56 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.120 (12)0.077 (11)0.065 (9)0.009 (9)0.023 (9)0.018 (9)
O20.073 (10)0.090 (11)0.086 (11)0.008 (9)0.001 (10)0.007 (9)
O30.096 (11)0.080 (11)0.092 (10)0.003 (9)0.038 (10)0.011 (9)
O40.083 (10)0.097 (14)0.101 (11)0.024 (10)0.007 (9)0.009 (10)
O50.090 (10)0.100 (13)0.088 (11)0.014 (12)0.026 (9)0.012 (11)
O60.104 (12)0.126 (15)0.088 (11)0.012 (12)0.000 (10)0.007 (10)
O70.188 (17)0.076 (12)0.098 (11)0.025 (12)0.030 (11)0.018 (10)
O80.111 (14)0.112 (15)0.131 (15)0.025 (11)0.008 (11)0.020 (12)
O100.079 (12)0.079 (12)0.123 (13)0.026 (10)0.013 (9)0.001 (11)
O110.081 (11)0.108 (16)0.140 (14)0.002 (12)0.001 (9)0.008 (13)
O130.186 (16)0.097 (14)0.106 (14)0.002 (12)0.038 (12)0.006 (11)
O140.105 (13)0.087 (12)0.156 (14)0.018 (11)0.043 (10)0.037 (12)
O150.106 (12)0.097 (14)0.134 (14)0.013 (10)0.003 (10)0.014 (12)
O160.082 (11)0.121 (14)0.139 (13)0.013 (11)0.037 (10)0.032 (12)
N10.23 (3)0.14 (3)0.084 (17)0.06 (2)0.00 (2)0.00 (2)
N20.17 (2)0.14 (3)0.16 (3)0.016 (18)0.01 (3)0.02 (3)
N30.103 (18)0.19 (3)0.22 (3)0.007 (18)0.04 (2)0.04 (3)
C10.12 (2)0.067 (18)0.09 (2)0.005 (18)0.02 (2)0.024 (17)
C20.086 (17)0.08 (2)0.10 (2)0.012 (15)0.007 (17)0.008 (16)
C30.071 (15)0.11 (2)0.062 (14)0.003 (17)0.018 (13)0.032 (15)
C40.087 (17)0.063 (16)0.097 (19)0.002 (14)0.022 (17)0.006 (16)
C50.098 (17)0.12 (2)0.054 (16)0.003 (19)0.025 (14)0.005 (17)
C60.15 (2)0.074 (17)0.054 (15)0.030 (18)0.033 (16)0.015 (15)
C70.148 (19)0.063 (16)0.055 (14)0.013 (15)0.017 (14)0.013 (12)
C80.144 (19)0.084 (17)0.082 (16)0.021 (18)0.051 (15)0.015 (15)
C90.13 (2)0.11 (2)0.11 (2)0.05 (2)0.013 (17)0.014 (19)
C100.12 (2)0.14 (2)0.096 (19)0.032 (18)0.018 (15)0.001 (17)
C110.103 (18)0.100 (19)0.084 (17)0.011 (17)0.004 (14)0.029 (15)
C130.08 (2)0.13 (2)0.10 (2)0.003 (18)0.00 (2)0.019 (18)
C140.104 (19)0.11 (2)0.083 (19)0.002 (16)0.003 (18)0.013 (16)
C150.11 (2)0.13 (3)0.10 (2)0.013 (17)0.026 (17)0.013 (18)
C160.14 (2)0.18 (3)0.076 (17)0.01 (2)0.046 (17)0.018 (18)
C170.10 (2)0.10 (2)0.17 (3)0.017 (18)0.04 (2)0.00 (2)
C180.12 (2)0.086 (19)0.087 (18)0.003 (16)0.007 (16)0.001 (16)
C190.13 (2)0.101 (19)0.059 (15)0.005 (17)0.001 (15)0.018 (13)
C200.080 (17)0.12 (3)0.089 (18)0.015 (16)0.001 (13)0.047 (17)
C210.077 (16)0.06 (2)0.14 (3)0.006 (14)0.012 (16)0.03 (2)
C220.096 (19)0.10 (3)0.09 (2)0.000 (19)0.003 (15)0.01 (2)
C230.061 (15)0.14 (3)0.12 (2)0.028 (17)0.007 (13)0.01 (2)
C250.13 (2)0.07 (2)0.12 (2)0.019 (17)0.014 (16)0.012 (18)
C260.11 (2)0.13 (3)0.12 (2)0.01 (2)0.038 (17)0.02 (2)
C270.104 (19)0.088 (19)0.12 (2)0.014 (18)0.021 (17)0.01 (2)
C300.12 (2)0.07 (2)0.10 (2)0.02 (2)0.028 (18)0.042 (19)
C310.037 (14)0.10 (2)0.13 (2)0.003 (14)0.006 (13)0.018 (18)
C320.101 (19)0.085 (19)0.092 (18)0.016 (18)0.028 (16)0.005 (16)
C330.15 (3)0.07 (2)0.09 (2)0.005 (19)0.014 (19)0.006 (16)
C340.12 (2)0.070 (18)0.12 (2)0.031 (19)0.012 (18)0.020 (18)
C350.098 (19)0.11 (2)0.104 (19)0.007 (18)0.008 (15)0.02 (2)
C390.10 (2)0.13 (3)0.10 (2)0.01 (2)0.032 (17)0.04 (2)
C400.13 (3)0.14 (3)0.14 (3)0.01 (2)0.05 (2)0.02 (3)
C410.10 (2)0.12 (3)0.16 (4)0.02 (2)0.03 (2)0.02 (2)
C420.12 (2)0.12 (3)0.15 (3)0.00 (2)0.00 (2)0.00 (3)
C430.12 (2)0.12 (3)0.11 (3)0.01 (2)0.015 (18)0.03 (2)
C440.13 (2)0.10 (3)0.14 (3)0.04 (2)0.01 (2)0.02 (2)
C460.10 (2)0.13 (3)0.14 (2)0.003 (19)0.036 (18)0.03 (2)
C470.067 (17)0.09 (2)0.16 (3)0.001 (16)0.010 (17)0.00 (2)
C480.10 (2)0.12 (3)0.097 (19)0.00 (2)0.015 (16)0.02 (2)
C490.16 (3)0.10 (3)0.13 (2)0.03 (3)0.04 (2)0.01 (2)
C500.15 (2)0.10 (3)0.077 (17)0.01 (2)0.010 (15)0.013 (16)
C520.11 (2)0.10 (2)0.11 (2)0.03 (2)0.031 (16)0.02 (2)
C530.09 (2)0.12 (3)0.077 (17)0.03 (2)0.007 (15)0.005 (17)
C540.055 (17)0.16 (3)0.11 (2)0.01 (2)0.010 (15)0.04 (2)
C550.12 (2)0.15 (3)0.091 (18)0.03 (2)0.018 (17)0.028 (19)
C570.104 (19)0.16 (3)0.11 (2)0.00 (2)0.023 (15)0.004 (19)
C590.10 (2)0.10 (2)0.110 (18)0.02 (2)0.005 (16)0.010 (18)
Cl1A0.088 (9)0.101 (11)0.140 (11)0.007 (7)0.007 (7)0.031 (9)
O12A0.15 (3)0.05 (2)0.11 (3)0.01 (2)0.03 (2)0.00 (2)
Cl1B0.122 (11)0.125 (13)0.103 (13)0.003 (9)0.021 (9)0.001 (11)
O12B0.11 (3)0.12 (3)0.16 (3)0.02 (2)0.01 (2)0.02 (2)
Geometric parameters (Å, º) top
O1—C11.38 (3)C25—H250.9500
O1—C61.385 (19)C26—H260.9500
O2—C131.33 (3)C27—H27A0.9900
O2—C21.47 (2)C27—H27B0.9900
O3—C31.44 (2)C30—C341.56 (3)
O3—C201.47 (2)C30—H301.0000
O4—C301.44 (3)C31—C321.52 (3)
O4—C41.47 (2)C31—C351.53 (3)
O5—C11.40 (3)C31—H311.0000
O5—C51.44 (3)C32—C331.54 (3)
O6—C131.25 (3)C32—H321.0000
O7—C91.373 (19)C33—C341.49 (3)
O7—C121.44 (2)C33—H331.0000
O8—C28A1.34 (4)C34—H341.0000
O8—C28B1.37 (4)C35—H35A0.9900
O8—C271.45 (3)C35—H35B0.9900
O10—C301.37 (3)C38—C391.56 (4)
O10—C311.44 (2)C38—H38A0.9900
O11—C36B1.30 (4)C38—H38B0.9900
O11—C36A1.31 (4)C39—C401.34 (4)
O11—C351.43 (3)C39—C441.36 (4)
O13—C331.45 (3)C40—C411.46 (4)
O13—C381.45 (4)C40—H400.9500
O14—C451.39 (3)C41—C421.35 (4)
O14—C321.44 (2)C41—H410.9500
O15—C451.17 (3)C42—C431.34 (4)
O16—C451.32 (4)C42—H420.9500
O16—C461.44 (3)C43—C441.40 (3)
N1—N21.18 (4)C43—H430.9500
N1—C341.47 (3)C44—H440.9500
N2—N31.19 (4)C46—C471.46 (3)
C1—C21.53 (3)C46—H46A0.9900
C1—H11.0000C46—H46B0.9900
C2—C31.48 (3)C47—C481.55 (4)
C2—H21.0000C47—C591.59 (3)
C3—C41.52 (3)C47—H471.0000
C3—H31.0000C48—C491.40 (4)
C4—C51.51 (3)C48—C531.40 (3)
C4—H41.0000C49—C501.42 (4)
C5—C271.53 (3)C49—H490.9500
C5—H51.0000C50—C511.42 (3)
C6—C71.3900C50—H500.9500
C6—C111.3900C51—C521.37 (4)
C7—C81.3900C51—H510.9500
C7—H70.9500C52—C531.37 (3)
C8—C91.3900C52—H520.9500
C8—H80.9500C53—C541.52 (4)
C9—C101.3900C54—C551.39 (3)
C10—C111.3900C54—C591.39 (3)
C10—H100.9500C55—C561.41 (4)
C11—H110.9500C55—H550.9500
C12—H12A0.9800C56—C571.35 (4)
C12—H12B0.9800C56—H560.9500
C12—H12C0.9800C57—C581.38 (3)
C13—C141.50 (3)C57—H570.9500
C14—C151.3900C58—C591.41 (3)
C14—C191.3900C58—H580.9500
C15—C161.3900Cl1A—C29A1.78 (4)
C15—H150.9500O9A—C28A1.17 (4)
C16—C171.3900C28A—C29A1.45 (4)
C16—H160.9500C29A—H29A0.9900
C17—C181.3900C29A—H29B0.9900
C17—H170.9500O12A—C36A1.25 (4)
C18—C191.3900C36A—C37A1.40 (5)
C18—H180.9500C37A—H37A0.9800
C19—H190.9500C37A—H37B0.9800
C20—C211.50 (3)C37A—H37C0.9800
C20—H20A0.9900Cl1B—C29B1.77 (4)
C20—H20B0.9900O9B—C28B1.27 (4)
C21—C261.37 (3)C28B—C29B1.53 (4)
C21—C221.37 (3)C29B—H29C0.9900
C22—C231.42 (4)C29B—H29D0.9900
C22—H220.9500O12B—C36B1.22 (4)
C23—C241.39 (3)C36B—C37B1.40 (5)
C23—H230.9500C37B—H37D0.9800
C24—C251.40 (3)C37B—H37E0.9800
C24—H240.9500C37B—H37F0.9800
C25—C261.35 (4)
C1—O1—C6119.9 (17)O14—C32—C33108 (2)
C13—O2—C2112.6 (18)C31—C32—C33109 (2)
C3—O3—C20115.3 (13)O14—C32—H32111.9
C30—O4—C4117.8 (17)C31—C32—H32111.9
C1—O5—C5111.1 (17)C33—C32—H32111.9
C9—O7—C12116.5 (17)O13—C33—C34107 (2)
C28A—O8—C27134 (3)O13—C33—C32106 (2)
C28B—O8—C27105 (3)C34—C33—C32110 (2)
C30—O10—C31115.7 (19)O13—C33—H33111.1
C36B—O11—C35116 (3)C34—C33—H33111.1
C36A—O11—C35125 (3)C32—C33—H33111.1
C33—O13—C38115 (2)N1—C34—C33111 (3)
C45—O14—C32117 (2)N1—C34—C30108 (2)
C45—O16—C46114 (2)C33—C34—C30110 (2)
N2—N1—C34116 (3)N1—C34—H34109.2
N1—N2—N3170 (4)C33—C34—H34109.2
O1—C1—O5114 (2)C30—C34—H34109.2
O1—C1—C2110 (2)O11—C35—C31110 (2)
O5—C1—C2113 (2)O11—C35—H35A109.7
O1—C1—H1106.6C31—C35—H35A109.7
O5—C1—H1106.6O11—C35—H35B109.7
C2—C1—H1106.6C31—C35—H35B109.7
O2—C2—C3110 (2)H35A—C35—H35B108.2
O2—C2—C1102 (2)O13—C38—C39108 (3)
C3—C2—C1113 (2)O13—C38—H38A110.1
O2—C2—H2110.6C39—C38—H38A110.1
C3—C2—H2110.6O13—C38—H38B110.1
C1—C2—H2110.6C39—C38—H38B110.1
O3—C3—C2108 (2)H38A—C38—H38B108.4
O3—C3—C4107.1 (19)C40—C39—C44123 (3)
C2—C3—C4115.0 (19)C40—C39—C38113 (4)
O3—C3—H3109.0C44—C39—C38123 (4)
C2—C3—H3109.0C39—C40—C41117 (3)
C4—C3—H3109.0C39—C40—H40121.5
O4—C4—C5111.4 (18)C41—C40—H40121.5
O4—C4—C3108.3 (18)C42—C41—C40119 (3)
C5—C4—C3112.5 (19)C42—C41—H41120.7
O4—C4—H4108.2C40—C41—H41120.7
C5—C4—H4108.2C43—C42—C41123 (4)
C3—C4—H4108.2C43—C42—H42118.6
O5—C5—C4106.5 (17)C41—C42—H42118.6
O5—C5—C27110 (2)C42—C43—C44119 (3)
C4—C5—C27111 (2)C42—C43—H43120.4
O5—C5—H5109.8C44—C43—H43120.4
C4—C5—H5109.8C39—C44—C43119 (3)
C27—C5—H5109.8C39—C44—H44120.4
O1—C6—C7116.6 (12)C43—C44—H44120.4
O1—C6—C11123.4 (12)O15—C45—O16132 (3)
C7—C6—C11120.0O15—C45—O14122 (3)
C8—C7—C6120.0O16—C45—O14106 (3)
C8—C7—H7120.0O16—C46—C47108 (2)
C6—C7—H7120.0O16—C46—H46A110.1
C7—C8—C9120.0C47—C46—H46A110.1
C7—C8—H8120.0O16—C46—H46B110.1
C9—C8—H8120.0C47—C46—H46B110.1
O7—C9—C10127.0 (11)H46A—C46—H46B108.4
O7—C9—C8113.0 (11)C46—C47—C48115 (2)
C10—C9—C8120.0C46—C47—C59114 (2)
C11—C10—C9120.0C48—C47—C59100 (2)
C11—C10—H10120.0C46—C47—H47109.2
C9—C10—H10120.0C48—C47—H47109.2
C10—C11—C6120.0C59—C47—H47109.2
C10—C11—H11120.0C49—C48—C53118 (3)
C6—C11—H11120.0C49—C48—C47127 (3)
O7—C12—H12A109.5C53—C48—C47115 (3)
O7—C12—H12B109.5C48—C49—C50117 (3)
H12A—C12—H12B109.5C48—C49—H49121.5
O7—C12—H12C109.5C50—C49—H49121.5
H12A—C12—H12C109.5C51—C50—C49121 (3)
H12B—C12—H12C109.5C51—C50—H50119.7
O6—C13—O2125 (2)C49—C50—H50119.7
O6—C13—C14120 (3)C52—C51—C50123 (3)
O2—C13—C14114 (2)C52—C51—H51118.7
C15—C14—C19120.0C50—C51—H51118.7
C15—C14—C13122.3 (15)C53—C52—C51115 (3)
C19—C14—C13117.7 (15)C53—C52—H52122.5
C16—C15—C14120.0C51—C52—H52122.5
C16—C15—H15120.0C52—C53—C48126 (3)
C14—C15—H15120.0C52—C53—C54130 (3)
C15—C16—C17120.0C48—C53—C54104 (3)
C15—C16—H16120.0C55—C54—C59115 (3)
C17—C16—H16120.0C55—C54—C53131 (3)
C18—C17—C16120.0C59—C54—C53113 (2)
C18—C17—H17120.0C54—C55—C56122 (3)
C16—C17—H17120.0C54—C55—H55119.0
C19—C18—C17120.0C56—C55—H55119.0
C19—C18—H18120.0C57—C56—C55121 (3)
C17—C18—H18120.0C57—C56—H56119.6
C18—C19—C14120.0C55—C56—H56119.6
C18—C19—H19120.0C56—C57—C58120 (3)
C14—C19—H19120.0C56—C57—H57120.2
O3—C20—C21113.2 (19)C58—C57—H57120.2
O3—C20—H20A108.9C57—C58—C59118 (3)
C21—C20—H20A108.9C57—C58—H58120.8
O3—C20—H20B108.9C59—C58—H58120.8
C21—C20—H20B108.9C54—C59—C58124 (3)
H20A—C20—H20B107.7C54—C59—C47108 (2)
C26—C21—C22120 (3)C58—C59—C47128 (3)
C26—C21—C20123 (3)O9A—C28A—O8115 (4)
C22—C21—C20116 (3)O9A—C28A—C29A128 (4)
C21—C22—C23120 (3)O8—C28A—C29A117 (4)
C21—C22—H22119.8C28A—C29A—Cl1A113 (3)
C23—C22—H22119.8C28A—C29A—H29A109.0
C24—C23—C22118 (3)Cl1A—C29A—H29A109.0
C24—C23—H23121.1C28A—C29A—H29B109.0
C22—C23—H23121.1Cl1A—C29A—H29B109.0
C23—C24—C25120 (3)H29A—C29A—H29B107.8
C23—C24—H24120.0O12A—C36A—O11106 (4)
C25—C24—H24120.0O12A—C36A—C37A121 (6)
C26—C25—C24121 (3)O11—C36A—C37A125 (5)
C26—C25—H25119.7C36A—C37A—H37A109.5
C24—C25—H25119.7C36A—C37A—H37B109.5
C25—C26—C21121 (3)H37A—C37A—H37B109.5
C25—C26—H26119.7C36A—C37A—H37C109.5
C21—C26—H26119.7H37A—C37A—H37C109.5
O8—C27—C5106 (2)H37B—C37A—H37C109.5
O8—C27—H27A110.5O9B—C28B—O8134 (5)
C5—C27—H27A110.5O9B—C28B—C29B110 (4)
O8—C27—H27B110.5O8—C28B—C29B115 (4)
C5—C27—H27B110.5C28B—C29B—Cl1B111 (3)
H27A—C27—H27B108.7C28B—C29B—H29C109.4
O10—C30—O4112 (2)Cl1B—C29B—H29C109.4
O10—C30—C34111 (2)C28B—C29B—H29D109.4
O4—C30—C34105 (2)Cl1B—C29B—H29D109.4
O10—C30—H30109.9H29C—C29B—H29D108.0
O4—C30—H30109.9O12B—C36B—O11119 (5)
C34—C30—H30109.9O12B—C36B—C37B129 (5)
O10—C31—C32108.7 (19)O11—C36B—C37B109 (5)
O10—C31—C35105 (2)C36B—C37B—H37D109.5
C32—C31—C35115 (2)C36B—C37B—H37E109.5
O10—C31—H31109.3H37D—C37B—H37E109.5
C32—C31—H31109.3C36B—C37B—H37F109.5
C35—C31—H31109.3H37D—C37B—H37F109.5
O14—C32—C31103.3 (18)H37E—C37B—H37F109.5
C6—O1—C1—O570 (2)C31—C32—C33—C3457 (3)
C6—O1—C1—C2162.6 (18)N2—N1—C34—C3382 (4)
C5—O5—C1—O163 (2)N2—N1—C34—C30157 (3)
C5—O5—C1—C263 (2)O13—C33—C34—N171 (3)
C13—O2—C2—C385 (2)C32—C33—C34—N1174 (2)
C13—O2—C2—C1156 (2)O13—C33—C34—C30169 (2)
O1—C1—C2—O2158.2 (18)C32—C33—C34—C3054 (3)
O5—C1—C2—O273 (2)O10—C30—C34—N1175 (2)
O1—C1—C2—C384 (2)O4—C30—C34—N155 (3)
O5—C1—C2—C345 (3)O10—C30—C34—C3354 (3)
C20—O3—C3—C2121.3 (19)O4—C30—C34—C3367 (3)
C20—O3—C3—C4114.6 (18)C36B—O11—C35—C31141 (4)
O2—C2—C3—O3162.6 (16)C36A—O11—C35—C31162 (5)
C1—C2—C3—O384 (2)O10—C31—C35—O1165 (2)
O2—C2—C3—C478 (2)C32—C31—C35—O1154 (3)
C1—C2—C3—C435 (3)C33—O13—C38—C39169 (2)
C30—O4—C4—C5132 (2)O13—C38—C39—C40166 (3)
C30—O4—C4—C3104 (2)O13—C38—C39—C4415 (4)
O3—C3—C4—O4159.8 (17)C44—C39—C40—C412 (4)
C2—C3—C4—O481 (2)C38—C39—C40—C41177 (2)
O3—C3—C4—C577 (2)C39—C40—C41—C422 (4)
C2—C3—C4—C543 (3)C40—C41—C42—C431 (4)
C1—O5—C5—C468 (2)C41—C42—C43—C441 (4)
C1—O5—C5—C27172 (2)C40—C39—C44—C432 (4)
O4—C4—C5—O565 (2)C38—C39—C44—C43177 (3)
C3—C4—C5—O557 (2)C42—C43—C44—C392 (4)
O4—C4—C5—C2755 (3)C46—O16—C45—O1512 (4)
C3—C4—C5—C27176.4 (19)C46—O16—C45—O14167 (2)
C1—O1—C6—C7155.0 (16)C32—O14—C45—O152 (4)
C1—O1—C6—C1124 (2)C32—O14—C45—O16178.9 (19)
O1—C6—C7—C8178.7 (12)C45—O16—C46—C4798 (3)
C11—C6—C7—C80.0O16—C46—C47—C4861 (3)
C6—C7—C8—C90.0O16—C46—C47—C59176 (2)
C12—O7—C9—C101 (2)C46—C47—C48—C4959 (4)
C12—O7—C9—C8179.8 (12)C59—C47—C48—C49178 (2)
C7—C8—C9—O7179.2 (11)C46—C47—C48—C53119 (2)
C7—C8—C9—C100.0C59—C47—C48—C534 (3)
O7—C9—C10—C11179.1 (13)C53—C48—C49—C501 (4)
C8—C9—C10—C110.0C47—C48—C49—C50177 (2)
C9—C10—C11—C60.0C48—C49—C50—C510 (4)
O1—C6—C11—C10178.6 (12)C49—C50—C51—C521 (4)
C7—C6—C11—C100.0C50—C51—C52—C533 (4)
C2—O2—C13—O63 (4)C51—C52—C53—C484 (4)
C2—O2—C13—C14168.7 (19)C51—C52—C53—C54179 (2)
O6—C13—C14—C1515 (3)C49—C48—C53—C523 (4)
O2—C13—C14—C15173.2 (15)C47—C48—C53—C52175 (2)
O6—C13—C14—C19167.5 (19)C49—C48—C53—C54179 (2)
O2—C13—C14—C194 (3)C47—C48—C53—C541 (3)
C19—C14—C15—C160.0C52—C53—C54—C555 (4)
C13—C14—C15—C16177.6 (14)C48—C53—C54—C55179 (2)
C14—C15—C16—C170.0C52—C53—C54—C59179 (2)
C15—C16—C17—C180.0C48—C53—C54—C593 (3)
C16—C17—C18—C190.0C59—C54—C55—C563 (3)
C17—C18—C19—C140.0C53—C54—C55—C56179 (2)
C15—C14—C19—C180.0C54—C55—C56—C574 (4)
C13—C14—C19—C18177.7 (13)C55—C56—C57—C584 (4)
C3—O3—C20—C2181 (2)C56—C57—C58—C594 (4)
O3—C20—C21—C2684 (3)C55—C54—C59—C583 (4)
O3—C20—C21—C2299 (2)C53—C54—C59—C58180 (2)
C26—C21—C22—C236 (3)C55—C54—C59—C47178 (2)
C20—C21—C22—C23177 (2)C53—C54—C59—C475 (3)
C21—C22—C23—C245 (3)C57—C58—C59—C544 (4)
C22—C23—C24—C254 (4)C57—C58—C59—C47178 (2)
C23—C24—C25—C263 (4)C46—C47—C59—C54118 (3)
C24—C25—C26—C214 (4)C48—C47—C59—C545 (3)
C22—C21—C26—C255 (4)C46—C47—C59—C5856 (3)
C20—C21—C26—C25178 (2)C48—C47—C59—C58180 (2)
C28A—O8—C27—C592 (4)C28B—O8—C28A—O9A52 (5)
C28B—O8—C27—C5129 (3)C27—O8—C28A—O9A7 (8)
O5—C5—C27—O860 (2)C28B—O8—C28A—C29A122 (7)
C4—C5—C27—O8177.6 (19)C27—O8—C28A—C29A179 (3)
C31—O10—C30—O458 (2)O9A—C28A—C29A—Cl1A22 (8)
C31—O10—C30—C3458 (2)O8—C28A—C29A—Cl1A165 (4)
C4—O4—C30—O10100 (2)C36B—O11—C36A—O12A102 (14)
C4—O4—C30—C34141 (2)C35—O11—C36A—O12A30 (10)
C30—O10—C31—C3261 (2)C36B—O11—C36A—C37A110 (15)
C30—O10—C31—C35175.6 (18)C35—O11—C36A—C37A179 (6)
C45—O14—C32—C31125 (2)C28A—O8—C28B—O9B151 (10)
C45—O14—C32—C33119 (2)C27—O8—C28B—O9B11 (8)
O10—C31—C32—O14172.6 (18)C28A—O8—C28B—C29B34 (4)
C35—C31—C32—O1470 (3)C27—O8—C28B—C29B174 (4)
O10—C31—C32—C3357 (3)O9B—C28B—C29B—Cl1B159 (4)
C35—C31—C32—C33175 (2)O8—C28B—C29B—Cl1B17 (6)
C38—O13—C33—C34123 (2)C36A—O11—C36B—O12B139 (15)
C38—O13—C33—C32120 (2)C35—O11—C36B—O12B19 (7)
O14—C32—C33—O1375 (2)C36A—O11—C36B—C37B60 (11)
C31—C32—C33—O13173 (2)C35—O11—C36B—C37B179 (4)
O14—C32—C33—C34169 (2)
Hydrogen-bond geometry (Å, º) top
Cg9 is the centroid of the C54–C59 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i1.002.533.51 (3)169
C20—H20A···O7ii0.992.573.44 (3)146
C52—H52···O6iii0.952.463.26 (3)142
C16—H16···Cg9iv0.952.653.520 (12)152
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y, z; (iv) x+2, y1/2, z.
(RNSB) 4-Methoxyphenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-(9-fluorenylmethyloxycarbonyl)-α-D-glucopyranosyl]-2-O-benzoyl-3-O-benzyl-6-O-methoxyacetal-α-L-iodopyranoside top
Crystal data top
C60H59N3O17F(000) = 1152
Mr = 1094.10Dx = 1.325 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 14.8595 (17) ÅCell parameters from 3418 reflections
b = 8.3873 (6) Åθ = 3.6–71.6°
c = 22.0138 (18) ŵ = 0.81 mm1
β = 90.939 (10)°T = 120 K
V = 2743.2 (4) Å3Plate, colourless
Z = 20.36 × 0.06 × 0.01 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
7922 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4977 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.101
Detector resolution: 5.3250 pixels mm-1θmax = 72.1°, θmin = 5.0°
ω scansh = 1718
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 107
Tmin = 1.080, Tmax = 1.638l = 2627
17226 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.083 w = 1/[σ2(Fo2) + (0.0552P)2 + 2.9735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.201(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.36 e Å3
7922 reflectionsΔρmin = 0.32 e Å3
730 parametersAbsolute structure: Flack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
38 restraintsAbsolute structure parameter: 0.3 (4)
Crystal data top
C60H59N3O17V = 2743.2 (4) Å3
Mr = 1094.10Z = 2
Monoclinic, P21Cu Kα radiation
a = 14.8595 (17) ŵ = 0.81 mm1
b = 8.3873 (6) ÅT = 120 K
c = 22.0138 (18) Å0.36 × 0.06 × 0.01 mm
β = 90.939 (10)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
7922 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
4977 reflections with I > 2σ(I)
Tmin = 1.080, Tmax = 1.638Rint = 0.101
17226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.201Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.32 e Å3
7922 reflectionsAbsolute structure: Flack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
730 parametersAbsolute structure parameter: 0.3 (4)
38 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5974 (4)0.4383 (7)0.4055 (2)0.0312 (13)
O20.6619 (3)0.5309 (7)0.2556 (2)0.0285 (12)
O30.4809 (4)0.6979 (7)0.3455 (3)0.0330 (13)
O40.6934 (4)0.8710 (6)0.2992 (2)0.0301 (12)
O50.7159 (3)0.6128 (6)0.3805 (2)0.0304 (12)
O60.5425 (4)0.5104 (8)0.1916 (3)0.0414 (15)
O70.7153 (5)0.0322 (8)0.5888 (3)0.0494 (17)
O80.7790 (5)0.7824 (8)0.4780 (3)0.0507 (18)
O90.9162 (6)0.8544 (12)0.4440 (4)0.083 (3)
O100.7396 (3)1.1377 (6)0.3065 (2)0.0267 (12)
O110.8736 (4)1.3719 (6)0.3201 (2)0.0334 (13)
O130.8389 (4)0.9956 (7)0.1422 (2)0.0355 (14)
O140.9591 (4)1.0331 (7)0.2470 (3)0.0362 (13)
O151.0172 (5)1.2535 (8)0.2043 (4)0.0557 (19)
O161.1008 (4)1.0421 (8)0.2336 (3)0.0482 (16)
O170.8426 (5)0.6051 (11)0.5627 (3)0.067 (2)
N10.6555 (5)0.8991 (9)0.1775 (3)0.0397 (18)
N20.6574 (5)0.9015 (9)0.1209 (4)0.0394 (18)
N30.6527 (6)0.8888 (12)0.0696 (4)0.057 (2)
C10.6589 (5)0.4880 (9)0.3605 (3)0.0263 (17)
H10.69650.39500.34810.032*
C20.6005 (5)0.5429 (9)0.3057 (3)0.0263 (16)
H20.55020.46510.29930.032*
C30.5615 (5)0.7095 (9)0.3105 (3)0.0259 (16)
H30.54580.74930.26890.031*
C40.6247 (6)0.8286 (10)0.3418 (4)0.0326 (19)
H40.59030.92590.35370.039*
C50.6682 (6)0.7522 (9)0.3984 (4)0.0318 (19)
H50.62100.72400.42840.038*
C60.6339 (6)0.3430 (10)0.4517 (3)0.0309 (18)
C70.5736 (7)0.2364 (10)0.4784 (4)0.040 (2)
H70.51270.23250.46450.048*
C80.6026 (7)0.1366 (10)0.5249 (4)0.042 (2)
H80.56100.06830.54450.050*
C90.6919 (7)0.1368 (11)0.5428 (4)0.039 (2)
C100.7526 (6)0.2435 (11)0.5171 (4)0.040 (2)
H100.81340.24650.53100.048*
C110.7230 (6)0.3464 (10)0.4705 (4)0.0346 (19)
H110.76400.41780.45210.042*
C120.8074 (7)0.0275 (13)0.6083 (5)0.060 (3)
H12A0.84550.00440.57350.089*
H12B0.81550.05590.63910.089*
H12C0.82440.13090.62580.089*
C130.6234 (5)0.5117 (10)0.1999 (3)0.0289 (17)
C140.6899 (6)0.4813 (9)0.1531 (3)0.0309 (18)
C150.6620 (6)0.4724 (12)0.0927 (4)0.044 (2)
H150.60020.48660.08230.053*
C160.7236 (7)0.4430 (13)0.0473 (4)0.051 (3)
H160.70410.43740.00610.061*
C170.8124 (7)0.4220 (11)0.0622 (4)0.044 (2)
H170.85400.40090.03090.052*
C180.8434 (6)0.4310 (11)0.1225 (4)0.038 (2)
H180.90540.41760.13250.045*
C190.7810 (6)0.4598 (9)0.1668 (4)0.0328 (19)
H190.80070.46510.20810.039*
C200.4024 (5)0.7609 (10)0.3148 (4)0.0328 (19)
H20A0.34780.71900.33450.039*
H20B0.40150.72370.27210.039*
C210.3994 (5)0.9398 (10)0.3156 (4)0.0300 (18)
C220.4266 (6)1.0325 (12)0.2663 (4)0.037 (2)
H220.44640.98110.23040.044*
C230.4254 (6)1.1976 (11)0.2686 (4)0.040 (2)
H230.44601.25810.23510.048*
C240.3938 (6)1.2745 (11)0.3200 (4)0.042 (2)
H240.39191.38760.32140.050*
C250.3651 (6)1.1864 (11)0.3689 (4)0.043 (2)
H250.34271.23910.40380.051*
C260.3690 (6)1.0197 (11)0.3674 (4)0.038 (2)
H260.35080.96000.40180.045*
C270.7366 (7)0.8639 (12)0.4270 (4)0.053 (3)
H27A0.78240.89390.39690.063*
H27B0.70660.96230.44110.063*
C280.8689 (8)0.7805 (14)0.4782 (5)0.056 (3)
C290.9102 (8)0.6810 (15)0.5294 (5)0.065 (3)
H29A0.95080.59980.51210.078*
H29B0.94630.75060.55670.078*
C300.6850 (5)1.0246 (10)0.2734 (3)0.0313 (18)
H300.62061.05880.27460.038*
C310.8335 (5)1.0987 (10)0.3074 (4)0.0309 (18)
H310.84080.99020.32560.037*
C320.8682 (5)1.0938 (10)0.2428 (4)0.0317 (18)
H320.86761.20290.22450.038*
C330.8135 (5)0.9788 (10)0.2037 (3)0.0315 (18)
H330.82440.86690.21760.038*
C340.7149 (5)1.0187 (11)0.2082 (3)0.0341 (18)
H340.70401.12540.18920.041*
C350.8806 (6)1.2169 (10)0.3482 (4)0.0326 (19)
H35A0.85211.21850.38850.039*
H35B0.94461.18690.35380.039*
O12A0.9654 (9)1.4710 (10)0.3913 (6)0.073 (4)0.797 (16)
C36A0.9237 (8)1.4888 (16)0.3456 (6)0.039 (3)0.797 (16)
O12B1.014 (3)1.437 (5)0.352 (2)0.073 (4)0.203 (16)
C36B0.947 (3)1.472 (6)0.327 (2)0.039 (3)0.203 (16)
C370.9181 (7)1.6388 (12)0.3077 (5)0.051 (3)
H37A0.94621.62070.26840.076*
H37B0.94931.72600.32900.076*
H37C0.85471.66720.30140.076*
C380.8795 (8)0.8584 (12)0.1162 (4)0.051 (3)
H38A0.84130.76380.12320.061*
H38B0.93900.83920.13580.061*
C390.8911 (6)0.8822 (10)0.0489 (4)0.036 (2)
C400.9457 (6)0.7760 (10)0.0181 (4)0.039 (2)
H400.97690.69440.03970.047*
C410.9546 (6)0.7894 (10)0.0441 (4)0.040 (2)
H410.99020.71410.06530.048*
C420.9122 (6)0.9115 (11)0.0759 (4)0.040 (2)
H420.92030.92270.11840.048*
C430.8576 (6)1.0175 (12)0.0448 (4)0.037 (2)
H430.82641.09920.06640.045*
C440.8485 (6)1.0046 (10)0.0173 (4)0.0348 (19)
H440.81291.07980.03850.042*
C451.0248 (6)1.1229 (12)0.2244 (4)0.040 (2)
C461.1809 (6)1.0998 (11)0.2032 (4)0.043 (2)
H46A1.23301.09810.23170.051*
H46B1.17141.21100.18940.051*
C471.1992 (6)0.9954 (11)0.1499 (4)0.043 (2)
H471.14771.00040.12020.051*
C481.2186 (7)0.8200 (10)0.1676 (4)0.039 (2)
C491.1643 (8)0.7166 (11)0.2000 (5)0.054 (3)
H491.10650.74890.21310.064*
C501.1972 (8)0.5633 (12)0.2128 (4)0.052 (3)
H501.16170.49080.23530.062*
C511.2818 (7)0.5166 (12)0.1926 (4)0.050 (3)
H511.30290.41190.20110.060*
C521.3359 (7)0.6214 (12)0.1599 (4)0.048 (2)
H521.39320.58870.14590.057*
C531.3043 (6)0.7746 (11)0.1485 (4)0.039 (2)
C541.3456 (6)0.9106 (10)0.1179 (4)0.0339 (19)
C551.4293 (6)0.9241 (13)0.0914 (4)0.048 (2)
H551.47000.83680.09070.057*
C561.4514 (7)1.0717 (13)0.0660 (5)0.054 (3)
H561.50851.08370.04770.064*
C571.3945 (7)1.1979 (14)0.0664 (4)0.049 (2)
H571.41211.29630.04890.059*
C581.3105 (7)1.1834 (11)0.0923 (4)0.045 (2)
H581.27001.27100.09220.053*
C591.2862 (6)1.0391 (12)0.1186 (4)0.039 (2)
C600.8785 (8)0.533 (2)0.6169 (5)0.083 (4)
H60A0.92760.46100.60650.124*
H60B0.83100.47340.63720.124*
H60C0.90150.61680.64420.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.039 (3)0.025 (3)0.029 (3)0.001 (3)0.007 (2)0.006 (2)
O20.038 (3)0.023 (3)0.025 (2)0.001 (3)0.004 (2)0.004 (2)
O30.030 (3)0.030 (3)0.039 (3)0.008 (3)0.008 (2)0.003 (2)
O40.036 (3)0.019 (3)0.035 (3)0.003 (2)0.007 (2)0.004 (2)
O50.032 (3)0.023 (3)0.036 (3)0.002 (3)0.000 (2)0.001 (2)
O60.037 (3)0.050 (4)0.037 (3)0.003 (3)0.001 (2)0.004 (3)
O70.077 (5)0.031 (4)0.041 (3)0.015 (4)0.007 (3)0.012 (3)
O80.066 (5)0.052 (4)0.033 (3)0.013 (4)0.006 (3)0.001 (3)
O90.089 (6)0.082 (7)0.080 (6)0.008 (6)0.016 (5)0.015 (5)
O100.029 (3)0.014 (3)0.037 (3)0.002 (2)0.001 (2)0.001 (2)
O110.043 (3)0.016 (3)0.041 (3)0.003 (3)0.001 (3)0.001 (2)
O130.053 (4)0.021 (3)0.033 (3)0.002 (3)0.003 (3)0.002 (2)
O140.039 (3)0.023 (3)0.046 (3)0.003 (3)0.010 (3)0.009 (3)
O150.058 (5)0.025 (4)0.085 (5)0.000 (3)0.011 (4)0.018 (4)
O160.042 (4)0.037 (4)0.066 (4)0.008 (3)0.014 (3)0.006 (3)
O170.071 (5)0.085 (6)0.044 (4)0.023 (5)0.009 (4)0.010 (4)
N10.046 (5)0.034 (4)0.039 (4)0.015 (4)0.002 (3)0.001 (3)
N20.034 (4)0.034 (4)0.051 (5)0.010 (3)0.003 (3)0.001 (3)
N30.053 (5)0.080 (7)0.037 (4)0.011 (5)0.003 (4)0.003 (4)
C10.034 (4)0.019 (4)0.026 (4)0.005 (3)0.008 (3)0.003 (3)
C20.029 (4)0.022 (4)0.028 (4)0.000 (3)0.004 (3)0.001 (3)
C30.027 (4)0.019 (4)0.032 (4)0.004 (3)0.007 (3)0.002 (3)
C40.039 (5)0.024 (4)0.035 (4)0.008 (4)0.013 (4)0.004 (3)
C50.051 (5)0.009 (4)0.035 (4)0.003 (4)0.002 (4)0.000 (3)
C60.046 (5)0.019 (4)0.028 (4)0.006 (4)0.005 (3)0.001 (3)
C70.054 (6)0.026 (5)0.040 (5)0.002 (4)0.009 (4)0.010 (4)
C80.062 (6)0.020 (5)0.044 (5)0.001 (4)0.013 (5)0.007 (4)
C90.062 (6)0.031 (5)0.026 (4)0.007 (5)0.004 (4)0.011 (4)
C100.051 (6)0.039 (5)0.030 (4)0.009 (4)0.004 (4)0.000 (4)
C110.044 (5)0.027 (5)0.033 (4)0.001 (4)0.007 (4)0.003 (3)
C120.093 (8)0.031 (5)0.055 (6)0.022 (6)0.008 (6)0.009 (5)
C130.030 (2)0.028 (2)0.0291 (19)0.0000 (12)0.0006 (12)0.0004 (12)
C140.046 (5)0.018 (4)0.029 (4)0.005 (4)0.001 (4)0.002 (3)
C150.039 (5)0.057 (7)0.037 (5)0.019 (5)0.003 (4)0.005 (4)
C160.068 (7)0.059 (7)0.026 (4)0.017 (6)0.004 (4)0.001 (4)
C170.063 (6)0.027 (5)0.041 (5)0.002 (5)0.015 (5)0.001 (4)
C180.044 (5)0.033 (5)0.036 (5)0.004 (4)0.010 (4)0.006 (4)
C190.041 (5)0.019 (4)0.039 (4)0.004 (4)0.003 (4)0.004 (3)
C200.024 (4)0.029 (5)0.046 (5)0.002 (4)0.004 (4)0.002 (4)
C210.030 (4)0.022 (4)0.038 (4)0.005 (3)0.001 (3)0.003 (3)
C220.037 (5)0.045 (5)0.028 (4)0.004 (4)0.002 (3)0.005 (4)
C230.039 (5)0.033 (5)0.048 (5)0.006 (4)0.003 (4)0.012 (4)
C240.053 (6)0.019 (4)0.054 (6)0.003 (4)0.001 (5)0.004 (4)
C250.046 (6)0.035 (5)0.047 (5)0.012 (5)0.006 (4)0.007 (4)
C260.048 (5)0.030 (5)0.035 (4)0.004 (4)0.006 (4)0.001 (4)
C270.086 (8)0.040 (6)0.031 (5)0.019 (6)0.009 (5)0.001 (4)
C280.075 (8)0.054 (7)0.040 (5)0.002 (6)0.003 (5)0.002 (5)
C290.070 (8)0.063 (8)0.062 (7)0.010 (6)0.000 (6)0.008 (6)
C300.032 (2)0.030 (2)0.032 (2)0.0005 (12)0.0005 (12)0.0000 (12)
C310.037 (5)0.019 (4)0.036 (4)0.000 (4)0.000 (4)0.001 (3)
C320.038 (5)0.025 (4)0.032 (4)0.004 (4)0.003 (3)0.000 (3)
C330.033 (2)0.030 (2)0.031 (2)0.0003 (12)0.0010 (12)0.0001 (12)
C340.035 (2)0.033 (2)0.034 (2)0.0005 (12)0.0005 (12)0.0005 (12)
C350.037 (5)0.024 (5)0.037 (4)0.002 (4)0.003 (4)0.006 (3)
O12A0.111 (10)0.026 (5)0.081 (8)0.016 (5)0.054 (7)0.003 (5)
C36A0.039 (3)0.038 (3)0.039 (3)0.0001 (9)0.0006 (9)0.0000 (9)
O12B0.111 (10)0.026 (5)0.081 (8)0.016 (5)0.054 (7)0.003 (5)
C36B0.039 (3)0.038 (3)0.039 (3)0.0001 (9)0.0006 (9)0.0000 (9)
C370.059 (6)0.027 (5)0.065 (6)0.013 (5)0.008 (5)0.001 (5)
C380.084 (8)0.031 (5)0.039 (5)0.027 (5)0.010 (5)0.002 (4)
C390.041 (5)0.022 (4)0.044 (5)0.007 (4)0.001 (4)0.000 (4)
C400.042 (5)0.022 (5)0.053 (5)0.015 (4)0.007 (4)0.005 (4)
C410.040 (5)0.021 (5)0.059 (6)0.000 (4)0.009 (4)0.006 (4)
C420.046 (5)0.036 (5)0.037 (4)0.003 (4)0.000 (4)0.003 (4)
C430.042 (5)0.034 (5)0.037 (4)0.001 (4)0.001 (4)0.000 (4)
C440.045 (5)0.019 (4)0.040 (4)0.001 (4)0.003 (4)0.001 (4)
C450.044 (5)0.036 (6)0.042 (5)0.000 (5)0.008 (4)0.010 (4)
C460.043 (5)0.036 (5)0.050 (5)0.003 (4)0.019 (4)0.006 (4)
C470.050 (6)0.032 (5)0.047 (5)0.005 (4)0.008 (4)0.001 (4)
C480.058 (6)0.022 (5)0.037 (5)0.003 (4)0.002 (4)0.003 (4)
C490.079 (8)0.025 (5)0.056 (6)0.003 (5)0.007 (5)0.004 (4)
C500.077 (8)0.033 (6)0.045 (5)0.004 (5)0.006 (5)0.002 (4)
C510.067 (7)0.020 (5)0.062 (6)0.008 (5)0.028 (5)0.005 (5)
C520.055 (6)0.034 (6)0.054 (6)0.012 (5)0.016 (5)0.012 (5)
C530.045 (5)0.039 (5)0.032 (4)0.007 (4)0.010 (4)0.008 (4)
C540.040 (5)0.028 (5)0.034 (4)0.001 (4)0.010 (4)0.002 (3)
C550.032 (5)0.052 (7)0.058 (6)0.006 (5)0.004 (4)0.004 (5)
C560.045 (6)0.058 (7)0.057 (6)0.002 (5)0.005 (5)0.001 (5)
C570.046 (6)0.053 (6)0.047 (6)0.006 (5)0.004 (4)0.007 (5)
C580.058 (6)0.032 (5)0.044 (5)0.008 (5)0.005 (5)0.003 (4)
C590.035 (5)0.047 (6)0.036 (4)0.001 (4)0.005 (4)0.006 (4)
C600.072 (8)0.119 (12)0.058 (7)0.004 (9)0.018 (6)0.008 (8)
Geometric parameters (Å, º) top
O1—C61.396 (9)C23—C241.391 (13)
O1—C11.422 (9)C23—H230.9500
O2—C131.353 (8)C24—C251.379 (13)
O2—C21.447 (9)C24—H240.9500
O3—C31.439 (9)C25—C261.400 (13)
O3—C201.439 (9)C25—H250.9500
O4—C301.412 (10)C26—H260.9500
O4—C41.442 (9)C27—H27A0.9900
O5—C11.412 (9)C27—H27B0.9900
O5—C51.426 (10)C28—C291.522 (15)
O6—C131.213 (9)C29—H29A0.9900
O7—C91.381 (9)C29—H29B0.9900
O7—C121.429 (12)C30—C341.511 (10)
O8—C281.337 (13)C30—H301.0000
O8—C271.449 (11)C31—C351.503 (11)
O9—C281.209 (13)C31—C321.521 (10)
O10—C311.432 (9)C31—H311.0000
O10—C301.439 (9)C32—C331.519 (11)
O11—C36A1.348 (14)C32—H321.0000
O11—C36B1.38 (5)C33—C341.508 (11)
O11—C351.442 (10)C33—H331.0000
O13—C331.419 (9)C34—H341.0000
O13—C381.424 (10)C35—H35A0.9900
O14—C451.336 (11)C35—H35B0.9900
O14—C321.445 (9)O12A—C36A1.182 (12)
O15—C451.186 (11)C36A—C371.511 (15)
O16—C451.329 (11)O12B—C36B1.17 (3)
O16—C461.458 (10)C36B—C371.52 (5)
O17—C291.406 (13)C37—H37A0.980
O17—C601.432 (13)C37—H37B0.981
N1—N21.246 (10)C37—H37C0.980
N1—C341.491 (11)C38—C391.506 (12)
N2—N31.136 (10)C38—H38A0.9900
C1—C21.544 (10)C38—H38B0.9900
C1—H11.0000C39—C441.387 (11)
C2—C31.517 (11)C39—C401.390 (12)
C2—H21.0000C40—C411.383 (13)
C3—C41.528 (11)C40—H400.9500
C3—H31.0000C41—C421.386 (12)
C4—C51.533 (11)C41—H410.9500
C4—H41.0000C42—C431.391 (12)
C5—C271.513 (12)C42—H420.9500
C5—H51.0000C43—C441.380 (11)
C6—C111.381 (11)C43—H430.9500
C6—C71.402 (12)C44—H440.9500
C7—C81.386 (12)C46—C471.492 (12)
C7—H70.9500C46—H46A0.9900
C8—C91.377 (13)C46—H46B0.9900
C8—H80.9500C47—C591.520 (12)
C9—C101.397 (13)C47—C481.548 (12)
C10—C111.405 (11)C47—H471.0000
C10—H100.9500C48—C491.389 (13)
C11—H110.9500C48—C531.400 (13)
C12—H12A0.9800C49—C501.402 (14)
C12—H12B0.9800C49—H490.9500
C12—H12C0.9800C50—C511.397 (14)
C13—C141.463 (11)C50—H500.9500
C14—C151.388 (11)C51—C521.399 (14)
C14—C191.393 (11)C51—H510.9500
C15—C161.387 (13)C52—C531.389 (13)
C15—H150.9500C52—H520.9500
C16—C171.365 (13)C53—C541.465 (12)
C16—H160.9500C54—C551.385 (13)
C17—C181.400 (12)C54—C591.393 (13)
C17—H170.9500C55—C561.400 (15)
C18—C191.379 (12)C55—H550.9500
C18—H180.9500C56—C571.355 (14)
C19—H190.9500C56—H560.9500
C20—C211.501 (11)C57—C581.385 (13)
C20—H20A0.9900C57—H570.9500
C20—H20B0.9900C58—C591.392 (13)
C21—C221.400 (11)C58—H580.9500
C21—C261.405 (11)C60—H60A0.9800
C22—C231.385 (13)C60—H60B0.9800
C22—H220.9500C60—H60C0.9800
C6—O1—C1115.5 (6)O4—C30—C34109.1 (7)
C13—O2—C2115.9 (6)O10—C30—C34109.3 (6)
C3—O3—C20113.6 (6)O4—C30—H30109.3
C30—O4—C4115.3 (6)O10—C30—H30109.3
C1—O5—C5113.3 (6)C34—C30—H30109.3
C9—O7—C12117.8 (8)O10—C31—C35107.5 (7)
C28—O8—C27115.5 (8)O10—C31—C32109.8 (6)
C31—O10—C30113.4 (6)C35—C31—C32114.5 (7)
C36A—O11—C36B23 (2)O10—C31—H31108.3
C36A—O11—C35116.2 (7)C35—C31—H31108.3
C36B—O11—C35116.5 (18)C32—C31—H31108.3
C33—O13—C38115.2 (6)O14—C32—C33107.7 (6)
C45—O14—C32117.8 (7)O14—C32—C31106.3 (6)
C45—O16—C46117.3 (8)C33—C32—C31111.1 (7)
C29—O17—C60111.4 (9)O14—C32—H32110.5
N2—N1—C34114.9 (7)C33—C32—H32110.5
N3—N2—N1172.1 (9)C31—C32—H32110.5
O5—C1—O1112.8 (6)O13—C33—C34108.4 (6)
O5—C1—C2110.5 (6)O13—C33—C32109.2 (6)
O1—C1—C2105.8 (6)C34—C33—C32109.5 (7)
O5—C1—H1109.2O13—C33—H33109.9
O1—C1—H1109.2C34—C33—H33109.9
C2—C1—H1109.2C32—C33—H33109.9
O2—C2—C3111.3 (6)N1—C34—C33112.9 (7)
O2—C2—C1102.8 (6)N1—C34—C30105.8 (7)
C3—C2—C1115.5 (6)C33—C34—C30111.7 (6)
O2—C2—H2109.0N1—C34—H34108.7
C3—C2—H2109.0C33—C34—H34108.7
C1—C2—H2109.0C30—C34—H34108.7
O3—C3—C2107.3 (6)O11—C35—C31108.0 (6)
O3—C3—C4108.3 (6)O11—C35—H35A110.1
C2—C3—C4113.7 (6)C31—C35—H35A110.1
O3—C3—H3109.1O11—C35—H35B110.1
C2—C3—H3109.1C31—C35—H35B110.1
C4—C3—H3109.1H35A—C35—H35B108.4
O4—C4—C3107.7 (6)O12A—C36A—O11122.7 (11)
O4—C4—C5109.8 (7)O12A—C36A—C37126.8 (12)
C3—C4—C5109.9 (6)O11—C36A—C37110.5 (8)
O4—C4—H4109.8O12B—C36B—O11125 (4)
C3—C4—H4109.8O12B—C36B—C37127 (4)
C5—C4—H4109.8O11—C36B—C37108 (3)
O5—C5—C27106.8 (7)C36A—C37—C36B21 (2)
O5—C5—C4108.9 (6)C36A—C37—H37A109.8 (10)
C27—C5—C4110.5 (7)C36B—C37—H37A89 (2)
O5—C5—H5110.2C36A—C37—H37B109.7 (9)
C27—C5—H5110.2C36B—C37—H37B114.9 (18)
C4—C5—H5110.2H37A—C37—H37B109.4 (10)
C11—C6—O1124.4 (7)C36A—C37—H37C109.0
C11—C6—C7120.3 (8)C36B—C37—H37C122 (2)
O1—C6—C7115.3 (7)H37A—C37—H37C109.5
C8—C7—C6120.1 (9)H37B—C37—H37C109.4
C8—C7—H7119.9O13—C38—C39110.1 (7)
C6—C7—H7119.9O13—C38—H38A109.6
C9—C8—C7119.7 (9)C39—C38—H38A109.6
C9—C8—H8120.1O13—C38—H38B109.6
C7—C8—H8120.1C39—C38—H38B109.6
C8—C9—O7116.0 (8)H38A—C38—H38B108.1
C8—C9—C10120.7 (8)C44—C39—C40119.6 (8)
O7—C9—C10123.2 (9)C44—C39—C38122.2 (8)
C9—C10—C11119.5 (8)C40—C39—C38118.2 (8)
C9—C10—H10120.2C41—C40—C39119.9 (8)
C11—C10—H10120.2C41—C40—H40120.1
C6—C11—C10119.5 (8)C39—C40—H40120.1
C6—C11—H11120.3C40—C41—C42120.6 (8)
C10—C11—H11120.3C40—C41—H41119.7
O7—C12—H12A109.5C42—C41—H41119.7
O7—C12—H12B109.5C41—C42—C43119.3 (8)
H12A—C12—H12B109.5C41—C42—H42120.4
O7—C12—H12C109.5C43—C42—H42120.4
H12A—C12—H12C109.5C44—C43—C42120.3 (8)
H12B—C12—H12C109.5C44—C43—H43119.9
O6—C13—O2122.7 (7)C42—C43—H43119.9
O6—C13—C14124.9 (7)C43—C44—C39120.3 (8)
O2—C13—C14112.2 (7)C43—C44—H44119.9
C15—C14—C19118.3 (8)C39—C44—H44119.9
C15—C14—C13119.3 (8)O15—C45—O16127.1 (9)
C19—C14—C13122.3 (7)O15—C45—O14126.4 (9)
C16—C15—C14120.6 (8)O16—C45—O14106.3 (8)
C16—C15—H15119.7O16—C46—C47109.1 (8)
C14—C15—H15119.7O16—C46—H46A109.9
C17—C16—C15119.8 (8)C47—C46—H46A109.9
C17—C16—H16120.1O16—C46—H46B109.9
C15—C16—H16120.1C47—C46—H46B109.9
C16—C17—C18121.5 (9)H46A—C46—H46B108.3
C16—C17—H17119.3C46—C47—C59112.5 (8)
C18—C17—H17119.3C46—C47—C48113.3 (8)
C19—C18—C17117.7 (9)C59—C47—C48100.8 (8)
C19—C18—H18121.1C46—C47—H47110.0
C17—C18—H18121.1C59—C47—H47110.0
C18—C19—C14122.1 (8)C48—C47—H47110.0
C18—C19—H19119.0C49—C48—C53121.6 (9)
C14—C19—H19119.0C49—C48—C47127.9 (9)
O3—C20—C21112.7 (7)C53—C48—C47110.4 (8)
O3—C20—H20A109.1C48—C49—C50118.1 (10)
C21—C20—H20A109.1C48—C49—H49120.9
O3—C20—H20B109.1C50—C49—H49120.9
C21—C20—H20B109.1C51—C50—C49120.4 (10)
H20A—C20—H20B107.8C51—C50—H50119.8
C22—C21—C26117.8 (8)C49—C50—H50119.8
C22—C21—C20122.5 (8)C50—C51—C52121.1 (9)
C26—C21—C20119.7 (8)C50—C51—H51119.5
C23—C22—C21121.5 (9)C52—C51—H51119.5
C23—C22—H22119.3C53—C52—C51118.6 (9)
C21—C22—H22119.3C53—C52—H52120.7
C22—C23—C24119.9 (9)C51—C52—H52120.7
C22—C23—H23120.1C52—C53—C48120.3 (9)
C24—C23—H23120.1C52—C53—C54131.3 (9)
C25—C24—C23120.0 (9)C48—C53—C54108.5 (8)
C25—C24—H24120.0C55—C54—C59120.9 (9)
C23—C24—H24120.0C55—C54—C53130.0 (9)
C24—C25—C26120.2 (9)C59—C54—C53109.0 (8)
C24—C25—H25119.9C54—C55—C56117.3 (9)
C26—C25—H25119.9C54—C55—H55121.3
C25—C26—C21120.6 (9)C56—C55—H55121.3
C25—C26—H26119.7C57—C56—C55122.4 (10)
C21—C26—H26119.7C57—C56—H56118.8
O8—C27—C5108.1 (8)C55—C56—H56118.8
O8—C27—H27A110.1C56—C57—C58120.1 (10)
C5—C27—H27A110.1C56—C57—H57120.0
O8—C27—H27B110.1C58—C57—H57120.0
C5—C27—H27B110.1C57—C58—C59119.3 (9)
H27A—C27—H27B108.4C57—C58—H58120.4
O9—C28—O8125.6 (11)C59—C58—H58120.4
O9—C28—C29120.7 (11)C58—C59—C54120.0 (8)
O8—C28—C29113.6 (9)C58—C59—C47128.8 (9)
O17—C29—C28110.6 (9)C54—C59—C47111.3 (8)
O17—C29—H29A109.5O17—C60—H60A109.5
C28—C29—H29A109.5O17—C60—H60B109.5
O17—C29—H29B109.5H60A—C60—H60B109.5
C28—C29—H29B109.5O17—C60—H60C109.5
H29A—C29—H29B108.1H60A—C60—H60C109.5
O4—C30—O10110.6 (6)H60B—C60—H60C109.5
C5—O5—C1—O159.2 (8)C35—C31—C32—C33176.6 (7)
C5—O5—C1—C259.0 (8)C38—O13—C33—C34124.8 (8)
C6—O1—C1—O576.6 (8)C38—O13—C33—C32116.0 (8)
C6—O1—C1—C2162.5 (6)O14—C32—C33—O1372.7 (8)
C13—O2—C2—C380.3 (8)C31—C32—C33—O13171.2 (6)
C13—O2—C2—C1155.5 (6)O14—C32—C33—C34168.8 (6)
O5—C1—C2—O279.3 (7)C31—C32—C33—C3452.7 (9)
O1—C1—C2—O2158.3 (6)N2—N1—C34—C3371.6 (10)
O5—C1—C2—C342.1 (9)N2—N1—C34—C30165.8 (7)
O1—C1—C2—C380.3 (7)O13—C33—C34—N168.2 (9)
C20—O3—C3—C2124.4 (7)C32—C33—C34—N1172.8 (6)
C20—O3—C3—C4112.5 (7)O13—C33—C34—C30172.6 (7)
O2—C2—C3—O3160.2 (6)C32—C33—C34—C3053.6 (9)
C1—C2—C3—O383.1 (8)O4—C30—C34—N158.7 (8)
O2—C2—C3—C480.1 (8)O10—C30—C34—N1179.8 (6)
C1—C2—C3—C436.6 (9)O4—C30—C34—C3364.6 (9)
C30—O4—C4—C3105.9 (7)O10—C30—C34—C3356.5 (9)
C30—O4—C4—C5134.5 (6)C36A—O11—C35—C31170.3 (9)
O3—C3—C4—O4165.1 (6)C36B—O11—C35—C31144 (3)
C2—C3—C4—O475.7 (8)O10—C31—C35—O1166.1 (8)
O3—C3—C4—C575.3 (8)C32—C31—C35—O1156.2 (9)
C2—C3—C4—C543.8 (9)C36B—O11—C36A—O12A103 (5)
C1—O5—C5—C27171.8 (6)C35—O11—C36A—O12A6.1 (17)
C1—O5—C5—C468.8 (8)C36B—O11—C36A—C3777 (5)
O4—C4—C5—O559.9 (8)C35—O11—C36A—C37173.6 (9)
C3—C4—C5—O558.4 (9)C36A—O11—C36B—O12B99 (8)
O4—C4—C5—C2757.1 (9)C35—O11—C36B—O12B3 (6)
C3—C4—C5—C27175.4 (7)C36A—O11—C36B—C3772 (5)
C1—O1—C6—C1127.0 (11)C35—O11—C36B—C37167.0 (19)
C1—O1—C6—C7151.6 (7)O12A—C36A—C37—C36B102 (5)
C11—C6—C7—C81.7 (13)O11—C36A—C37—C36B78 (5)
O1—C6—C7—C8179.7 (8)O12B—C36B—C37—C36A101 (8)
C6—C7—C8—C93.3 (14)O11—C36B—C37—C36A70 (5)
C7—C8—C9—O7179.1 (8)C33—O13—C38—C39171.8 (7)
C7—C8—C9—C104.0 (14)O13—C38—C39—C4413.6 (13)
C12—O7—C9—C8179.4 (8)O13—C38—C39—C40167.1 (8)
C12—O7—C9—C103.8 (13)C44—C39—C40—C412.4 (14)
C8—C9—C10—C113.1 (14)C38—C39—C40—C41176.9 (9)
O7—C9—C10—C11179.7 (8)C39—C40—C41—C422.4 (14)
O1—C6—C11—C10179.3 (8)C40—C41—C42—C432.4 (13)
C7—C6—C11—C100.8 (13)C41—C42—C43—C442.4 (13)
C9—C10—C11—C61.4 (13)C42—C43—C44—C392.4 (13)
C2—O2—C13—O62.7 (12)C40—C39—C44—C432.4 (13)
C2—O2—C13—C14173.0 (6)C38—C39—C44—C43176.9 (9)
O6—C13—C14—C159.8 (14)C46—O16—C45—O1516.1 (14)
O2—C13—C14—C15174.5 (8)C46—O16—C45—O14169.0 (7)
O6—C13—C14—C19169.8 (8)C32—O14—C45—O155.2 (13)
O2—C13—C14—C195.9 (11)C32—O14—C45—O16179.9 (6)
C19—C14—C15—C160.1 (14)C45—O16—C46—C47103.4 (9)
C13—C14—C15—C16179.7 (9)O16—C46—C47—C59175.3 (7)
C14—C15—C16—C170.2 (16)O16—C46—C47—C4861.8 (10)
C15—C16—C17—C180.6 (16)C46—C47—C48—C4956.9 (13)
C16—C17—C18—C190.8 (14)C59—C47—C48—C49177.3 (9)
C17—C18—C19—C140.7 (13)C46—C47—C48—C53120.5 (9)
C15—C14—C19—C180.3 (13)C59—C47—C48—C530.1 (9)
C13—C14—C19—C18179.9 (8)C53—C48—C49—C500.6 (14)
C3—O3—C20—C2176.9 (8)C47—C48—C49—C50177.8 (9)
O3—C20—C21—C2298.8 (9)C48—C49—C50—C510.8 (14)
O3—C20—C21—C2680.9 (10)C49—C50—C51—C520.8 (14)
C26—C21—C22—C231.2 (12)C50—C51—C52—C530.7 (13)
C20—C21—C22—C23178.4 (8)C51—C52—C53—C482.1 (12)
C21—C22—C23—C242.1 (14)C51—C52—C53—C54177.8 (8)
C22—C23—C24—C251.0 (14)C49—C48—C53—C522.1 (13)
C23—C24—C25—C260.9 (14)C47—C48—C53—C52179.7 (7)
C24—C25—C26—C211.8 (15)C49—C48—C53—C54177.9 (8)
C22—C21—C26—C250.8 (13)C47—C48—C53—C540.3 (10)
C20—C21—C26—C25179.6 (8)C52—C53—C54—C550.1 (15)
C28—O8—C27—C5127.8 (9)C48—C53—C54—C55179.9 (9)
O5—C5—C27—O858.5 (9)C52—C53—C54—C59179.5 (9)
C4—C5—C27—O8176.8 (7)C48—C53—C54—C590.5 (9)
C27—O8—C28—O98.6 (16)C59—C54—C55—C560.3 (13)
C27—O8—C28—C29174.8 (9)C53—C54—C55—C56179.1 (9)
C60—O17—C29—C28170.1 (10)C54—C55—C56—C570.1 (15)
O9—C28—C29—O17179.5 (11)C55—C56—C57—C580.5 (16)
O8—C28—C29—O173.7 (14)C56—C57—C58—C591.0 (15)
C4—O4—C30—O1095.6 (7)C57—C58—C59—C540.8 (14)
C4—O4—C30—C34144.2 (6)C57—C58—C59—C47179.4 (9)
C31—O10—C30—O459.7 (8)C55—C54—C59—C580.2 (13)
C31—O10—C30—C3460.4 (8)C53—C54—C59—C58179.7 (8)
C30—O10—C31—C35174.6 (6)C55—C54—C59—C47180.0 (8)
C30—O10—C31—C3260.2 (8)C53—C54—C59—C470.6 (10)
C45—O14—C32—C33117.8 (8)C46—C47—C59—C5858.9 (13)
C45—O14—C32—C31123.1 (7)C48—C47—C59—C58179.9 (9)
O10—C31—C32—O14172.4 (6)C46—C47—C59—C54121.4 (9)
C35—C31—C32—O1466.5 (9)C48—C47—C59—C540.4 (9)
O10—C31—C32—C3355.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i1.002.433.395 (9)161
C3—H3···O61.002.633.114 (10)110
C11—H11···O50.952.372.987 (10)122
C20—H20A···O7ii0.992.503.370 (11)147
C29—H29B···O12Aiii0.992.533.503 (14)168
C29—H29B···O12Biii0.992.603.55 (4)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y1/2, z+1.
(RSTN) 4-Methoxyphenyl 4-O-[6-O-acetyl-2-azido-3,4-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-O-benzoyl-3-O-benzyl-6-O-methoxyoacetyl-β-D-glucopyranoside top
Crystal data top
C52H55N3O15F(000) = 2032
Mr = 961.99Dx = 1.277 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 9943 reflections
a = 38.3346 (13) Åθ = 2.5–26.0°
b = 8.0744 (3) ŵ = 0.09 mm1
c = 16.1659 (6) ÅT = 118 K
β = 91.222 (2)°Block, colourless
V = 5002.7 (3) Å30.75 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
9796 independent reflections
Radiation source: fine-focus sealed tube9128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 4747
Tmin = 0.645, Tmax = 0.745k = 99
51621 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0693P)2 + 3.3214P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
9796 reflectionsΔρmax = 0.33 e Å3
662 parametersΔρmin = 0.45 e Å3
43 restraintsAbsolute structure: Flack x determined using 3878 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C52H55N3O15V = 5002.7 (3) Å3
Mr = 961.99Z = 4
Monoclinic, C2Mo Kα radiation
a = 38.3346 (13) ŵ = 0.09 mm1
b = 8.0744 (3) ÅT = 118 K
c = 16.1659 (6) Å0.75 × 0.32 × 0.30 mm
β = 91.222 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9796 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
9128 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.745Rint = 0.035
51621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.33 e Å3
S = 1.08Δρmin = 0.45 e Å3
9796 reflectionsAbsolute structure: Flack x determined using 3878 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
662 parametersAbsolute structure parameter: 0.0 (2)
43 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.21921 (5)0.4100 (3)0.00970 (14)0.0277 (5)
O20.22146 (6)0.5216 (4)0.15747 (16)0.0412 (6)
O30.28436 (6)0.4516 (3)0.23969 (13)0.0278 (5)
O40.34523 (5)0.5269 (3)0.14741 (13)0.0236 (4)
O50.27881 (5)0.4256 (2)0.01262 (14)0.0251 (5)
O70.16256 (7)0.5146 (3)0.32199 (15)0.0394 (6)
O80.35123 (6)0.3047 (3)0.02746 (14)0.0286 (5)
O90.39653 (6)0.3629 (3)0.10867 (16)0.0409 (6)
O100.40059 (5)0.4825 (3)0.09354 (13)0.0260 (5)
O110.41635 (8)0.7054 (3)0.03756 (15)0.0416 (6)
O120.46316 (12)0.6820 (5)0.1148 (2)0.0751 (11)
O130.41911 (6)0.6246 (3)0.33709 (14)0.0314 (5)
O140.43940 (5)0.8397 (3)0.20138 (14)0.0272 (5)
N10.36688 (8)0.3804 (4)0.29835 (18)0.0337 (6)
N20.38032 (8)0.3150 (4)0.36028 (19)0.0356 (7)
N30.38900 (9)0.2514 (5)0.4196 (2)0.0492 (8)
C10.24830 (7)0.4906 (4)0.02421 (19)0.0248 (6)
H10.24660.61300.01570.030*
C20.25012 (8)0.4482 (4)0.1158 (2)0.0280 (7)
H20.24900.32510.12240.034*
C30.28340 (7)0.5116 (4)0.15736 (19)0.0241 (6)
H30.28300.63540.15820.029*
C40.31510 (7)0.4529 (4)0.10944 (18)0.0223 (6)
H40.31700.32950.11250.027*
C50.30969 (7)0.5071 (4)0.01892 (19)0.0239 (6)
H50.30510.62900.01850.029*
C60.20745 (8)0.4557 (4)0.0883 (2)0.0261 (6)
C70.17153 (8)0.4415 (4)0.1024 (2)0.0292 (7)
H70.15680.41370.05800.035*
C80.15727 (8)0.4677 (4)0.1806 (2)0.0308 (7)
H80.13270.45990.18950.037*
C90.17874 (9)0.5054 (4)0.2464 (2)0.0307 (7)
C100.21433 (9)0.5270 (4)0.2315 (2)0.0329 (7)
H100.22890.55990.27530.040*
C110.22865 (8)0.5007 (4)0.1525 (2)0.0309 (7)
H110.25300.51360.14300.037*
C120.18366 (12)0.5427 (6)0.3918 (3)0.0516 (10)
H12A0.20090.45350.39610.077*
H12B0.19580.64900.38550.077*
H12C0.16890.54500.44210.077*
C200.29003 (10)0.5768 (4)0.3010 (2)0.0351 (8)
H20A0.27270.66660.29340.042*
H20B0.31360.62500.29540.042*
C210.28663 (10)0.5012 (5)0.3852 (2)0.0366 (8)
C220.31276 (11)0.5203 (6)0.4449 (2)0.0485 (10)
H220.33300.58270.43250.058*
C230.30977 (14)0.4495 (7)0.5228 (3)0.0657 (13)
H230.32770.46520.56350.079*
C240.28092 (15)0.3570 (7)0.5409 (3)0.0658 (14)
H240.27900.30710.59390.079*
C250.25468 (14)0.3365 (6)0.4823 (3)0.0600 (12)
H250.23470.27230.49490.072*
C260.25716 (11)0.4088 (5)0.4050 (3)0.0463 (9)
H260.23870.39540.36530.056*
C270.33921 (8)0.4737 (4)0.03852 (19)0.0263 (6)
H27A0.33120.49070.09650.032*
H27B0.35860.55160.02660.032*
C280.38152 (9)0.2704 (4)0.0636 (2)0.0335 (7)
C300.37582 (8)0.4299 (4)0.15163 (19)0.0251 (6)
H300.36950.31190.14000.030*
C310.41278 (8)0.6510 (4)0.10516 (19)0.0256 (6)
H310.39250.72840.09980.031*
C320.42956 (8)0.6702 (4)0.1908 (2)0.0259 (6)
H320.45080.59860.19520.031*
C330.40369 (8)0.6187 (4)0.25641 (19)0.0264 (6)
H330.38290.69330.25370.032*
C340.39242 (8)0.4411 (4)0.23799 (19)0.0274 (6)
H340.41350.36790.24050.033*
C350.43757 (9)0.6842 (5)0.0365 (2)0.0346 (8)
H35A0.45130.78550.04830.041*
H35B0.45380.59000.03020.041*
C360.43232 (15)0.7026 (5)0.1094 (3)0.0547 (12)
C370.40762 (19)0.7282 (8)0.1807 (3)0.0823 (19)
H37A0.41120.64180.22220.123*
H37B0.41180.83710.20540.123*
H37C0.38360.72270.16140.123*
C380.40767 (9)0.7630 (5)0.3857 (2)0.0353 (8)
H38A0.38200.75920.39090.042*
H38B0.41390.86790.35790.042*
C390.42460 (10)0.7562 (6)0.4689 (2)0.0437 (9)
C400.44197 (13)0.8939 (7)0.5015 (3)0.0597 (12)
H400.44330.99160.46900.072*
C410.45723 (13)0.8930 (8)0.5793 (3)0.0690 (14)
H410.46940.98740.59990.083*
C420.45440 (15)0.7490 (8)0.6274 (3)0.0739 (15)
H420.46430.74550.68180.089*
C430.43734 (18)0.6141 (10)0.5956 (4)0.096 (2)*
H430.43600.51600.62790.115*
C440.42186 (18)0.6169 (7)0.5172 (3)0.0794 (18)
H440.40940.52290.49700.095*
C450.47356 (8)0.8549 (4)0.2404 (2)0.0316 (7)
H45A0.49070.79040.20890.038*
H45B0.47300.80980.29730.038*
C460.48429 (8)1.0337 (4)0.2432 (2)0.0293 (7)
C470.51154 (10)1.0881 (5)0.1951 (3)0.0482 (10)
H470.52261.01280.15900.058*
C480.52278 (12)1.2495 (6)0.1991 (4)0.0699 (15)
H480.54141.28490.16560.084*
C490.50726 (10)1.3595 (5)0.2512 (3)0.0571 (12)
H490.51491.47140.25290.069*
C500.48048 (11)1.3084 (5)0.3014 (3)0.0513 (11)
H500.47011.38380.33870.062*
C510.46894 (10)1.1447 (5)0.2964 (2)0.0396 (8)
H510.45031.10910.33000.047*
C29A0.3951 (2)0.1011 (9)0.0349 (8)0.041 (2)0.687 (8)
H29A0.39160.09080.02540.062*0.687 (8)
H29B0.38100.01360.06270.062*0.687 (8)
O52A0.43001 (10)0.0741 (5)0.0510 (3)0.0469 (13)0.687 (8)
C52A0.4526 (2)0.1588 (14)0.0038 (6)0.083 (3)0.687 (8)
H52A0.44140.17240.05720.125*0.687 (8)
H52B0.45800.26790.01910.125*0.687 (8)
H52C0.47420.09510.01150.125*0.687 (8)
O6A0.20348 (12)0.2611 (5)0.1990 (3)0.0627 (14)0.793 (6)
C13A0.20088 (14)0.4076 (8)0.2016 (3)0.0375 (12)0.793 (6)
C14A0.17567 (5)0.4975 (4)0.25286 (14)0.0447 (14)0.793 (6)
C15A0.15873 (7)0.4088 (5)0.3137 (2)0.069 (2)0.793 (6)
H15A0.16390.29480.32200.083*0.793 (6)
C16A0.13420 (8)0.4867 (6)0.3625 (2)0.088 (3)0.793 (6)
H16A0.12260.42600.40410.105*0.793 (6)
C17A0.12662 (6)0.6534 (5)0.35032 (18)0.088 (3)0.793 (6)
H17A0.10990.70660.38360.105*0.793 (6)
C18A0.14357 (7)0.7421 (5)0.2894 (2)0.085 (3)0.793 (6)
H18A0.13840.85610.28110.102*0.793 (6)
C19A0.16809 (7)0.6642 (5)0.2407 (2)0.0523 (16)0.793 (6)
H19A0.17970.72490.19910.063*0.793 (6)
C29B0.39001 (13)0.0897 (9)0.0557 (4)0.051 (9)0.313 (8)
H29C0.36910.02110.06720.077*0.313 (8)
H29D0.40850.05790.09460.077*0.313 (8)
O52B0.40174 (11)0.0699 (8)0.0271 (4)0.034 (2)0.313 (8)
C52B0.43802 (10)0.1337 (9)0.0431 (5)0.040 (3)0.313 (8)
H52D0.45490.05830.01830.061*0.313 (8)
H52E0.44260.14050.10290.061*0.313 (8)
H52F0.44030.24400.01850.061*0.313 (8)
O6B0.18867 (7)0.3442 (6)0.1734 (2)0.062 (6)0.207 (6)
C13B0.19440 (6)0.4882 (5)0.18013 (14)0.048 (6)0.207 (6)
C14B0.1715 (4)0.6106 (16)0.2229 (10)0.050 (7)*0.207 (6)
C15B0.1407 (5)0.5567 (18)0.2577 (13)0.081 (8)*0.207 (6)
H15B0.13410.44350.25370.097*0.207 (6)
C16B0.1194 (4)0.669 (2)0.2984 (14)0.108 (12)*0.207 (6)
H16B0.09840.63170.32220.129*0.207 (6)
C17B0.1291 (4)0.834 (2)0.3042 (12)0.088 (9)*0.207 (6)
H17B0.11450.91060.33200.105*0.207 (6)
C18B0.1599 (4)0.8880 (15)0.2694 (10)0.054 (5)*0.207 (6)
H18B0.16651.00120.27330.065*0.207 (6)
C19B0.1811 (3)0.7762 (17)0.2287 (8)0.032 (4)*0.207 (6)
H19B0.20220.81300.20490.038*0.207 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (11)0.0214 (11)0.0385 (13)0.0042 (8)0.0001 (9)0.0024 (9)
O20.0239 (12)0.0550 (17)0.0450 (15)0.0024 (12)0.0088 (10)0.0133 (12)
O30.0342 (11)0.0212 (10)0.0283 (11)0.0034 (9)0.0066 (9)0.0002 (9)
O40.0230 (10)0.0198 (10)0.0282 (11)0.0009 (8)0.0022 (8)0.0015 (8)
O50.0223 (10)0.0202 (11)0.0330 (11)0.0012 (8)0.0019 (8)0.0036 (9)
O70.0448 (14)0.0360 (13)0.0373 (13)0.0002 (11)0.0020 (11)0.0005 (11)
O80.0273 (11)0.0229 (11)0.0359 (12)0.0027 (9)0.0063 (9)0.0031 (9)
O90.0383 (13)0.0345 (14)0.0508 (15)0.0030 (11)0.0183 (12)0.0014 (12)
O100.0260 (10)0.0214 (11)0.0309 (11)0.0005 (8)0.0063 (8)0.0031 (9)
O110.0598 (17)0.0382 (14)0.0272 (13)0.0113 (12)0.0097 (11)0.0035 (10)
O120.107 (3)0.060 (2)0.061 (2)0.009 (2)0.053 (2)0.0009 (16)
O130.0329 (12)0.0332 (12)0.0279 (12)0.0037 (10)0.0017 (9)0.0001 (10)
O140.0230 (10)0.0231 (11)0.0356 (12)0.0001 (9)0.0006 (9)0.0019 (9)
N10.0359 (15)0.0339 (15)0.0315 (15)0.0015 (12)0.0039 (12)0.0076 (12)
N20.0373 (15)0.0322 (15)0.0374 (17)0.0057 (12)0.0001 (13)0.0048 (13)
N30.053 (2)0.055 (2)0.0397 (18)0.0120 (17)0.0055 (15)0.0162 (17)
C10.0206 (13)0.0163 (14)0.0376 (17)0.0010 (11)0.0031 (12)0.0010 (12)
C20.0258 (15)0.0219 (15)0.0367 (17)0.0028 (12)0.0105 (13)0.0027 (13)
C30.0242 (14)0.0179 (14)0.0304 (16)0.0005 (12)0.0056 (12)0.0011 (12)
C40.0237 (14)0.0152 (13)0.0280 (15)0.0007 (11)0.0032 (11)0.0009 (11)
C50.0226 (14)0.0176 (13)0.0317 (16)0.0003 (11)0.0034 (12)0.0004 (12)
C60.0267 (15)0.0133 (13)0.0382 (17)0.0005 (11)0.0019 (12)0.0015 (12)
C70.0253 (15)0.0219 (15)0.0406 (18)0.0014 (12)0.0046 (13)0.0007 (13)
C80.0249 (15)0.0241 (16)0.0433 (19)0.0026 (12)0.0003 (13)0.0014 (14)
C90.0377 (17)0.0161 (14)0.0382 (18)0.0030 (13)0.0017 (14)0.0007 (13)
C100.0336 (17)0.0253 (16)0.0403 (19)0.0003 (14)0.0089 (14)0.0042 (14)
C110.0235 (15)0.0225 (16)0.047 (2)0.0005 (12)0.0026 (13)0.0024 (14)
C120.058 (3)0.056 (3)0.040 (2)0.006 (2)0.0034 (18)0.0027 (19)
C200.046 (2)0.0258 (16)0.0340 (18)0.0034 (14)0.0089 (15)0.0054 (14)
C210.0444 (19)0.0325 (18)0.0334 (18)0.0038 (15)0.0136 (15)0.0051 (14)
C220.049 (2)0.055 (3)0.041 (2)0.000 (2)0.0118 (17)0.0040 (18)
C230.074 (3)0.087 (4)0.037 (2)0.016 (3)0.004 (2)0.002 (2)
C240.090 (4)0.071 (3)0.037 (2)0.011 (3)0.024 (2)0.012 (2)
C250.071 (3)0.056 (3)0.054 (3)0.004 (2)0.037 (2)0.004 (2)
C260.047 (2)0.051 (2)0.042 (2)0.0016 (18)0.0168 (17)0.0029 (18)
C270.0276 (15)0.0242 (15)0.0273 (15)0.0038 (12)0.0044 (12)0.0008 (12)
C280.0289 (16)0.0287 (17)0.0433 (19)0.0005 (13)0.0120 (14)0.0068 (15)
C300.0235 (14)0.0209 (15)0.0309 (16)0.0020 (12)0.0052 (12)0.0003 (12)
C310.0249 (14)0.0213 (15)0.0309 (16)0.0004 (12)0.0055 (12)0.0008 (12)
C320.0216 (14)0.0243 (15)0.0319 (17)0.0021 (12)0.0017 (12)0.0007 (12)
C330.0256 (15)0.0258 (16)0.0276 (16)0.0015 (12)0.0017 (12)0.0000 (13)
C340.0252 (15)0.0258 (16)0.0312 (16)0.0008 (13)0.0026 (12)0.0021 (13)
C350.0391 (18)0.0318 (17)0.0331 (18)0.0053 (15)0.0108 (15)0.0054 (14)
C360.092 (4)0.034 (2)0.039 (2)0.019 (2)0.032 (2)0.0042 (17)
C370.150 (6)0.071 (4)0.026 (2)0.031 (4)0.015 (3)0.001 (2)
C380.0375 (18)0.0384 (19)0.0300 (17)0.0028 (15)0.0036 (14)0.0018 (14)
C390.039 (2)0.056 (2)0.037 (2)0.0041 (18)0.0022 (16)0.0038 (18)
C400.066 (3)0.063 (3)0.051 (3)0.017 (2)0.001 (2)0.001 (2)
C410.064 (3)0.091 (4)0.051 (3)0.020 (3)0.011 (2)0.005 (3)
C420.073 (3)0.092 (4)0.056 (3)0.017 (3)0.023 (3)0.008 (3)
C440.133 (5)0.058 (3)0.046 (3)0.017 (3)0.031 (3)0.008 (2)
C450.0250 (16)0.0292 (17)0.0406 (18)0.0001 (13)0.0006 (13)0.0021 (14)
C460.0222 (15)0.0314 (17)0.0342 (17)0.0009 (13)0.0018 (13)0.0008 (14)
C470.039 (2)0.035 (2)0.072 (3)0.0031 (16)0.0223 (19)0.0058 (19)
C480.048 (3)0.045 (2)0.118 (5)0.017 (2)0.032 (3)0.004 (3)
C490.037 (2)0.030 (2)0.104 (4)0.0043 (17)0.005 (2)0.013 (2)
C500.051 (2)0.041 (2)0.062 (3)0.0125 (18)0.007 (2)0.0182 (19)
C510.0396 (19)0.037 (2)0.042 (2)0.0033 (16)0.0040 (16)0.0006 (16)
C29A0.035 (3)0.024 (4)0.064 (5)0.004 (3)0.021 (4)0.004 (3)
O52A0.038 (2)0.037 (2)0.067 (3)0.0119 (17)0.0163 (19)0.0014 (19)
C52A0.061 (5)0.093 (7)0.095 (7)0.033 (5)0.015 (5)0.020 (6)
O6A0.051 (3)0.043 (3)0.095 (4)0.0131 (19)0.035 (2)0.010 (2)
C13A0.025 (2)0.053 (4)0.035 (3)0.003 (2)0.006 (2)0.006 (2)
C14A0.0194 (19)0.080 (4)0.035 (2)0.006 (2)0.0021 (17)0.008 (2)
C15A0.049 (3)0.106 (6)0.053 (3)0.026 (3)0.020 (3)0.005 (3)
C16A0.047 (3)0.159 (8)0.058 (4)0.027 (4)0.028 (3)0.026 (5)
C17A0.042 (3)0.168 (9)0.054 (4)0.015 (4)0.010 (3)0.038 (5)
C18A0.076 (5)0.127 (7)0.052 (4)0.047 (5)0.003 (3)0.015 (4)
C19A0.045 (3)0.078 (5)0.034 (3)0.018 (3)0.002 (2)0.011 (3)
C29B0.035 (10)0.050 (13)0.069 (15)0.003 (8)0.007 (8)0.016 (9)
O52B0.027 (4)0.038 (5)0.038 (5)0.008 (3)0.010 (3)0.005 (4)
C52B0.034 (7)0.032 (6)0.055 (9)0.009 (5)0.006 (6)0.003 (6)
O6B0.043 (10)0.063 (13)0.082 (13)0.037 (9)0.025 (9)0.011 (10)
C13B0.028 (10)0.052 (15)0.064 (15)0.022 (10)0.015 (9)0.001 (11)
Geometric parameters (Å, º) top
O1—C61.389 (4)C33—H331.0000
O1—C11.393 (4)C34—H341.0000
O2—C13B1.140 (3)C35—H35A0.9900
O2—C13A1.415 (6)C35—H35B0.9900
O2—C21.430 (4)C36—C371.490 (8)
O3—C31.416 (4)C37—H37A0.9800
O3—C201.430 (4)C37—H37B0.9800
O4—C301.410 (4)C37—H37C0.9800
O4—C41.428 (4)C38—C391.482 (5)
O5—C11.424 (3)C38—H38A0.9900
O5—C51.438 (4)C38—H38B0.9900
O7—C91.361 (4)C39—C441.374 (7)
O7—C121.421 (5)C39—C401.394 (6)
O8—C281.340 (4)C40—C411.376 (7)
O8—C271.450 (4)C40—H400.9500
O9—C281.199 (4)C41—C421.404 (8)
O10—C301.415 (4)C41—H410.9500
O10—C311.449 (4)C42—C431.366 (9)
O11—C361.325 (5)C42—H420.9500
O11—C351.443 (5)C43—C441.389 (8)
O12—C361.199 (7)C43—H430.9500
O13—C331.421 (4)C44—H440.9500
O13—C381.440 (4)C45—C461.501 (5)
O14—C321.429 (4)C45—H45A0.9900
O14—C451.446 (4)C45—H45B0.9900
N1—N21.235 (4)C46—C511.382 (5)
N1—C341.480 (4)C46—C471.387 (5)
N2—N31.132 (4)C47—C481.373 (6)
C1—C21.520 (4)C47—H470.9500
C1—H11.0000C48—C491.369 (7)
C2—C31.518 (4)C48—H480.9500
C2—H21.0000C49—C501.385 (7)
C3—C41.530 (4)C49—H490.9500
C3—H31.0000C50—C511.396 (6)
C4—C51.537 (4)C50—H500.9500
C4—H41.0000C51—H510.9500
C5—C271.503 (4)C29A—O52A1.386 (8)
C5—H51.0000C29A—H29A0.9900
C6—C111.381 (5)C29A—H29B0.9900
C6—C71.396 (4)O52A—C52A1.403 (10)
C7—C81.384 (5)C52A—H52A0.9800
C7—H70.9500C52A—H52B0.9800
C8—C91.392 (5)C52A—H52C0.9800
C8—H80.9500O6A—C13A1.188 (7)
C9—C101.391 (5)C13A—C14A1.477 (6)
C10—C111.396 (5)C14A—C15A1.3900
C10—H100.9500C14A—C19A1.3900
C11—H110.9500C15A—C16A1.3900
C12—H12A0.9800C15A—H15A0.9500
C12—H12B0.9800C16A—C17A1.3900
C12—H12C0.9800C16A—H16A0.9500
C20—C211.499 (5)C17A—C18A1.3900
C20—H20A0.9900C17A—H17A0.9500
C20—H20B0.9900C18A—C19A1.3900
C21—C221.385 (6)C18A—H18A0.9500
C21—C261.397 (5)C19A—H19A0.9500
C22—C231.390 (6)C29B—O52B1.4125
C22—H220.9500C29B—H29C0.9900
C23—C241.372 (8)C29B—H29D0.9900
C23—H230.9500O52B—C52B1.5004
C24—C251.378 (8)C52B—H52D0.9800
C24—H240.9500C52B—H52E0.9800
C25—C261.384 (6)C52B—H52F0.9800
C25—H250.9500O6B—C13B1.1887
C26—H260.9500C13B—C14B1.500 (12)
C27—H27A0.9900C14B—C15B1.3900
C27—H27B0.9900C14B—C19B1.3900
C28—C29B1.500 (8)C15B—C16B1.3900
C28—C29A1.531 (8)C15B—H15B0.9500
C30—C341.524 (4)C16B—C17B1.3900
C30—H301.0000C16B—H16B0.9500
C31—C351.500 (4)C17B—C18B1.3900
C31—C321.521 (4)C17B—H17B0.9500
C31—H311.0000C18B—C19B1.3900
C32—C331.526 (4)C18B—H18B0.9500
C32—H321.0000C19B—H19B0.9500
C33—C341.525 (4)
C6—O1—C1118.5 (2)C33—C34—H34108.8
C13B—O2—C2140.1 (3)O11—C35—C31106.3 (3)
C13A—O2—C2114.2 (3)O11—C35—H35A110.5
C3—O3—C20114.2 (2)C31—C35—H35A110.5
C30—O4—C4116.9 (2)O11—C35—H35B110.5
C1—O5—C5111.1 (2)C31—C35—H35B110.5
C9—O7—C12117.8 (3)H35A—C35—H35B108.7
C28—O8—C27114.6 (2)O12—C36—O11122.7 (5)
C30—O10—C31114.5 (2)O12—C36—C37125.1 (4)
C36—O11—C35117.6 (4)O11—C36—C37112.2 (5)
C33—O13—C38113.6 (2)C36—C37—H37A109.5
C32—O14—C45111.6 (2)C36—C37—H37B109.5
N2—N1—C34113.9 (3)H37A—C37—H37B109.5
N3—N2—N1172.4 (4)C36—C37—H37C109.5
O1—C1—O5108.7 (2)H37A—C37—H37C109.5
O1—C1—C2107.3 (2)H37B—C37—H37C109.5
O5—C1—C2107.6 (2)O13—C38—C39109.5 (3)
O1—C1—H1111.0O13—C38—H38A109.8
O5—C1—H1111.0C39—C38—H38A109.8
C2—C1—H1111.0O13—C38—H38B109.8
O2—C2—C3107.4 (3)C39—C38—H38B109.8
O2—C2—C1110.2 (3)H38A—C38—H38B108.2
C3—C2—C1112.1 (2)C44—C39—C40118.7 (4)
O2—C2—H2109.0C44—C39—C38120.6 (4)
C3—C2—H2109.0C40—C39—C38120.7 (4)
C1—C2—H2109.0C41—C40—C39122.1 (5)
O3—C3—C2107.8 (2)C41—C40—H40118.9
O3—C3—C4111.4 (2)C39—C40—H40118.9
C2—C3—C4109.9 (2)C40—C41—C42118.3 (5)
O3—C3—H3109.3C40—C41—H41120.8
C2—C3—H3109.3C42—C41—H41120.8
C4—C3—H3109.3C43—C42—C41119.6 (5)
O4—C4—C3107.2 (2)C43—C42—H42120.2
O4—C4—C5112.4 (2)C41—C42—H42120.2
C3—C4—C5107.5 (2)C42—C43—C44121.5 (7)
O4—C4—H4109.9C42—C43—H43119.2
C3—C4—H4109.9C44—C43—H43119.2
C5—C4—H4109.9C39—C44—C43119.7 (6)
O5—C5—C27108.9 (2)C39—C44—H44120.1
O5—C5—C4107.5 (2)C43—C44—H44120.1
C27—C5—C4116.7 (2)O14—C45—C46109.9 (3)
O5—C5—H5107.8O14—C45—H45A109.7
C27—C5—H5107.8C46—C45—H45A109.7
C4—C5—H5107.8O14—C45—H45B109.7
C11—C6—O1125.0 (3)C46—C45—H45B109.7
C11—C6—C7119.6 (3)H45A—C45—H45B108.2
O1—C6—C7115.3 (3)C51—C46—C47118.6 (3)
C8—C7—C6120.4 (3)C51—C46—C45121.5 (3)
C8—C7—H7119.8C47—C46—C45119.8 (3)
C6—C7—H7119.8C48—C47—C46120.9 (4)
C7—C8—C9120.2 (3)C48—C47—H47119.5
C7—C8—H8119.9C46—C47—H47119.5
C9—C8—H8119.9C49—C48—C47120.3 (4)
O7—C9—C10125.1 (3)C49—C48—H48119.9
O7—C9—C8115.6 (3)C47—C48—H48119.9
C10—C9—C8119.3 (3)C48—C49—C50120.3 (4)
C9—C10—C11120.3 (3)C48—C49—H49119.8
C9—C10—H10119.9C50—C49—H49119.8
C11—C10—H10119.9C49—C50—C51119.1 (4)
C6—C11—C10120.1 (3)C49—C50—H50120.5
C6—C11—H11119.9C51—C50—H50120.5
C10—C11—H11119.9C46—C51—C50120.8 (4)
O7—C12—H12A109.5C46—C51—H51119.6
O7—C12—H12B109.5C50—C51—H51119.6
H12A—C12—H12B109.5O52A—C29A—C28114.0 (5)
O7—C12—H12C109.5O52A—C29A—H29A108.7
H12A—C12—H12C109.5C28—C29A—H29A108.7
H12B—C12—H12C109.5O52A—C29A—H29B108.7
O3—C20—C21109.0 (3)C28—C29A—H29B108.7
O3—C20—H20A109.9H29A—C29A—H29B107.6
C21—C20—H20A109.9C29A—O52A—C52A113.0 (7)
O3—C20—H20B109.9O52A—C52A—H52A109.5
C21—C20—H20B109.9O52A—C52A—H52B109.5
H20A—C20—H20B108.3H52A—C52A—H52B109.5
C22—C21—C26118.4 (4)O52A—C52A—H52C109.5
C22—C21—C20120.8 (3)H52A—C52A—H52C109.5
C26—C21—C20120.8 (4)H52B—C52A—H52C109.5
C21—C22—C23120.9 (4)O6A—C13A—O2125.6 (5)
C21—C22—H22119.6O6A—C13A—C14A124.5 (5)
C23—C22—H22119.6O2—C13A—C14A109.9 (4)
C24—C23—C22120.0 (5)C15A—C14A—C19A120.0
C24—C23—H23120.0C15A—C14A—C13A117.7 (3)
C22—C23—H23120.0C19A—C14A—C13A122.3 (3)
C23—C24—C25119.9 (4)C14A—C15A—C16A120.0
C23—C24—H24120.1C14A—C15A—H15A120.0
C25—C24—H24120.1C16A—C15A—H15A120.0
C24—C25—C26120.5 (4)C17A—C16A—C15A120.0
C24—C25—H25119.7C17A—C16A—H16A120.0
C26—C25—H25119.7C15A—C16A—H16A120.0
C25—C26—C21120.2 (4)C18A—C17A—C16A120.0
C25—C26—H26119.9C18A—C17A—H17A120.0
C21—C26—H26119.9C16A—C17A—H17A120.0
O8—C27—C5109.5 (2)C17A—C18A—C19A120.0
O8—C27—H27A109.8C17A—C18A—H18A120.0
C5—C27—H27A109.8C19A—C18A—H18A120.0
O8—C27—H27B109.8C18A—C19A—C14A120.0
C5—C27—H27B109.8C18A—C19A—H19A120.0
H27A—C27—H27B108.2C14A—C19A—H19A120.0
O9—C28—O8124.6 (3)O52B—C29B—C28104.8 (3)
O9—C28—C29B123.5 (3)O52B—C29B—H29C110.8
O8—C28—C29B110.6 (3)C28—C29B—H29C110.8
O9—C28—C29A125.1 (4)O52B—C29B—H29D110.8
O8—C28—C29A110.2 (4)C28—C29B—H29D110.8
O4—C30—O10111.7 (2)H29C—C29B—H29D108.9
O4—C30—C34110.0 (2)C29B—O52B—C52B113.5
O10—C30—C34108.5 (2)O52B—C52B—H52D109.5
O4—C30—H30108.9O52B—C52B—H52E109.5
O10—C30—H30108.9H52D—C52B—H52E109.5
C34—C30—H30108.9O52B—C52B—H52F109.5
O10—C31—C35106.2 (2)H52D—C52B—H52F109.5
O10—C31—C32110.0 (2)H52E—C52B—H52F109.5
C35—C31—C32113.1 (3)O2—C13B—O6B111.7 (2)
O10—C31—H31109.1O2—C13B—C14B122.5 (7)
C35—C31—H31109.1O6B—C13B—C14B125.3 (6)
C32—C31—H31109.1C15B—C14B—C19B120.0
O14—C32—C31108.2 (2)C15B—C14B—C13B119.4 (10)
O14—C32—C33110.6 (2)C19B—C14B—C13B120.5 (10)
C31—C32—C33109.6 (2)C16B—C15B—C14B120.0
O14—C32—H32109.5C16B—C15B—H15B120.0
C31—C32—H32109.5C14B—C15B—H15B120.0
C33—C32—H32109.5C15B—C16B—C17B120.0
O13—C33—C34108.7 (3)C15B—C16B—H16B120.0
O13—C33—C32111.4 (2)C17B—C16B—H16B120.0
C34—C33—C32107.8 (3)C16B—C17B—C18B120.0
O13—C33—H33109.6C16B—C17B—H17B120.0
C34—C33—H33109.6C18B—C17B—H17B120.0
C32—C33—H33109.6C17B—C18B—C19B120.0
N1—C34—C30108.4 (3)C17B—C18B—H18B120.0
N1—C34—C33111.8 (3)C19B—C18B—H18B120.0
C30—C34—C33110.2 (2)C18B—C19B—C14B120.0
N1—C34—H34108.8C18B—C19B—H19B120.0
C30—C34—H34108.8C14B—C19B—H19B120.0
C6—O1—C1—O577.2 (3)C31—C32—C33—C3456.9 (3)
C6—O1—C1—C2166.6 (2)N2—N1—C34—C30149.6 (3)
C5—O5—C1—O1178.8 (2)N2—N1—C34—C3388.8 (3)
C5—O5—C1—C265.3 (3)O4—C30—C34—N159.5 (3)
C13B—O2—C2—C3140.2 (4)O10—C30—C34—N1178.0 (2)
C13A—O2—C2—C3113.4 (4)O4—C30—C34—C3363.1 (3)
C13B—O2—C2—C197.5 (5)O10—C30—C34—C3359.4 (3)
C13A—O2—C2—C1124.2 (3)O13—C33—C34—N159.6 (3)
O1—C1—C2—O267.7 (3)C32—C33—C34—N1179.5 (2)
O5—C1—C2—O2175.5 (2)O13—C33—C34—C30179.8 (2)
O1—C1—C2—C3172.8 (2)C32—C33—C34—C3058.9 (3)
O5—C1—C2—C355.9 (3)C36—O11—C35—C31166.5 (3)
C20—O3—C3—C2128.0 (3)O10—C31—C35—O1174.3 (3)
C20—O3—C3—C4111.4 (3)C32—C31—C35—O11164.9 (3)
O2—C2—C3—O364.8 (3)C35—O11—C36—O120.7 (6)
C1—C2—C3—O3174.0 (2)C35—O11—C36—C37179.2 (3)
O2—C2—C3—C4173.7 (2)C33—O13—C38—C39178.9 (3)
C1—C2—C3—C452.5 (3)O13—C38—C39—C4454.9 (5)
C30—O4—C4—C3143.2 (2)O13—C38—C39—C40128.7 (4)
C30—O4—C4—C598.8 (3)C44—C39—C40—C411.9 (8)
O3—C3—C4—O465.2 (3)C38—C39—C40—C41178.4 (4)
C2—C3—C4—O4175.5 (2)C39—C40—C41—C421.4 (8)
O3—C3—C4—C5173.7 (2)C40—C41—C42—C431.2 (9)
C2—C3—C4—C554.3 (3)C41—C42—C43—C441.7 (11)
C1—O5—C5—C27162.9 (2)C40—C39—C44—C432.3 (9)
C1—O5—C5—C469.9 (3)C38—C39—C44—C43178.8 (5)
O4—C4—C5—O5179.9 (2)C42—C43—C44—C392.2 (10)
C3—C4—C5—O562.1 (3)C32—O14—C45—C46174.7 (3)
O4—C4—C5—C2757.5 (3)O14—C45—C46—C5172.3 (4)
C3—C4—C5—C27175.4 (2)O14—C45—C46—C47111.5 (4)
C1—O1—C6—C1136.4 (4)C51—C46—C47—C481.0 (7)
C1—O1—C6—C7148.5 (3)C45—C46—C47—C48177.3 (4)
C11—C6—C7—C81.8 (5)C46—C47—C48—C490.3 (9)
O1—C6—C7—C8173.6 (3)C47—C48—C49—C501.1 (9)
C6—C7—C8—C91.2 (5)C48—C49—C50—C511.8 (7)
C12—O7—C9—C102.3 (5)C47—C46—C51—C500.3 (6)
C12—O7—C9—C8176.2 (3)C45—C46—C51—C50176.6 (3)
C7—C8—C9—O7174.5 (3)C49—C50—C51—C461.1 (6)
C7—C8—C9—C104.2 (5)O9—C28—C29A—O52A12.9 (14)
O7—C9—C10—C11174.4 (3)O8—C28—C29A—O52A163.8 (7)
C8—C9—C10—C114.1 (5)C29B—C28—C29A—O52A101.6 (15)
O1—C6—C11—C10173.1 (3)C28—C29A—O52A—C52A76.1 (11)
C7—C6—C11—C101.8 (5)C13B—O2—C13A—O6A139.8 (9)
C9—C10—C11—C61.2 (5)C2—O2—C13A—O6A8.3 (8)
C3—O3—C20—C21173.9 (3)C13B—O2—C13A—C14A40.9 (3)
O3—C20—C21—C22127.3 (4)C2—O2—C13A—C14A171.0 (3)
O3—C20—C21—C2652.2 (4)O6A—C13A—C14A—C15A13.2 (7)
C26—C21—C22—C230.0 (6)O2—C13A—C14A—C15A166.1 (3)
C20—C21—C22—C23179.6 (4)O6A—C13A—C14A—C19A165.3 (5)
C21—C22—C23—C241.0 (7)O2—C13A—C14A—C19A15.3 (5)
C22—C23—C24—C251.0 (8)C19A—C14A—C15A—C16A0.0
C23—C24—C25—C260.1 (8)C13A—C14A—C15A—C16A178.6 (3)
C24—C25—C26—C211.1 (7)C14A—C15A—C16A—C17A0.0
C22—C21—C26—C251.0 (6)C15A—C16A—C17A—C18A0.0
C20—C21—C26—C25178.6 (4)C16A—C17A—C18A—C19A0.0
C28—O8—C27—C5167.9 (3)C17A—C18A—C19A—C14A0.0
O5—C5—C27—O874.5 (3)C15A—C14A—C19A—C18A0.0
C4—C5—C27—O847.3 (3)C13A—C14A—C19A—C18A178.5 (3)
C27—O8—C28—O97.2 (5)O9—C28—C29B—O52B116.4 (4)
C27—O8—C28—C29B174.6 (4)O8—C28—C29B—O52B76.0 (3)
C27—O8—C28—C29A169.5 (6)C29A—C28—C29B—O52B14.9 (11)
C4—O4—C30—O10105.5 (3)C28—C29B—O52B—C52B75.4 (2)
C4—O4—C30—C34134.0 (3)C13A—O2—C13B—O6B40.8 (5)
C31—O10—C30—O461.5 (3)C2—O2—C13B—O6B7.8 (5)
C31—O10—C30—C3459.9 (3)C13A—O2—C13B—C14B131.9 (10)
C30—O10—C31—C35178.1 (3)C2—O2—C13B—C14B179.4 (9)
C30—O10—C31—C3259.1 (3)O2—C13B—C14B—C15B172.3 (7)
C45—O14—C32—C31137.5 (3)O6B—C13B—C14B—C15B0.6 (12)
C45—O14—C32—C33102.4 (3)O2—C13B—C14B—C19B6.9 (15)
O10—C31—C32—O14176.8 (2)O6B—C13B—C14B—C19B178.6 (7)
C35—C31—C32—O1464.6 (3)C19B—C14B—C15B—C16B0.0
O10—C31—C32—C3356.1 (3)C13B—C14B—C15B—C16B179.2 (14)
C35—C31—C32—C33174.7 (3)C14B—C15B—C16B—C17B0.0
C38—O13—C33—C34135.5 (3)C15B—C16B—C17B—C18B0.0
C38—O13—C33—C32105.8 (3)C16B—C17B—C18B—C19B0.0
O14—C32—C33—O1364.6 (3)C17B—C18B—C19B—C14B0.0
C31—C32—C33—O13176.2 (2)C15B—C14B—C19B—C18B0.0
O14—C32—C33—C34176.2 (2)C13B—C14B—C19B—C18B179.2 (14)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg5 and Cg6 are the centroids of the C6–C11, C21–C26 and C39–C44 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i1.002.463.439 (4)168
C27—H27B···O110.992.553.499 (4)161
C44—H44···N30.952.643.564 (5)
C45—H45A···O12ii0.992.513.488 (5)168
C47—H47···O52Aiii0.952.593.269 (4)128
C48—H48···O9iii0.952.653.569 (6)164
C3—H3···Cg3i1.002.963.915 (3)161
C4—H4···Cg3iv1.002.963.920 (3)161
C12—H12B···Cg5i0.982.713.563 (3)145
C16A—H16A···Cg6v0.952.883.713 (3)147
C25—H25···Cg5v0.952.943.717 (4)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1.
Conformational parameters (Å, °) (Cremer &amp; Pople, 1975) for iodo-pyranose rings top
Head_D and Foot_D represent the distance from the four-atom `seat' plane.
CompoundringQΘϕHead_DFoot_D
(I)C1–C5,O50.54 (3)161 (3)150 (8)0.685 (17)-0.47 (2)
(II)C1–C5,O50.532 (8)161.8 (9)140 (3)0.669 (4)-0.478 (7)
(I)C30–C34,O100.57 (3)4(3)241 (38)0.67 (3)-0.68 (3)
(II)C30–C34,O100.564 (8)1.2 (8)10 (24)0.646 (5)-0.651 (8)
ADOGIW0.5625.53290.656 (4)-0.622 (7)
Notes: (a) AQOGIW (Lee et al., 2004).
Conformational parameters (Å, °) (Cremer &amp; Pople, 1975) for gluco-pyranose ringsa top
Head_D and Foot_D represent the distance from the four-atom `seat' plane.
CompoundringQΘϕHead_DFoot_D
(III)C1–C5,O50.613 (3)7.3 (3)323 (2)0.714 (2)-0.662 (3)
RSTE-1a0.588 (8)11.8 (8)293 (4)0.748 (8)-0.586 (8)
RSTE-2a0.594 (8)14.6 (8)288 (3)0.768 (8)-0.566 (8)
(III)C30–C34,O100.591 (3)1.7 (3)150 (6)0.716 (3)-0.639 (2)
RSTE-1b0.582 (8)0.0 (8)202 (41)0.666 (8)-0.692 (8)
RSTE-1b0.561 (3)3.9 (9)116 (13)0.675 (8)-0.648 (8)
RAVNAD-10.597 (3)7.5 (3)89 (2)0.727 (4)-0.652 (4)
RAVNAD-20.577 (3)13.8 (3)340.8 (13)0.713 (4)-0.555 (5)
Notes: (a) RSTE molecules 1 and 2 (Gainsford et al., 2013); (b) RAVNAD (Abboud et al., 1997).
Hydrogen-bond geometry (Å, º) for (OZTF) top
Cg9 is the centroid of the C54–C59 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i1.002.533.51 (3)169
C20—H20A···O7ii0.992.573.44 (3)146
C52—H52···O6iii0.952.463.26 (3)142
C16—H16···Cg9iv0.952.653.520 (12)152
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y, z; (iv) x+2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (RNSB) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10i1.002.433.395 (9)161.1
C3—H3···O61.002.633.114 (10)109.9
C11—H11···O50.952.372.987 (10)121.9
C20—H20A···O7ii0.992.503.370 (11)147.0
C29—H29B···O12Aiii0.992.533.503 (14)167.9
C29—H29B···O12Biii0.992.603.55 (4)159.3
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (RSTN) top
Cg3, Cg5 and Cg6 are the centroids of the C6–C11, C21–C26 and C39–C44 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i1.002.463.439 (4)168
C27—H27B···O110.992.553.499 (4)161
C44—H44···N30.952.643.564 (5).
C45—H45A···O12ii0.992.513.488 (5)168
C47—H47···O52Aiii0.952.593.269 (4)128
C48—H48···O9iii0.952.653.569 (6)164
C3—H3···Cg3i1.002.963.915 (3)161
C4—H4···Cg3iv1.002.963.920 (3)161
C12—H12B···Cg5i0.982.713.563 (3)145
C16A—H16A···Cg6v0.952.883.713 (3)147
C25—H25···Cg5v0.952.943.717 (4)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1.

Experimental details

(OZTF)(RNSB)(RSTN)
Crystal data
Chemical formulaC59H56ClN3O16C60H59N3O17C52H55N3O15
Mr1098.511094.10961.99
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, C2
Temperature (K)123120118
a, b, c (Å)14.8343 (11), 8.4771 (6), 21.8112 (17)14.8595 (17), 8.3873 (6), 22.0138 (18)38.3346 (13), 8.0744 (3), 16.1659 (6)
β (°) 91.780 (7) 90.939 (10) 91.222 (2)
V3)2741.5 (4)2743.2 (4)5002.7 (3)
Z224
Radiation typeCu KαCu KαMo Kα
µ (mm1)1.240.810.09
Crystal size (mm)0.6 × 0.05 × 0.020.36 × 0.06 × 0.010.75 × 0.32 × 0.30
Data collection
DiffractometerRigaku Spider
diffractometer
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Gaussian
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.68, 1.01.080, 1.6380.645, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
19701, 3962, 2294 17226, 7922, 4977 51621, 9796, 9128
Rint0.1010.1010.035
θmax (°)43.572.126.1
(sin θ/λ)max1)0.4460.6170.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.280, 1.09 0.083, 0.201, 1.04 0.048, 0.129, 1.08
No. of reflections396279229796
No. of parameters666730662
No. of restraints553843
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.250.36, 0.320.33, 0.45
Absolute structureParsons & Flack (2004), 1721 Friedel pairsFlack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)Flack x determined using 3878 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.01 (8)0.3 (4)0.0 (2)

Computer programs: CrystalClear (Rigaku, 2005), CrysAlis PRO (Agilent, 2013), APEX2 (Bruker, 2005), FSProcess (Rigaku, 1998), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELX-D (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2012 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment and Dr Jan Waikaira for the data collection. We also thank Professor A. L. Spek for help with the structural solution of (I).

References

First citationAbboud, K. A., Toporek, S. S. & Horenstein, B. A. (1997). Acta Cryst. C53, 742–744.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBishop, J. R., Schuksz, M. & Esko, J. D. (2007). Nature, 446, 1030–1037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Cameron, S. A. & Schwörer, R. (2012). AsCA 12/Crystal 28 Abstract booklet, p. 54.  Google Scholar
First citationGainsford, G. J., Schwörer, R. & Tyler, P. C. (2013). Acta Cryst. C69, 679–682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLee, J.-C., Lu, X.-A., Kulkarni, S. S., Wen, Y.-S. & Hung, S.-C. (2004). J. Am. Chem. Soc. 126, 476–477.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuger, P. & Paulsen, H. (1981). Acta Cryst. B37, 1693–1698.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. D. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationScholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W. & Turnbull, J. E. (2003). J. Cell Biol. 163, 97–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchwörer, R., Zubkova, O. V., Turnbull, J. E. & Tyler, P. C. (2013). Chem. Eur. J. 19, 6817–6823.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurnbull, J., Powell, A. & Guimond, S. (2001). Trends Cell Biol. 11, 75–82.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 582-587
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds