research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 609-617

Crystal structures of five (2-chloro­quinolin-3-yl)methyl ethers: supra­molecular assembly in one and two dimensions mediated by hydrogen bonding and ππ stacking

aPG Department of Chemistry, Jain University, 52 Bellary Road, Hebbal, Bangalore 560 024, India, bDepartment of Chemistry, UBDT College of Engineering (a Constituent College of VTU, Belagavi), Davanagere 577 004, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jpjasinski@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 April 2015; accepted 26 April 2015; online 13 May 2015)

In the mol­ecules of the title compounds, methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloro­quinolin-3-yl)meth­oxy]-4-(hy­droxy­meth­yl)-6-methyl­pyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The mol­ecules of (I) are linked by two independent ππ stacking inter­actions to form chains, but there are no hydrogen bonds present in the structure. In (II), the mol­ecules are weakly linked into chains by a single type of ππ stacking inter­action. In (III), three of the four independent mol­ecules are linked by ππ stacking inter­actions but the other mol­ecule does not participate in such inter­actions. Weak C—H⋯O hydrogen bonds link the mol­ecules into three types of chains, two of which contain just one type of independent mol­ecule while the third type of chain contains two types of mol­ecule. The mol­ecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but ππ stacking inter­actions are absent. In (V), there is an intra­molecular O—H⋯O hydrogen bond, and mol­ecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and ππ stacking inter­actions.

1. Chemical context

The quinoline nucleus occurs in a number of natural compounds, such as the Cinchona alkaloids, and many of these are pharmacologically active substances displaying a broad range of biological activity. Quinoline itself has been found to possess anti­malarial, anti-bacterial, anti­fungal, anthelminthic, cardiotonic, anti­convulsant, anti-inflammatory and analgesic activity (Marella et al., 2013[Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1-12.]). The synthesis, reactions and biological applications of 2-chloro­quinoline-3-carbaldehydes have been reviewed (Abdel-Wahab et al., 2012[Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, (i), 211-276.]), and the structure of a simple reduction product (2-chloro­quinolin-3-yl)methanol, derived from the parent 2-chloro­quinoline-3-carbaldehyde, has been reported (Hathwar et al., 2010[Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Soc. (Bangalore), 122, 677-685.]). The structures of two related esters, [(2-chloro­quinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate], have also been reported recently along with a study of their radical-scavenging and anti­microbial activities (Tabassum et al., 2014[Tabassum, S., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S., Sujan Ganapathy, P. S., Sowmya, H. V., More, S. S., Nagendrappa, G., Kaur, M. & Jose, G. (2014). J. Mol. Struct. 1070, 10-20.]). Here we report the structures of five related ethers, namely methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, (I)[link] (Fig. 1[link]), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, (II)[link] (Fig. 2[link]), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, (III)[link] (Figs. 3[link]–6[link][link][link]), 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline (IV)[link] (Fig. 7[link]) and {5-[(2-chloro­quinolin-3-yl)methoxy]-4-(hy­droxy­meth­yl)-6-methylpyridin-3-yl}methanol, (V)[link] (Fig. 8[link]). Compounds (I)–(V) are all of general type QCH2OR, where Q represents a 2-chloro­quinolin-3-yl unit, which carries a 6-methyl substituent in compounds (II)[link] and (III)[link], although not in compounds (I)[link], (IV)[link] and (V)[link], and where R represents a meth­oxy­carbonyl­phenyl unit in compounds (I)–(III), a 1-naphthyl unit in compound (IV)[link], and a multiply-substituted pyridyl unit in compound (V)[link]. Compound (I)–(V) were all prepared by reaction of the corresponding chloro­methyl compounds QCH2Cl with the appropriate hy­droxy compound ROH under basic conditions, with yields ranging from 86 to 97%.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The structure of a type 1 mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The structure of a type 2 mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The structure of a type 3 mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The structure of a type 4 mol­ecule of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
The mol­ecular structure of compound (IV)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 8]
Figure 8
The mol­ecular structure of compound (V)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

As noted above, the mol­ecular constitutions of compounds (I)–(III) are very similar: those of compounds (I)[link] and (II)[link] differ only in the presence of a 6-methyl substituent in (II)[link] which is absent from (I)[link], while those of compounds (II)[link] and (III)[link] differ only in the presence of a bromo substituent in (II)[link] which is absent from (III)[link]. Despite these close similarities, compounds (I)–(III) all crystallize in different space groups, P21/n and Pbca, respectively, for (I)[link] and (II)[link], both with Z′ = 1, and P212121 with Z′ = 4 for (III)[link]. A search for possible additional crystallographic symmetry in compound (III)[link] found none: comparison of the atomic coordinates for the Cl atoms within the selected asymmetric unit shows that while the x-coordinates of atoms Cl12 and Cl32 differ by ca 0.5 and their z-coordinates are almost identical, the y-coordinates of these two atoms differ by ca 0.13; similarly the x-coordinates of atoms Cl22 and Cl42 again differ by ca 0.5 but now the y-coordinates are almost identical, while the z-coordinates differ by ca 0.18. Hence it is not possible to identify even pseudosymmetry here. For compound (III)[link], it will be convenient to refer to the mol­ecules containing atoms N11—N14 as mol­ecules of types 1–4, respectively. Compounds (IV)[link] and (V)[link] both crystallize with Z′ = 1, in space groups P21 and P21/c, respectively.

In compounds (I)–(III), the non-H atoms are almost co-planar, as shown by the relevant torsional and dihedral angles (Table 1[link]). It is inter­esting to note that the orientation of the ester function in compound (I)[link] differs from that in compounds (II)[link] and (III)[link] (Table 1[link] and Figs. 1[link]–6[link][link][link][link][link]): this difference may arise, at least in part, from the participation of the carbonyl O atom of the ester unit in short C—H⋯O inter­actions in all of the mol­ecules of compounds (II)[link] and (III)[link] but not in compound (I)[link] (Table 2[link]). The non-H atoms in compound (IV)[link] are also nearly coplanar, with a dihedral angle between the mean planes of the quinoline and naphthalene units of 7.39 (12)°. By contrast, while the quinoline and pyridine units in compound (V)[link] are nearly parallel (Fig. 8[link]), with a dihedral angle between their mean planes of only 3.10 (9)°, they are by no means coplanar, as indicated by the values of the torsional angles C2—C3—C37—O31, 92.08 (18), C3—C37—O31—C33, 165.21 (13) and C37—O31—C33—C32, −90.17 (17)°. This again may perhaps be ascribed in part to the strong hydrogen bonds present in the crystal structure of (V)[link] (Table 2[link]).

Table 1
Selected torsional and dihedral angles (°) for compounds (I)–(III)

`Dihedral 1' represents the dihedral angle between the mean planes of the quinoline and phenyl rings. `Dihedral 2' represents the dihedral angle between the mean planes of the phenyl ring and the carboxyl unit.

Parameter (I) (II) (III)      
x nil nil 1 2 3 4
Cx2—Cx3—Cx37—Ox31            
  −174.63 (17) −176.93 (18) −179.4 (3) 179.8 (3) 178.4 (3) −177.6 (3)
Cx3—Cx37—Ox31—Cx31            
  −175.71 (16) −179.57 (17) 177.2 (3) −175.9 (3) −178.9 (3) 176.4 (3)
Cx37—Ox31—Cx31—Cx32            
  173.73 (17) −172.62 (18) −176.8 (3) 174.5 (3) 177.7 (3) −174.4 (3)
Cx31—Cx32—Cx38—Ox38            
  4.1 (3) 159.5 (3) −177.5 (4) 166.4 (4) −168.7 (4) 178.9 (4)
Cx31—Cx32—Cx38—Ox39            
  −177.01 (17) −20.7 (3) 2.8 (6) −14.8 (5) 12.7 (5) −0.7 (5)
Cx32—Cx38—Ox39—Cx39            
  −175.77 (17) −176.4 (2) 179.2 (3) −176.4 (3) 178.3 (4) 180.0 (3)
Dihedral 1 0.66 (6) 10.72 (8) 5.44 (2) 4.18 (2) 3.825 (13) 5.55 (3)
Dihedral 2 4.27 (8) 19.25 (15) 2.52 (3) 14.66 (7) 12.29 (8) 1.78 (6)

Table 2
Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (II)–(V)

Cg1, Cg2 and Cg3 are the centroids of rings C231–C236, C331–C336 and C31–C34,C34A,C38A, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(II) C36—H36⋯O38i 0.95 2.53 3.277 (3) 136
(III) C28—H28⋯N41ii 0.95 2.63 3.565 (5) 169
  C136—H136⋯O138iii 0.95 2.50 3.261 (4) 137
  C236—H236⋯O438iv 0.95 2.43 3.223 (4) 141
  C336—H336⋯O338v 0.95 2.46 3.238 (4) 139
  C436—H436⋯O238iv 0.95 2.51 3.254 (4) 136
  C337—H33BCg1 0.99 2.64 3.441 (4) 138
  C437—H43ACg2 0.99 2.64 3.446 (4) 138
(IV) C37—H37ACg3vi 0.99 2.74 3.552 (3) 139
(V) O341—H341⋯N31vii 0.91 1.81 2.7098 (19) 174
  O351—H351⋯O341 0.91 1.86 2.7209 (19) 158
  C4—H4⋯O351viii 0.95 2.60 3.374 (2) 139
Symmetry codes: (i) x + [{1\over 2}], y, −z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x, y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (vi) x − 1, y, z; (vii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (viii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].

None of the mol­ecules of compounds (I)–(V) exhibits any inter­nal symmetry and hence all are conformationally chiral. For compounds (I)[link], (II)[link] and (V)[link], the centrosymmetric space groups accommodate equal numbers of the two conformational enanti­omers, but only one such enanti­omer is present in each crystal of compound (IV)[link]: the absolute configuration of the enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), although this has no chemical significance. For compound (III)[link], the value of the Flack x parameter gives evidence of partial inversion twinning.

3. Supra­molecular inter­actions

The supra­molecular assembly in compounds (I)–(V) is determined by a variety of direction-specific inter­molecular inter­actions, including both ππ stacking inter­actions and hydrogen bonds of C—H⋯N, C—H⋯O and C—H⋯π types, as well as O—H⋯N hydrogen bonds in compound (V)[link] only. In compound (III)[link], there are two fairly short inter­molecular C—H⋯N contacts involving C—H bonds from methyl groups bonded to the quinoline nucleus: not only are such bonds of low acidity, but these methyl groups are likely to be undergoing very rapid rotation about the adjacent C—C bonds (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]). When a group having local C3 symmetry, such as a methyl group, is directly bonded to a group having approximate local C2 symmetry, such as an aryl ring, the rotational barrier between these two groups is extremely low, of the order of J mol−1 rather than the usual kJ mol−1 (Naylor & Wilson, 1957[Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057-1060.]; Tannenbaum et al., 1956[Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42-47.]). Accordingly, these contacts in (III)[link] are not regarded as having any structural significance. Likewise, the C—H⋯O contact in (V)[link] involving the methyl group bonded to the unfused pyridine ring is not regarded as significant.

There are no hydrogen bonds of any kind in the crystal structure of compound (I)[link], but mol­ecules are linked into chains by ππ stacking inter­actions. The fused aryl ring of the mol­ecule at (x, y, z) and the brominated ring of the mol­ecule at (−x + 1, −y + 1, −z + 1) make a dihedral angle of 1.04°; the ring centroid separation is 3.6168 (10) Å, and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.4132 (6) Å, with a ring-centroid offset of ca 1.20 Å. For the heterocyclic ring at (x, y, z) and the brominated aryl ring at (−x, 1 − y, 1 − z), the corresponding values are 1.52 (9)°, 3.7454 (11) Å, 3.4357 (8) Å and ca 1.49 Å. The combination of these two stacking inter­actions links the mol­ecules of (I)[link] into a chain running parallel to the [100] direction (Fig. 9[link]). Two chains of this type pass through each unit cell but there are no direction-specific inter­actions between adjacent chains.

[Figure 9]
Figure 9
Part of the crystal structure of compound (I)[link] showing the formation of a π-stacked chain along [100]. For the sake of clarity, H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (−x, −y + 1, −z + 1), (−x + 1, −y + 1, −z + 1), (x − 1, y, z) and (x + 1, y, z), respectively.

The only short C—H⋯O contact in the structure of compound (II)[link] has a C—H⋯O angle of only 136° (Table 2[link]), and so it is unlikely to be of major structural significance (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). However, there is a weak ππ stacking inter­action between mol­ecules related by a 21 screw axis. The pyridyl ring at (x, y, z) and the brominated aryl ring at (−x + [{1\over 2}], y + [{1\over 2}], z) make a dihedral angle of 3.87 (10)°: the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3816 (9) Å, but the ring-centroid separation is 3.882 (12), resulting in a ring-centroid offset of ca 1.78 Å. Thus there is only a very modest overlap of these rings and a consequently weak stacking inter­action: if this inter­action is, in fact, regarded as significant, it links the mol­ecules into a π-stacked chain running parallel to [010].

Within the selected asymmetric unit for compound (III)[link], three of the four independent mol­ecules, those of types 2, 3 and 4 (cf. Figs. 3[link]–6[link][link][link]), are linked by two ππ stacking inter­actions, but the type 1 mol­ecule does not participate in any such inter­action. One of these stacking inter­actions involves the pyridyl ring of the type 2 mol­ecule and the fused aryl ring of the type 3 mol­ecule, while the other involves the pyridyl ring of the type 3 mol­ecule and the fused aryl ring of the type 4 mol­ecule. The dihedral angles between the ring planes within these two inter­actions are 3.11 (18) and 0.96 (7)°, respectively, the ring-centroid separations are 3.553 (2) Å and 3.544 (2) Å, and the shortest perpendicular distances from the centroid of one ring in each inter­action to the plane of the other ring are 3.4014 (15) and 3.3820 (15) Å, corresponding to ring-centroid offsets of ca 1.03 and ca 1.06 Å, respectively. The only short C—H⋯N contact within the crystal structure of compound (III)[link] has an H⋯N distance which is not significantly less than the sum of the van der Waals radii, but there are four independent C—H⋯O hydrogen bonds present in the structure although all are probably weak as they have quite small C—H⋯O angles (Table 2[link]). However, the pattern of these contacts is of inter­est as it precludes the possibility of any additional crystallographic symmetry in this structure where Z′ = 4. One of the C—H⋯O inter­actions involves only mol­ecules of type 1 which are related by the 21 screw axis along (0, y, [{1\over 4}]), forming a C(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction (Fig. 10[link]); an entirely similar chain is formed by type 3 mol­ecules related to one another by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]). However, the mol­ecules of types 2 and 4 which are related by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) together form a C22(12) chain parallel to [010] (Fig. 11[link]), which runs anti­parallel to the chains formed by the mol­ecules of types 1 and 3. Hence the patterns of supra­molecular assembly in compounds (I)–(III), as well as their crystallization characteristics, show significant differences.

[Figure 10]
Figure 10
Part of the crystal structure of compound (III)[link] showing the formation of two independent chains running parallel to the [010] direction and formed separately by the mol­ecules of types 1 and 3. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (−x, y − [{1\over 2}], −z + [{1\over 2}]), (x, y − 1, z) and (−x + 1, y − [{1\over 2}], −z + + [{1\over 2}]), respectively.
[Figure 11]
Figure 11
Part of the crystal structure of compound (III)[link] showing the formation of a chain running parallel to the [010] direction and containing alternating mol­ecules of types 2 and 4. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x + 1, y + [{1\over 2}], −z + [{1\over 2}]) and (x, y + 1, z), respectively.

There are no hydrogen bonds of the C—H⋯N or C—H⋯O types in the crystal structure of compound (IV)[link] and, despite the large number of independent aromatic rings, there are no ππ stacking inter­actions. The only direction-specific inter­molecular inter­action is a weak C—H⋯π(arene) contact involving mol­ecules related by translation.

The supra­molecular assembly in compound (V)[link] is, however, rather more elaborate, resulting in part from the presence of additional hydrogen-bond donors and acceptors in the unfused pyridine unit. An intra­molecular O—H⋯O hydrogen bond (Table 2[link]) gives rise to an S(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif, and an inter­molecular O—H⋯N hydrogen bond links mol­ecules related by the n-glide plane at y = [{3\over 4}], forming a C(7) chain running parallel to the [10[\overline{1}]] direction (Fig. 12[link]). In addition, inversion-related pairs of mol­ecules are linked by ππ stacking inter­actions involving the unfused pyridine ring of one mol­ecule and the quinoline unit of the other (Fig. 13[link]). Thus the unfused pyridine ring of the mol­ecule at (x, y, z) and the fused pyridine ring of the mol­ecule at (1 − x, 1 − y, 1 − z) make a dihedral angle of 4.43 (8)°: the ring-centroid separation is 3.7499 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.5077 (7) Å, corresponding to a ring-centroid offset of ca 1.33 Å. For the unfused pyridyl ring at (x, y, z) and the fused aryl ring at (−x + 1, −y + 1, −z + 1) the corresponding values are 1.73 (8)°, 3.7333 (10) Å, 3.4637 (8) Å and ca 1.39 Å, respectively. The effect of the hydrogen-bonded chains is to link the π-stacked dimer centered at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) directly to the four symmetry-related dimers centred at (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 1), thus forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (101) [Fig. 14[link]].

[Figure 12]
Figure 12
A stereoview of part of the crystal structure of compound (V)[link] showing the formation of a C(7) chain formed by O—H⋯N hydrogen bonds and running parallel to [10[\overline{1}]]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 13]
Figure 13
Part of the crystal structure of compound (V)[link] showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x + 1, −y + 1, −z + 1).
[Figure 14]
Figure 14
A stereoview of part of the crystal structure of compound (V)[link] showing the formation of a π-stacked sheet of hydrogen bonded chains lying parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.

4. Database survey

The structures of a number of fairly simple 2-chloro­quinolione derivatives related to compounds (I)–(V) have been reported in recent years. A structural study of a closely related group of six simply substituted 2-chloro­quinolines (Hathwar et al., 2010[Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Soc. (Bangalore), 122, 677-685.]) focused on supra­molecular aggregation via C—H⋯Cl hydrogen bonds and attractive Cl⋯Cl inter­actions. However, it must be pointed out firstly that it is now well established (Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]; Thallapally & Nangia, 2001[Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114-119.]) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from strong donors such as O—H or N—H; and secondly, that for none of the compounds in this group were the shortest inter­molecular Cl⋯Cl distances less than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]): indeed, the concept of the van der Waals radius was nowhere mentioned by the original authors. Two of the six compounds in this group contained 3-hy­droxy­methyl substituents and, in each of these, the mol­ecules are linked into C(6) chains by means of O—H⋯N hydrogen bonds.

Mol­ecules of 2-[(2-chloro­quinolin-3-yl)(hy­droxy)meth­yl]acrylo­nitrile (Anuradha et al., 2013a[Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013a). Acta Cryst. E69, o779.]) are also linked into C(6) chains by O—H⋯N hydrogen bonds, while in the closely related methyl 2-[(2-chloro­quinolin-3-yl)(hy­droxy)meth­yl]acrylate, where Z′ = 2 (Anuradha et al., 2013b[Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013b). Acta Cryst. E69, o990.]), mol­ecules of one type are linked by O—H⋯O hydrogen bonds, again forming C(6) chains to which the mol­ecules of the second type are linked by O—H⋯N hydrogen bonds. Chains of C(6) type are formed also in N-{(2-chloro-3-quinlin­yl)meth­yl]-4-fluoro­aniline (Jasinski et al., 2010[Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Kumar, S. (2010). Acta Cryst. E66, o2548-o2549.]), which is closely related to compounds (I)–(V) except that an amino linkage replaces the ether linkage in (I)–(V), so that the chains are built from N—H⋯N hydrogen bonds.

In the esters (2-choloroquinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate (Tabassum et al., 2014[Tabassum, S., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S., Sujan Ganapathy, P. S., Sowmya, H. V., More, S. S., Nagendrappa, G., Kaur, M. & Jose, G. (2014). J. Mol. Struct. 1070, 10-20.]), there are no strong hydrogen bond donors: in the methyl­ated compound, where Z′ = 2, the only hydrogen bond, of C—H⋯O type, links the two independent mol­ecules, while in the unmethyl­ated compound, the mol­ecules are linked into C(5) chains by C—H⋯N hydrogen bonds. In the structure of 2-chloro-3-(di­meth­oxy­meth­yl)-6-meth­oxy­quinoline (Chandrika et al., 2015[Chandrika, N., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S. & Glidewell, C. (2015). Acta Cryst. E71, o364-o365.]), there are no hydrogen bonds of any kind.

5. Synthesis and crystallization

For the synthesis of compounds (I)–(V), a mixture of 0.4 mmol of the appropriate quinoline derivative, 2-chloro-3-(chloro­meth­yl)quinoline for compounds (I)[link], (IV)[link] and (V)[link] or 2-chloro-3-(chloro­meth­yl)-5-methyl­quinoline for compounds (II)[link] and (III)[link] and 0.4 mmol of the appropriate hy­droxy compound, methyl 5-bromo-2-hy­droxy­benzoate for (I)[link] and (II)[link], methyl 2-hy­droxy­benzoate for (III)[link], 1-hy­droxy­naphthalene for (IV)[link], or 3-hy­droxy-4,5-bis­(hy­droxy­meth­yl)-2-methyl­pyridinium chloride for (V)[link], were dissolved in N,N-di­methyl­formamide (3–5 ml) together with potassium carbonate (2 mmol) and these mixtures were stirred at ambient temperature for 6–9 h, with monitoring by TLC. When each reaction was complete, ice-cold water (5 ml) was added and the resulting solid products were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­chloro­methane, with yields in the range 86–97%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference Fourier maps. C-bound H atoms were then treated as riding atoms in geometrically idealized positions: C—H distances 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for the methyl groups, which were permitted to rotate but not to tilt, and 1.2Ueq(C) for other C-bound H atoms.

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H13BrClNO3 C19H15BrClNO3 C19H16ClNO3
Mr 406.64 420.67 341.78
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pbca Orthorhombic, P212121
Temperature (K) 173 173 173
a, b, c (Å) 7.3185 (4), 18.4177 (7), 11.7870 (5) 15.1920 (3), 11.98641 (19), 19.0307 (3) 13.5860 (3), 15.5857 (2), 30.9389 (5)
α, β, γ (°) 90, 93.609 (4), 90 90, 90, 90 90, 90, 90
V3) 1585.62 (13) 3465.44 (10) 6551.2 (2)
Z 4 8 16
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 2.78 4.81 2.21
Crystal size (mm) 0.44 × 0.23 × 0.12 0.24 × 0.16 × 0.08 0.48 × 0.26 × 0.14
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.335, 0.717 0.399, 0.680 0.472, 0.734
No. of measured, independent and observed [I > 2σ(I)] reflections 17735, 4612, 3682 21861, 3421, 3062 45901, 12840, 11257
Rint 0.036 0.055 0.048
(sin θ/λ)max−1) 0.703 0.618 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.06 0.034, 0.093, 1.06 0.046, 0.129, 1.04
No. of reflections 4612 3421 12840
No. of parameters 218 229 874
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.41 0.52, −0.49 0.42, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.152 (16)
  (IV) (V)
Crystal data
Chemical formula C20H14ClNO C18H17ClN2O3
Mr 319.77 344.79
Crystal system, space group Monoclinic, P21 Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 5.3165 (3), 10.5098 (4), 13.6201 (7) 9.7866 (3), 15.3336 (4), 10.6570 (3)
α, β, γ (°) 90, 98.527 (5), 90 90, 92.381 (3), 90
V3) 752.62 (6) 1597.85 (8)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.27 2.29
Crystal size (mm) 0.34 × 0.10 × 0.08 0.42 × 0.38 × 0.32
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.551, 0.834 0.375, 0.481
No. of measured, independent and observed [I > 2σ(I)] reflections 4606, 2014, 1938 9423, 3112, 2764
Rint 0.029 0.043
(sin θ/λ)max−1) 0.619 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.08 0.045, 0.127, 1.05
No. of reflections 2014 3112
No. of parameters 208 219
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19 0.32, −0.25
Absolute structure Classical Flack method preferred over Parsons because s.u. lower  
Absolute structure parameter −0.007 (18)
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

The H atoms bonded to O atoms in compound (V)[link] were permitted to ride at the positions located in the difference Fourier map, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.91 Å. For compound (III)[link], the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) for the crystal selected for data collection was x = 0.161 (1) calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 4617 quotients of type [(I+)−(I)]/[(I+)+(I)]. Use of the TWIN/BASF instructions in SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) gave a value for the twin fraction of 0.152 (16). For compound (IV)[link], the absolute configuration of the conformational enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter calculated as x = −0.007 (18) by the standard method (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) and as x = 0.06 (2) calculated using 102 quotients of type [(I+)−(I)]/[(I+)+(I)].

Supporting information


Chemical context top

The quinoline nucleus occurs in a number of natural compounds, such as the Cinchona alkaloids, and many of these are pharmacologically active substances displaying a broad range of biological activity. Quinoline itself has been found to possess anti­malarial, anti-bacterial, anti­fungal, anthelminthic, cardiotonic, anti­convulsant, anti-inflammatory and analgesic activity (Marella et al., 2013). The synthesis, reactions and biological applications of 2-chloro­quinoline-3-carbaldehydes have been reviewed (Abdel-Wahab et al., 2012), and the structure of a simple reduction product (2-chloro­quinolin-3-yl)methanol, derived from the parent 2-chloro­quinoline-3-carbaldehyde, has been reported (Hathwar et al., 2010). The structures of two related esters, [(2-chloro­quinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate], have also been reported recently along with a study of their radical-scavenging and anti­microbial activities (Tabassum et al., 2014). Here we report the structures of five related ethers, namely methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]­benzoate, (I) (Fig. 1), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]­benzoate, (II) (Fig. 2), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]­benzoate, (III) (Figs. 3–6), 2-chloro-3-[(naphthalen-1-yl­oxy)methyl]­quinoline (IV) (Fig. 7) and {5-[(2-chloro­quinolin-3-yl)meth­oxy]-4-(hy­droxy­methyl)-6-methyl-pyridin-3-yl}methanol, (V) (Fig. 8). Compounds (I)–(V) are all of general type QCH2OR, where Q represents a 2-chloro­quinolin-3-yl unit, which carries a 6-methyl substituent in compounds (II) and (III), although not in compounds (I), (IV) and (V), and where R represents a meth­oxy­carbonyl­phenyl unit in compounds (I)–(III), a 1-naphthyl unit in compound (IV), and a multiply-substituted pyridyl unit in compound (V). Compound (I)–(V) were all prepared by reaction of the corresponding chloro­methyl compounds QCH2Cl with the appropriate hy­droxy compound ROH under basic conditions, with yields ranging from 86 to 97%.

Structural commentary top

As noted above, the molecular constitutions of compounds (I)–(III) are very similar: those of compounds (I) and (II) differ only in the presence of a 6-methyl substituent in (II) which is absent from (I), while those of compounds (II) and (III) differ only in the presence of a bromo substituent in (II) which is absent from (III). Despite these close similarities, compounds (I)–(III) all crystallize in different space groups, P21/n and Pbca, respectively, for (I) and (II), both with Z' = 1, and P212121 with Z' = 4 for (III). A search for possible additional crystallographic symmetry in compound (III) found none: comparison of the atomic coordinates for the Cl atoms within the selected asymmetric unit shows that while the x-coordinates of atoms Cl12 and Cl32 differ by ca 0.5 and their z-coordinates are almost identical, the y-coordinates of these two atoms differ by ca 0.13; similarly the x-coordinates of atoms Cl22 and Cl42 again differ by ca 0.5 but now the y-coordinates are almost identical, while the z-coordinates differ by ca 0.18. Hence it is not possible to identify even pseudosymmetry here. For compound (III), it will be convenient to refer to the molecules containing atoms N11—N14 as molecules of types 1–4, respectively. Compounds (IV) and (V) both crystallize with Z' = 1, in space groups P21 and P21/c, respectively.

In compounds (I)–(III), the non-H atoms are almost co-planar, as shown by the relevant torsional and dihedral angles (Table 1). It is inter­esting to note that the orientation of the ester function in compound (I) differs from that in compounds (II) and (III) [Table 1 and Figs. 1–6]: this difference may arise, at least in part, from the participation of the carbonyl O atom of the ester unit in short C—H···O inter­actions in all of the molecules of compounds (II) and (III) but not in compound (I) (Table 2). The non-H atoms in compound (IV) are also nearly coplanar, with a dihedral angle between the mean planes of the quinoline and naphthalene units of 7.39 (12)°. By contrast, while the quinoline and pyridine units in compound (V) are nearly parallel (Fig. 8), with a dihedral angle between their mean planes of only 3.10 (9)°, they are by no means coplanar, as indicated by the values of the torsional angles C2—C3—C37—O31, 92.08 (18), C3—C37—O31—C33, 165.21 (13) and C37—O31—C33—C32, -90.17 (17)°. This again may perhaps be ascribed in part to the strong hydrogen bonds present in the crystal structure of (V) (Table 2).

None of the molecules of compounds (I)–(V) exhibits any inter­nal symmetry and hence all are conformationally chiral. For compounds (I), (II) and (V), the centrosymmetric space groups accommodate equal numbers of the two conformational enanti­omers, but only one such enanti­omer is present in each crystal of compound (IV): the absolute configuration of the enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter (Flack, 1983), although this has no chemical significance. For compound (III), the value of the Flack x parameter gives evidence of partial inversion twinning.

Supra­molecular inter­actions top

The supra­molecular assembly in compounds (I)–(V) is determined by a variety of direction-specific inter­molecular inter­actions, including both ππ stacking inter­actions and hydrogen bonds of C—H···N, C—H···O and C—H···π types, as well as O—H···N hydrogen bonds in compound (V) only. In compound (III), there are two fairly short inter­molecular C—H···N contacts involving C—H bonds from methyl groups bonded to the quinoline nucleus: not only are such bonds of low acidity, but these methyl groups are likely to be undergoing very rapid rotation about the adjacent C—C bonds (Riddell & Rogerson, 1996, 1997). When a group having local C3 symmetry, such as a methyl group, is directly bonded to a group having approximate local C2 symmetry, such as an aryl ring, the rotational barrier between these two groups is extremely low, of the order of J mol-1 rather than the usual kJ mol-1 (Naylor & Wilson, 1957; Tannenbaum et al., 1956). Accordingly, these contacts in (III) are not regarded as having any structural significance. Likewise, the C—H···O contact in (V) involving the methyl group bonded to the unfused pyridine ring is not regarded as significant.

There are no hydrogen bonds of any kind in the crystal structure of compound (I), but molecules are linked into chains by ππ stacking inter­actions. The fused aryl ring of the molecule at (x, y, z) and the brominated ring of the molecule at (-x + 1, -y + 1, -z + 1) make a dihedral angle of 1.04°; the ring centroid separation is 3.6168 (10) Å, and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.4132 (6) Å, with a ring-centroid offset of ca 1.20 Å. For the heterocyclic ring at (x, y, z) and the brominated aryl ring at (-x, 1 - y, 1 - z), the corresponding values are 1.52 (9)°, 3.7454 (11) Å, 3.4357 (8) Å and ca 1.49 Å. The combination of these two stacking inter­actions links the molecules of (I) into a chain running parallel to the [100] direction (Fig. 9). Two chains of this type pass through each unit cell but there are no direction-specific inter­actions between adjacent chains.

The only short C—H···O contact in the structure of compound (II) has a C—H···O angle of only 136° (Table 2), and so it is unlikely to be of major structural significance (Wood et al., 2009). However, there is a weak ππ stacking inter­action between molecules related by a 21 screw axis. The pyridyl ring at (x, y, z) and the brominated aryl ring at (- x + 1/2, y + 1/2, z) make a dihedral angle of 3.87 (10)°: the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3816 (9) Å, but the ring-centroid separation is 3.882 (12), resulting in a ring-centroid offset of ca 1.78 Å. Thus there is only a very modest overlap of these ring and a consequently weak stacking inter­action: if this inter­action is, in fact, regarded as significant, it links the molecules into a π-stacked chain running parallel to [010].

Within the selected asymmetric unit for compound (III), three of the four independent molecules, those of types 2, 3 and 4 (cf. Figs. 3–6), are linked by two ππ stacking inter­actions, but the type 1 molecule does not participate in any such inter­action. One of these stacking inter­actions involves the pyridyl ring of the type 2 molecule and the fused aryl ring of the type 3 molecule, while the other involves the pyridyl ring of the type 3 molecule and the fused aryl ring of the type 4 molecule. The dihedral angles between the ring planes within these two inter­actions are 3.11 (18) and 0.96 (7)°, respectively, the ring-centroid separations are 3.553 (2) Å and 3.544 (2) Å, and the shortest perpendicular distances from the centroid of one ring in each inter­action to the plane of the other ring are 3.4014 (15) and 3.3820 (15) Å, corresponding to ring-centroid offsets of ca 1.03 and ca 1.06 Å, respectively. The only short C—H···N contact within the crystal structure of compound (III) has an H···N distance which is not significantly less than the sum of the van der Waals radii, but there are four independent C—H···O hydrogen bonds present in the structure although all are probably weak as they have quite small C—H···O angles (Table 2). However, the pattern of these contacts is of inter­est as it precludes the possibility of any additional crystallographic symmetry in this structure where Z' = 4. One of the C—H···O inter­actions involves only molecules of type 1 which are related by the 21 screw axis along (0, y, 1/4), forming a C(6) (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 10); an entirely similar chain is formed by type 3 molecules related to one another by the 21 screw axis along (1/2, y, 1/4). However, the molecules of types 2 and 4 which are related by the 21 screw axis along (1/2, y, 1/4) together form a C22(12) chain parallel to [010] (Fig. 11), which runs anti­parallel to the chains formed by the molecules of types 1 and 3. Hence the patterns of supra­molecular assembly in compounds (I)–(III), as well as their crystallization characteristics, show significant differences.

There are no hydrogen bonds of the C—H···N or C—H···O types in the crystal structure of compound (IV) and, despite the large number of independent aromatic rings, there are no ππ stacking inter­actions. The only direction-specific inter­molecular inter­action is a weak C—H···π(arene) contact involving molecules related by translation.

The supra­molecular assembly in compound (V) is, however, rather more elaborate, resulting in part from the presence of additional hydrogen-bond donors and acceptors in the unfused pyridine unit. An intra­molecular O—H···O hydrogen bond (Table 2) gives rise to an S(7) (Bernstein et al., 1995) motif, and an inter­molecular O—H···N hydrogen bond links molecules related by the n-glide plane at y = 0.75, forming a C(7) chain running parallel to the [101] direction (Fig. 12). In addition, inversion-related pairs of molecules are linked by ππ stacking inter­actions involving the unfused pyridine ring of one molecule and the quinoline unit of the other (Fig. 13). Thus the unfused pyridine ring of the molecule at (x, y, z) and the fused pyridine ring of the molecule at (1 - x, 1 - y, 1 - z) make a dihedral angle of 4.43 (8)°: the ring-centroid separation is 3.7499 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.5077 (7) Å, corresponding to a ring-centroid offset of ca 1.33 Å. For the unfused pyridyl ring at (x, y, z) and the fused aryl ring at (-x + 1, -y + 1, -z + 1) the corresponding values are 1.73 (8)°, 3.7333 (10) Å, 3.4637 (8) Å and ca 1.39 Å, respectively. The effect of the hydrogen-bonded chains is to link the π-stacked dimer centered at (1/2, 1/2, 1/2) directly to the four symmetry-related dimers centred at (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 1), thus forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (101) [Fig. 14].

Database survey top

The structures of a number of fairly simple 2-chloro­quinolione derivatives related to compounds (I)–(V) have been reported in recent years. A structural study of a closely related group of six simply substituted 2-chloro­quinolines (Hathwar et al., 2010) focused on supra­molecular aggregation via C—H···Cl hydrogen bonds and attractive l···Cl inter­actions. However, it must be pointed out firstly that it is now well established (Brammer et al., 2001; Thallapally & Nangia, 2001) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from strong donors such as O—H or N—H; and secondly, that for none of the compounds in this group were the shortest inter­molecular Cl···Cl distances less than the sum of the van der Waals radii (Bondi, 1964; Nyburg & Faerman, 1985; Rowland & Taylor, 1996): indeed, the concept of the van der Waals radius was nowhere mentioned by the original authors. Two of the six compounds in this group contained 3-hy­droxy­methyl substituents and, in each of these, the molecules are linked into C(6) chains by means of O—H···N hydrogen bonds.

Molecules of 2-[(2-chloro­quinolin-3-yl)(hy­droxy)­methyl]­acrylo­nitrile (Anuradha et al., 2013a) are also linked into C(6) chains by O—H···N hydrogen bonds, while in the closely related methyl 2-[(2-chloro­quinolin-3-yl)(hy­droxy)­methyl]­acrylate, where Z' = 2 (Anuradha et al., 2013b), molecules of one type are linked by O—H···O hydrogen bonds, again forming C(6) chains to which the molecules of the second type are linked by O—H···N hydrogen bonds. Chains of C(6) type are formed also in N-{(2-chloro-3-quinlinyl)methyl]-4-fluoro­aniline (Jasinski et al., 2010), which is closely related to compounds (I)–(V) except that an amino linkage replaces the ether linkage in (I)–(V), so that the chains are built from N—H···N hydrogen bonds.

In the esters (2-choloroquinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate (Tabassum et al., 2014), there are no strong hydrogen bond donors: in the methyl­ated compound, where Z' = 2, the only hydrogen bond, of C—H···O type, links the two independent molecules, while in the unmethyl­ated compound, the molecules are linked into C(5) chains by C—H···N hydrogen bonds. In the structure of 2-chloro-3-(di­meth­oxy­methyl)-6-meth­oxy­quinoline (Chandrika et al., 2015), there are no hydrogen bonds of any kind.

Synthesis and crystallization top

For the synthesis of compounds (I)–(V), a mixture of 0.4 mmol of the appropriate quinoline derivative, 2-chloro-3-(chloro­methyl)­quinoline for compounds (I), (IV) and (V) or 2-chloro-3-(chloro­methyl)-5-methyl­quinoline for compounds (II) and (III) and 0.4 mmol of the appropriate hy­droxy compound, methyl 5-bromo-2-hy­droxy­benzoate for (I) and (II), methyl 2-hy­droxy­benzoate for (III), 1-hy­droxy­naphthalene for (IV), or 3-hy­droxy-4,5-bis­(hy­droxy­methyl)-2-methyl­pyridinium chloride for (V), were dissolved in N,N-di­methyl­formamide (3–5 ml) together with potassium carbonate (2 mmol) and these mixtures were stirred at ambient temperature for 6–9 h, with monitoring by TLC. When each reaction was complete, ice-cold water (5 ml) was added and the resulting solid products were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­chloro­methane, with yields in the range 86–97%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference Fourier maps. C-bound H atoms were then treated as riding atoms in geometrically idealized positions: C—H distances 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for the methyl groups, which were permitted to rotate but not to tilt, and 1.2Ueq(C) for other C-bound H atoms.

The H atoms bonded to O atoms in compound (V) were permitted to ride at the positions located in the difference Fourier map, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.91 Å. For compound (III), the Flack x parameter (Flack, 1983) for the crystal selected for data collection was x = 0.161 (1) calculated (Parsons et al., 2013) using 4617 quotients of type [(I+)-(I-)]/[(I+)+(I-)]. Use of the TWIN/BASF instructions in SHELXL2014 (Sheldrick, 2015) gave a value for the twin fraction of 0.152 (16). For compound (IV), the absolute configuration of the conformational enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter calculated as x = -0.007 (18) by the standard method (Flack, 1983) and as x = 0.06 (2) calculated using 102 quotients of type [(I+)-(I-)]/[(I+)+(I-)].

Related literature top

For related literature, see: Abdel-Wahab, Khidre, Farahat & El-Ahl (2012); Anuradha et al. (2013a, 2013b); Bernstein et al. (1995); Bondi (1964); Brammer et al. (2001); Chandrika et al. (2015); Flack (1983); Hathwar et al. (2010); Jasinski et al. (2010); Marella et al. (2013); Naylor & Wilson (1957); Nyburg & Faerman (1985); Parsons et al. (2013); Riddell & Rogerson (1996, 1997); Rowland & Taylor (1996); Sheldrick (2015); Tabassum et al. (2014); Tannenbaum et al. (1956); Thallapally & Nangia (2001); Wood et al. (2009).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The structure of a type 1 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The structure of a type 2 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The structure of a type 3 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. The structure of a type 4 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7] Fig. 7. The molecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 8] Fig. 8. The molecular structure of compound (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 9] Fig. 9. Part of the crystal structure of compound (I) showing the formation of a π-stacked chain along [100]. For the sake of clarity, H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (-x, -y + 1, -z + 1), (-x + 1, -y + 1, -z + 1), (x - 1, y, z) and (x + 1, y, z), respectively.
[Figure 10] Fig. 10. Part of the crystal structure of compound (III) showing the formation of two independent chains running parallel to the [010] direction and formed separately by the molecules of types 1 and 3. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (-x, y - 1/2, -z + 1/2), (x, y - 1, z) and (-x + 1, y - 1/2 , -z + 1/2), respectively.
[Figure 11] Fig. 11. Part of the crystal structure of compound (III) showing the formation of a chain running parallel to the [010] direction and containing alternating molecules of types 2 and 4. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-x + 1, y + 1/2, -z + 1/2) and (x, y + 1, z), respectively.
[Figure 12] Fig. 12. A stereoview of part of the crystal structure of compound (V) showing the formation of a C(7) chain formed by O—H···N hydrogen bonds and running parallel to [101]. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 13] Fig. 13. Part of the crystal structure of compound (V) showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).
[Figure 14] Fig. 14. A stereoview of part of the crystal structure of compound (V) showing the formation of a π-stacked sheet of hydrogen bonded chains lying parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate top
Crystal data top
C18H13BrClNO3F(000) = 816
Mr = 406.64Dx = 1.703 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3185 (4) ÅCell parameters from 5443 reflections
b = 18.4177 (7) Åθ = 3.0–33.0°
c = 11.7870 (5) ŵ = 2.78 mm1
β = 93.609 (4)°T = 173 K
V = 1585.62 (13) Å3Plate, colourles
Z = 40.44 × 0.23 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
3682 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.036
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 108
Tmin = 0.335, Tmax = 0.717k = 2425
17735 measured reflectionsl = 1616
4612 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.6015P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4612 reflectionsΔρmax = 0.42 e Å3
218 parametersΔρmin = 0.41 e Å3
Crystal data top
C18H13BrClNO3V = 1585.62 (13) Å3
Mr = 406.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3185 (4) ŵ = 2.78 mm1
b = 18.4177 (7) ÅT = 173 K
c = 11.7870 (5) Å0.44 × 0.23 × 0.12 mm
β = 93.609 (4)°
Data collection top
Agilent Eos Gemini
diffractometer
4612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3682 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 0.717Rint = 0.036
17735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
4612 reflectionsΔρmin = 0.41 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3544 (2)0.64638 (8)0.75859 (12)0.0228 (3)
C20.3622 (2)0.57729 (10)0.74061 (14)0.0218 (4)
Cl20.44084 (7)0.52448 (3)0.85755 (4)0.03157 (12)
C30.3125 (2)0.54040 (10)0.63773 (15)0.0209 (4)
C40.2421 (2)0.58250 (10)0.55035 (15)0.0219 (4)
H40.20340.56060.47990.026*
C4A0.2265 (2)0.65814 (10)0.56389 (15)0.0209 (4)
C50.1545 (3)0.70490 (11)0.47672 (16)0.0257 (4)
H50.11150.68510.40550.031*
C60.1462 (3)0.77791 (11)0.49390 (17)0.0303 (4)
H60.09520.80870.43540.036*
C70.2134 (3)0.80793 (11)0.59853 (18)0.0315 (4)
H70.21010.85900.60930.038*
C80.2826 (3)0.76456 (11)0.68391 (17)0.0276 (4)
H80.32710.78550.75390.033*
C8A0.2888 (2)0.68865 (10)0.66944 (14)0.0212 (4)
C370.3404 (3)0.46017 (10)0.62654 (15)0.0246 (4)
H37A0.46960.44710.64670.030*
H37B0.26120.43330.67720.030*
O310.2926 (2)0.44326 (7)0.51108 (10)0.0275 (3)
C310.2926 (2)0.37331 (9)0.47662 (14)0.0203 (3)
C320.2264 (2)0.35949 (9)0.36438 (14)0.0191 (3)
C330.2199 (2)0.28798 (9)0.32599 (14)0.0203 (3)
H330.17510.27790.25020.024*
C340.2772 (3)0.23189 (9)0.39624 (15)0.0212 (4)
Br340.26437 (3)0.13590 (2)0.33927 (2)0.03066 (7)
C350.3456 (3)0.24530 (10)0.50667 (15)0.0235 (4)
H350.38600.20640.55480.028*
C360.3543 (3)0.31595 (10)0.54578 (15)0.0224 (4)
H360.40300.32550.62090.027*
C380.1676 (2)0.41935 (10)0.28586 (14)0.0217 (4)
O380.1774 (2)0.48297 (8)0.30438 (12)0.0415 (4)
O390.1018 (2)0.39288 (7)0.18579 (11)0.0361 (4)
C390.0528 (3)0.44627 (11)0.10042 (18)0.0380 (5)
H39A0.00670.42230.03360.057*
H39B0.16330.47140.07860.057*
H39C0.03170.48150.13080.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0241 (8)0.0260 (8)0.0181 (7)0.0004 (6)0.0007 (6)0.0038 (6)
C20.0222 (9)0.0266 (9)0.0164 (8)0.0002 (7)0.0006 (7)0.0005 (7)
Cl20.0414 (3)0.0328 (3)0.0196 (2)0.0036 (2)0.00517 (19)0.00316 (18)
C30.0220 (9)0.0205 (9)0.0202 (8)0.0018 (7)0.0021 (7)0.0023 (7)
C40.0240 (9)0.0237 (9)0.0178 (8)0.0012 (7)0.0002 (7)0.0028 (7)
C4A0.0207 (9)0.0222 (9)0.0201 (8)0.0005 (7)0.0031 (7)0.0006 (7)
C50.0272 (10)0.0282 (10)0.0215 (8)0.0036 (8)0.0006 (7)0.0006 (7)
C60.0314 (11)0.0278 (10)0.0320 (10)0.0073 (8)0.0048 (8)0.0068 (8)
C70.0334 (11)0.0228 (10)0.0390 (11)0.0045 (8)0.0077 (9)0.0024 (8)
C80.0304 (11)0.0242 (10)0.0282 (9)0.0009 (8)0.0034 (8)0.0079 (8)
C8A0.0199 (9)0.0227 (9)0.0213 (8)0.0014 (7)0.0036 (7)0.0029 (7)
C370.0354 (11)0.0211 (9)0.0170 (8)0.0003 (7)0.0022 (7)0.0010 (7)
O310.0467 (9)0.0168 (6)0.0181 (6)0.0019 (6)0.0048 (6)0.0020 (5)
C310.0231 (9)0.0188 (9)0.0191 (8)0.0002 (7)0.0020 (7)0.0000 (6)
C320.0215 (9)0.0172 (8)0.0186 (8)0.0003 (6)0.0009 (6)0.0019 (6)
C330.0228 (9)0.0187 (8)0.0193 (8)0.0016 (7)0.0003 (7)0.0000 (6)
C340.0250 (9)0.0158 (8)0.0227 (8)0.0012 (6)0.0008 (7)0.0006 (7)
Br340.04557 (13)0.01513 (9)0.03011 (11)0.00002 (8)0.00682 (8)0.00001 (7)
C350.0284 (10)0.0198 (9)0.0224 (9)0.0007 (7)0.0010 (7)0.0058 (7)
C360.0280 (10)0.0209 (9)0.0178 (8)0.0014 (7)0.0013 (7)0.0026 (7)
C380.0247 (9)0.0207 (9)0.0197 (8)0.0003 (7)0.0011 (7)0.0010 (7)
O380.0816 (12)0.0175 (7)0.0240 (7)0.0027 (7)0.0074 (7)0.0014 (6)
O390.0601 (10)0.0178 (7)0.0272 (7)0.0043 (6)0.0220 (7)0.0050 (6)
C390.0540 (14)0.0263 (11)0.0307 (10)0.0027 (9)0.0207 (10)0.0108 (8)
Geometric parameters (Å, º) top
N1—C21.292 (2)C37—H37B0.9900
N1—C8A1.370 (2)O31—C311.351 (2)
C2—C31.417 (2)C31—C361.392 (2)
C2—Cl21.7542 (18)C31—C321.403 (2)
C3—C41.364 (2)C32—C331.393 (2)
C3—C371.499 (2)C32—C381.486 (2)
C4—C4A1.408 (3)C33—C341.373 (2)
C4—H40.9500C33—H330.9500
C4A—C8A1.414 (2)C34—C351.387 (2)
C4A—C51.417 (3)C34—Br341.8913 (18)
C5—C61.362 (3)C35—C361.380 (3)
C5—H50.9500C35—H350.9500
C6—C71.411 (3)C36—H360.9500
C6—H60.9500C38—O381.193 (2)
C7—C81.358 (3)C38—O391.338 (2)
C7—H70.9500O39—C391.436 (2)
C8—C8A1.410 (3)C39—H39A0.9800
C8—H80.9500C39—H39B0.9800
C37—O311.418 (2)C39—H39C0.9800
C37—H37A0.9900
C2—N1—C8A116.80 (15)C3—C37—H37B110.6
N1—C2—C3126.94 (16)H37A—C37—H37B108.7
N1—C2—Cl2115.65 (13)C31—O31—C37119.56 (14)
C3—C2—Cl2117.41 (14)O31—C31—C36123.63 (15)
C4—C3—C2115.97 (16)O31—C31—C32116.73 (15)
C4—C3—C37122.75 (16)C36—C31—C32119.63 (16)
C2—C3—C37121.27 (16)C33—C32—C31118.73 (15)
C3—C4—C4A120.43 (16)C33—C32—C38119.78 (15)
C3—C4—H4119.8C31—C32—C38121.48 (15)
C4A—C4—H4119.8C34—C33—C32120.84 (16)
C4—C4A—C8A117.96 (16)C34—C33—H33119.6
C4—C4A—C5123.28 (16)C32—C33—H33119.6
C8A—C4A—C5118.75 (17)C33—C34—C35120.69 (16)
C6—C5—C4A120.70 (18)C33—C34—Br34118.86 (13)
C6—C5—H5119.7C35—C34—Br34120.44 (13)
C4A—C5—H5119.7C36—C35—C34119.18 (16)
C5—C6—C7120.03 (18)C36—C35—H35120.4
C5—C6—H6120.0C34—C35—H35120.4
C7—C6—H6120.0C35—C36—C31120.88 (16)
C8—C7—C6120.69 (19)C35—C36—H36119.6
C8—C7—H7119.7C31—C36—H36119.6
C6—C7—H7119.7O38—C38—O39122.23 (16)
C7—C8—C8A120.48 (18)O38—C38—C32127.08 (16)
C7—C8—H8119.8O39—C38—C32110.68 (15)
C8A—C8—H8119.8C38—O39—C39115.37 (15)
N1—C8A—C8118.90 (16)O39—C39—H39A109.5
N1—C8A—C4A121.80 (16)O39—C39—H39B109.5
C8—C8A—C4A119.31 (17)H39A—C39—H39B109.5
O31—C37—C3105.92 (14)O39—C39—H39C109.5
O31—C37—H37A110.6H39A—C39—H39C109.5
C3—C37—H37A110.6H39B—C39—H39C109.5
O31—C37—H37B110.6
C8A—N1—C2—C31.0 (3)C2—C3—C37—O31174.63 (17)
C8A—N1—C2—Cl2178.33 (13)C3—C37—O31—C31175.71 (16)
N1—C2—C3—C42.9 (3)C37—O31—C31—C366.4 (3)
Cl2—C2—C3—C4176.39 (14)C37—O31—C31—C32173.73 (17)
N1—C2—C3—C37175.89 (19)O31—C31—C32—C33178.50 (16)
Cl2—C2—C3—C374.8 (2)C36—C31—C32—C331.6 (3)
C2—C3—C4—C4A1.6 (3)O31—C31—C32—C382.8 (3)
C37—C3—C4—C4A177.14 (17)C36—C31—C32—C38177.03 (17)
C3—C4—C4A—C8A1.1 (3)C31—C32—C33—C340.1 (3)
C3—C4—C4A—C5179.93 (18)C38—C32—C33—C34178.58 (17)
C4—C4A—C5—C6178.59 (19)C32—C33—C34—C351.0 (3)
C8A—C4A—C5—C60.3 (3)C32—C33—C34—Br34179.85 (14)
C4A—C5—C6—C71.4 (3)C33—C34—C35—C360.5 (3)
C5—C6—C7—C81.6 (3)Br34—C34—C35—C36179.65 (14)
C6—C7—C8—C8A0.1 (3)C34—C35—C36—C311.1 (3)
C2—N1—C8A—C8178.21 (17)O31—C31—C36—C35178.00 (17)
C2—N1—C8A—C4A2.2 (3)C32—C31—C36—C352.2 (3)
C7—C8—C8A—N1178.03 (18)C33—C32—C38—O38174.5 (2)
C7—C8—C8A—C4A1.6 (3)C31—C32—C38—O384.1 (3)
C4—C4A—C8A—N13.2 (3)C33—C32—C38—O394.3 (2)
C5—C4A—C8A—N1177.82 (17)C31—C32—C38—O39177.01 (17)
C4—C4A—C8A—C8177.18 (17)O38—C38—O39—C393.1 (3)
C5—C4A—C8A—C81.8 (3)C32—C38—O39—C39175.77 (17)
C4—C3—C37—O314.1 (3)
(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate top
Crystal data top
C19H15BrClNO3Dx = 1.613 Mg m3
Mr = 420.67Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3421 reflections
a = 15.1920 (3) Åθ = 4.7–72.5°
b = 11.98641 (19) ŵ = 4.81 mm1
c = 19.0307 (3) ÅT = 173 K
V = 3465.44 (10) Å3Block, colourless
Z = 80.24 × 0.16 × 0.08 mm
F(000) = 1696
Data collection top
Agilent Eos Gemini
diffractometer
3062 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.055
ω scansθmax = 72.5°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1818
Tmin = 0.399, Tmax = 0.680k = 1412
21861 measured reflectionsl = 2318
3421 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0523P)2 + 1.8465P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.52 e Å3
3421 reflectionsΔρmin = 0.49 e Å3
229 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00048 (6)
Crystal data top
C19H15BrClNO3V = 3465.44 (10) Å3
Mr = 420.67Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 15.1920 (3) ŵ = 4.81 mm1
b = 11.98641 (19) ÅT = 173 K
c = 19.0307 (3) Å0.24 × 0.16 × 0.08 mm
Data collection top
Agilent Eos Gemini
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3062 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.680Rint = 0.055
21861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
3421 reflectionsΔρmin = 0.49 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42983 (12)0.87307 (15)0.45790 (10)0.0272 (4)
C20.42690 (13)0.78272 (18)0.42079 (11)0.0249 (4)
Cl20.52936 (3)0.72811 (5)0.39507 (3)0.03655 (16)
C30.35033 (14)0.72343 (17)0.40030 (10)0.0226 (4)
C40.27189 (13)0.76626 (18)0.42260 (11)0.0224 (4)
H40.21850.72970.41060.027*
C4A0.26987 (13)0.86525 (18)0.46363 (11)0.0219 (4)
C50.19142 (14)0.91446 (18)0.48888 (11)0.0253 (4)
H50.13660.88050.47800.030*
C60.19242 (15)1.00976 (18)0.52857 (11)0.0267 (4)
C70.27500 (15)1.05991 (19)0.54421 (12)0.0302 (5)
H70.27651.12610.57160.036*
C80.35220 (15)1.01485 (19)0.52062 (12)0.0299 (5)
H80.40661.04990.53160.036*
C8A0.35123 (14)0.91644 (17)0.48007 (11)0.0242 (4)
C370.35875 (13)0.61865 (18)0.35765 (11)0.0243 (4)
H37A0.39160.63380.31370.029*
H37B0.39090.56100.38460.029*
O310.27182 (9)0.58119 (13)0.34187 (8)0.0254 (3)
C310.26370 (13)0.48636 (18)0.30374 (11)0.0224 (4)
C320.17885 (14)0.45623 (18)0.28094 (11)0.0236 (4)
C330.16860 (15)0.36086 (18)0.23979 (11)0.0267 (4)
H330.11160.33990.22400.032*
C340.24049 (16)0.29669 (19)0.22183 (11)0.0271 (5)
Br340.22547 (2)0.17010 (2)0.16308 (2)0.03596 (12)
C350.32387 (16)0.32597 (18)0.24421 (12)0.0297 (5)
H350.37310.28130.23170.036*
C360.33537 (14)0.42003 (18)0.28463 (11)0.0273 (5)
H360.39280.44010.29970.033*
C380.09631 (14)0.5209 (2)0.29458 (12)0.0309 (5)
O380.03146 (13)0.5097 (2)0.25963 (13)0.0739 (8)
O390.10112 (11)0.59054 (16)0.34798 (9)0.0380 (4)
C390.02126 (19)0.6494 (3)0.36541 (18)0.0522 (7)
H39A0.00890.70520.32910.078*
H39B0.02830.68660.41090.078*
H39C0.02770.59630.36800.078*
C610.10926 (16)1.0618 (2)0.55704 (13)0.0365 (5)
H61A0.05901.03820.52840.055*
H61B0.11451.14320.55550.055*
H61C0.10031.03760.60570.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0241 (9)0.0257 (9)0.0319 (10)0.0054 (7)0.0027 (7)0.0008 (8)
C20.0193 (10)0.0264 (11)0.0291 (11)0.0017 (8)0.0002 (8)0.0026 (8)
Cl20.0207 (3)0.0373 (3)0.0516 (4)0.0023 (2)0.0022 (2)0.0088 (3)
C30.0236 (10)0.0229 (10)0.0214 (10)0.0037 (8)0.0022 (8)0.0021 (8)
C40.0202 (10)0.0249 (10)0.0222 (10)0.0041 (8)0.0023 (7)0.0023 (8)
C4A0.0236 (10)0.0226 (10)0.0196 (10)0.0023 (8)0.0023 (7)0.0033 (8)
C50.0248 (10)0.0288 (11)0.0224 (10)0.0030 (9)0.0021 (8)0.0012 (8)
C60.0309 (11)0.0263 (11)0.0228 (10)0.0025 (9)0.0017 (8)0.0019 (8)
C70.0397 (13)0.0231 (10)0.0276 (11)0.0022 (9)0.0023 (9)0.0035 (9)
C80.0308 (11)0.0263 (11)0.0325 (11)0.0059 (9)0.0045 (9)0.0022 (9)
C8A0.0262 (10)0.0227 (10)0.0238 (10)0.0040 (8)0.0038 (8)0.0014 (8)
C370.0199 (10)0.0245 (10)0.0285 (11)0.0029 (8)0.0007 (8)0.0021 (9)
O310.0198 (7)0.0252 (8)0.0312 (8)0.0013 (6)0.0016 (5)0.0079 (6)
C310.0241 (10)0.0226 (10)0.0204 (10)0.0015 (8)0.0002 (7)0.0013 (8)
C320.0230 (10)0.0237 (10)0.0242 (10)0.0026 (8)0.0009 (8)0.0037 (8)
C330.0283 (11)0.0279 (11)0.0238 (10)0.0068 (9)0.0032 (8)0.0032 (9)
C340.0407 (12)0.0212 (10)0.0195 (10)0.0054 (9)0.0007 (9)0.0012 (8)
Br340.0551 (2)0.02513 (16)0.02764 (17)0.00542 (10)0.00230 (10)0.00488 (9)
C350.0322 (11)0.0286 (12)0.0283 (11)0.0027 (9)0.0045 (9)0.0016 (9)
C360.0225 (10)0.0300 (12)0.0294 (11)0.0023 (9)0.0004 (8)0.0022 (9)
C380.0225 (10)0.0334 (12)0.0369 (12)0.0003 (9)0.0027 (9)0.0007 (10)
O380.0309 (10)0.100 (2)0.0905 (17)0.0164 (11)0.0257 (11)0.0441 (16)
O390.0232 (8)0.0460 (11)0.0446 (10)0.0068 (7)0.0006 (7)0.0115 (8)
C390.0298 (13)0.0636 (19)0.0632 (19)0.0151 (13)0.0099 (13)0.0070 (16)
C610.0372 (13)0.0366 (13)0.0357 (13)0.0042 (10)0.0022 (10)0.0082 (10)
Geometric parameters (Å, º) top
N1—C21.294 (3)O31—C311.354 (3)
N1—C8A1.369 (3)C31—C361.396 (3)
C2—C31.418 (3)C31—C321.407 (3)
C2—Cl21.758 (2)C32—C331.394 (3)
C3—C41.365 (3)C32—C381.497 (3)
C3—C371.501 (3)C33—C341.379 (3)
C4—C4A1.421 (3)C33—H330.9500
C4—H40.9500C34—C351.382 (3)
C4A—C51.414 (3)C34—Br341.899 (2)
C4A—C8A1.415 (3)C35—C361.376 (3)
C5—C61.370 (3)C35—H350.9500
C5—H50.9500C36—H360.9500
C6—C71.423 (3)C38—O381.196 (3)
C6—C611.509 (3)C38—O391.317 (3)
C7—C81.367 (3)O39—C391.442 (3)
C7—H70.9500C39—H39A0.9800
C8—C8A1.410 (3)C39—H39B0.9800
C8—H80.9500C39—H39C0.9800
C37—O311.427 (2)C61—H61A0.9800
C37—H37A0.9900C61—H61B0.9800
C37—H37B0.9900C61—H61C0.9800
C2—N1—C8A117.13 (18)O31—C31—C36123.12 (19)
N1—C2—C3126.73 (19)O31—C31—C32117.66 (18)
N1—C2—Cl2115.67 (15)C36—C31—C32119.2 (2)
C3—C2—Cl2117.59 (16)C33—C32—C31119.1 (2)
C4—C3—C2116.24 (19)C33—C32—C38115.38 (19)
C4—C3—C37123.86 (18)C31—C32—C38125.50 (19)
C2—C3—C37119.89 (19)C34—C33—C32120.5 (2)
C3—C4—C4A120.25 (18)C34—C33—H33119.7
C3—C4—H4119.9C32—C33—H33119.7
C4A—C4—H4119.9C33—C34—C35120.5 (2)
C5—C4A—C8A118.7 (2)C33—C34—Br34119.77 (17)
C5—C4A—C4123.60 (18)C35—C34—Br34119.65 (18)
C8A—C4A—C4117.70 (18)C36—C35—C34119.8 (2)
C6—C5—C4A121.7 (2)C36—C35—H35120.1
C6—C5—H5119.1C34—C35—H35120.1
C4A—C5—H5119.1C35—C36—C31120.9 (2)
C5—C6—C7118.5 (2)C35—C36—H36119.6
C5—C6—C61122.2 (2)C31—C36—H36119.6
C7—C6—C61119.2 (2)O38—C38—O39123.1 (2)
C8—C7—C6121.4 (2)O38—C38—C32122.3 (2)
C8—C7—H7119.3O39—C38—C32114.56 (18)
C6—C7—H7119.3C38—O39—C39116.1 (2)
C7—C8—C8A120.1 (2)O39—C39—H39A109.5
C7—C8—H8120.0O39—C39—H39B109.5
C8A—C8—H8120.0H39A—C39—H39B109.5
N1—C8A—C8118.51 (19)O39—C39—H39C109.5
N1—C8A—C4A121.94 (19)H39A—C39—H39C109.5
C8—C8A—C4A119.5 (2)H39B—C39—H39C109.5
O31—C37—C3107.35 (16)C6—C61—H61A109.5
O31—C37—H37A110.2C6—C61—H61B109.5
C3—C37—H37A110.2H61A—C61—H61B109.5
O31—C37—H37B110.2C6—C61—H61C109.5
C3—C37—H37B110.2H61A—C61—H61C109.5
H37A—C37—H37B108.5H61B—C61—H61C109.5
C31—O31—C37117.47 (16)
C8A—N1—C2—C30.2 (3)C4—C3—C37—O314.3 (3)
C8A—N1—C2—Cl2178.63 (15)C2—C3—C37—O31176.93 (18)
N1—C2—C3—C40.4 (3)C3—C37—O31—C31179.57 (17)
Cl2—C2—C3—C4178.35 (16)C37—O31—C31—C365.4 (3)
N1—C2—C3—C37179.3 (2)C37—O31—C31—C32172.62 (18)
Cl2—C2—C3—C370.5 (3)O31—C31—C32—C33178.09 (18)
C2—C3—C4—C4A0.3 (3)C36—C31—C32—C330.0 (3)
C37—C3—C4—C4A179.16 (19)O31—C31—C32—C380.7 (3)
C3—C4—C4A—C5179.75 (19)C36—C31—C32—C38177.4 (2)
C3—C4—C4A—C8A0.0 (3)C31—C32—C33—C340.2 (3)
C8A—C4A—C5—C60.0 (3)C38—C32—C33—C34177.8 (2)
C4—C4A—C5—C6179.7 (2)C32—C33—C34—C350.1 (3)
C4A—C5—C6—C70.2 (3)C32—C33—C34—Br34177.84 (16)
C4A—C5—C6—C61178.7 (2)C33—C34—C35—C360.1 (3)
C5—C6—C7—C80.1 (3)Br34—C34—C35—C36177.58 (17)
C61—C6—C7—C8178.9 (2)C34—C35—C36—C310.3 (3)
C6—C7—C8—C8A0.2 (4)O31—C31—C36—C35178.2 (2)
C2—N1—C8A—C8180.0 (2)C32—C31—C36—C350.2 (3)
C2—N1—C8A—C4A0.2 (3)C33—C32—C38—O3818.0 (4)
C7—C8—C8A—N1179.4 (2)C31—C32—C38—O38159.5 (3)
C7—C8—C8A—C4A0.4 (3)C33—C32—C38—O39161.8 (2)
C5—C4A—C8A—N1179.49 (19)C31—C32—C38—O3920.7 (3)
C4—C4A—C8A—N10.3 (3)O38—C38—O39—C393.5 (4)
C5—C4A—C8A—C80.3 (3)C32—C38—O39—C39176.4 (2)
C4—C4A—C8A—C8179.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O38i0.952.533.277 (3)136
Symmetry code: (i) x+1/2, y, z+1/2.
(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate top
Crystal data top
C19H16ClNO3Dx = 1.386 Mg m3
Mr = 341.78Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 12841 reflections
a = 13.5860 (3) Åθ = 3.6–72.6°
b = 15.5857 (2) ŵ = 2.21 mm1
c = 30.9389 (5) ÅT = 173 K
V = 6551.2 (2) Å3Block, colourless
Z = 160.48 × 0.26 × 0.14 mm
F(000) = 2848
Data collection top
Agilent Eos Gemini
diffractometer
11257 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.048
ω scansθmax = 72.6°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1615
Tmin = 0.472, Tmax = 0.734k = 1915
45901 measured reflectionsl = 3830
12840 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.9452P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.42 e Å3
12840 reflectionsΔρmin = 0.31 e Å3
874 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.152 (16)
Crystal data top
C19H16ClNO3V = 6551.2 (2) Å3
Mr = 341.78Z = 16
Orthorhombic, P212121Cu Kα radiation
a = 13.5860 (3) ŵ = 2.21 mm1
b = 15.5857 (2) ÅT = 173 K
c = 30.9389 (5) Å0.48 × 0.26 × 0.14 mm
Data collection top
Agilent Eos Gemini
diffractometer
12840 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
11257 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.734Rint = 0.048
45901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.31 e Å3
12840 reflectionsAbsolute structure: Refined as an inversion twin.
874 parametersAbsolute structure parameter: 0.152 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.0311 (2)0.26008 (18)0.44748 (8)0.0301 (6)
C120.0259 (3)0.2694 (2)0.40606 (10)0.0293 (7)
Cl120.02044 (8)0.17391 (5)0.37626 (3)0.0430 (2)
C130.0238 (2)0.3474 (2)0.38287 (10)0.0268 (6)
C140.0259 (2)0.4211 (2)0.40728 (10)0.0282 (7)
H140.02560.47560.39350.034*
C14A0.0287 (2)0.4159 (2)0.45268 (11)0.0282 (7)
C150.0243 (3)0.4892 (2)0.47997 (12)0.0332 (7)
H150.02260.54470.46740.040*
C160.0225 (3)0.4814 (3)0.52403 (12)0.0363 (8)
C170.0282 (3)0.3981 (3)0.54256 (11)0.0382 (8)
H170.02860.39230.57310.046*
C180.0332 (3)0.3261 (2)0.51731 (11)0.0348 (7)
H180.03710.27100.53040.042*
C18A0.0325 (2)0.3337 (2)0.47186 (11)0.0290 (7)
C1370.0188 (3)0.3476 (2)0.33422 (10)0.0302 (7)
H13A0.07640.31710.32200.036*
H13B0.04180.31840.32430.036*
O1310.0187 (2)0.43457 (15)0.32062 (7)0.0346 (5)
C1310.0188 (3)0.4508 (2)0.27728 (10)0.0277 (7)
C1320.0243 (3)0.5371 (2)0.26405 (10)0.0284 (7)
C1330.0259 (3)0.5540 (2)0.21978 (11)0.0338 (8)
H1330.03030.61190.21030.041*
C1340.0215 (3)0.4895 (3)0.18938 (11)0.0404 (9)
H1340.02300.50270.15940.048*
C1350.0147 (3)0.4051 (3)0.20307 (12)0.0391 (8)
H1350.01070.36020.18240.047*
C1360.0138 (3)0.3858 (2)0.24656 (11)0.0349 (8)
H1360.00970.32760.25560.042*
C1380.0272 (3)0.6138 (2)0.29250 (11)0.0318 (7)
O1380.0287 (3)0.68600 (18)0.27853 (9)0.0590 (8)
O1390.0286 (2)0.59794 (16)0.33477 (8)0.0362 (6)
C1390.0327 (3)0.6724 (3)0.36214 (12)0.0412 (9)
H19A0.03510.65430.39250.062*
H19B0.02590.70770.35740.062*
H19C0.09170.70580.35530.062*
C1610.0161 (4)0.5585 (3)0.55315 (13)0.0489 (10)
H16A0.06960.55660.57430.073*
H16B0.04730.55830.56830.073*
H16C0.02170.61090.53580.073*
N210.2866 (2)0.67705 (19)0.53534 (10)0.0345 (6)
C220.2884 (3)0.6675 (2)0.49411 (11)0.0311 (7)
Cl220.30603 (8)0.76266 (6)0.46423 (3)0.0463 (2)
C230.2803 (2)0.5902 (2)0.47028 (11)0.0297 (7)
C240.2724 (3)0.5170 (2)0.49451 (11)0.0312 (7)
H240.26750.46280.48060.037*
C24A0.2716 (3)0.5217 (2)0.54036 (11)0.0302 (7)
C250.2632 (3)0.4488 (2)0.56743 (12)0.0359 (8)
H250.26040.39330.55480.043*
C260.2590 (3)0.4568 (3)0.61136 (13)0.0406 (9)
C270.2650 (3)0.5396 (3)0.62980 (13)0.0434 (9)
H270.26220.54530.66030.052*
C280.2746 (3)0.6112 (3)0.60521 (12)0.0388 (8)
H280.27940.66600.61860.047*
C28A0.2774 (3)0.6041 (2)0.55952 (12)0.0332 (7)
C2370.2795 (3)0.5903 (2)0.42186 (11)0.0320 (7)
H23A0.22330.62450.41100.038*
H23B0.34110.61580.41060.038*
O2310.2709 (2)0.50396 (16)0.40813 (8)0.0375 (6)
C2310.2748 (3)0.4863 (2)0.36514 (11)0.0301 (7)
C2320.2748 (3)0.3993 (2)0.35269 (11)0.0294 (7)
C2330.2777 (3)0.3806 (2)0.30865 (12)0.0367 (8)
H2330.27740.32230.29980.044*
C2340.2811 (3)0.4434 (3)0.27777 (12)0.0392 (9)
H2340.28360.42860.24800.047*
C2350.2810 (3)0.5288 (3)0.29027 (12)0.0383 (8)
H2350.28270.57270.26900.046*
C2360.2782 (3)0.5503 (2)0.33367 (12)0.0330 (7)
H2360.27870.60900.34210.040*
C2380.2727 (3)0.3238 (2)0.38217 (12)0.0331 (8)
O2380.2553 (3)0.25274 (18)0.36991 (10)0.0546 (8)
O2390.2936 (2)0.34248 (17)0.42314 (8)0.0417 (6)
C2390.2981 (3)0.2700 (3)0.45206 (13)0.0485 (10)
H29A0.34140.22600.43980.073*
H29B0.23190.24620.45590.073*
H29C0.32410.28850.48010.073*
C2610.2477 (4)0.3792 (3)0.64007 (14)0.0528 (11)
H26A0.30750.37160.65740.079*
H26B0.23720.32810.62220.079*
H26C0.19120.38730.65930.079*
N310.5271 (2)0.39181 (18)0.44626 (9)0.0282 (6)
C320.5293 (2)0.3996 (2)0.40484 (10)0.0272 (7)
Cl320.53360 (8)0.30319 (5)0.37552 (3)0.0403 (2)
C330.5300 (2)0.4771 (2)0.38069 (10)0.0253 (6)
C340.5317 (2)0.5512 (2)0.40443 (10)0.0272 (7)
H340.53350.60520.39020.033*
C34A0.5309 (3)0.5474 (2)0.44993 (11)0.0277 (7)
C350.5330 (3)0.6216 (2)0.47646 (12)0.0345 (8)
H350.53620.67660.46330.041*
C360.5305 (3)0.6157 (3)0.52091 (12)0.0387 (8)
C370.5264 (3)0.5331 (3)0.53988 (11)0.0401 (8)
H370.52480.52850.57050.048*
C380.5248 (3)0.4602 (3)0.51574 (11)0.0356 (8)
H380.52190.40570.52950.043*
C38A0.5275 (3)0.4658 (2)0.46987 (10)0.0279 (7)
C3370.5297 (3)0.4760 (2)0.33200 (10)0.0261 (6)
H33A0.58950.44690.32100.031*
H33B0.47110.44500.32110.031*
O3310.5278 (2)0.56258 (14)0.31813 (7)0.0317 (5)
C3310.5256 (2)0.5789 (2)0.27513 (10)0.0265 (6)
C3320.5200 (3)0.6657 (2)0.26216 (10)0.0299 (7)
C3330.5204 (3)0.6837 (2)0.21809 (11)0.0368 (8)
H3330.51780.74180.20890.044*
C3340.5244 (3)0.6196 (3)0.18732 (11)0.0417 (9)
H3340.52540.63360.15740.050*
C3350.5269 (3)0.5350 (2)0.20050 (11)0.0372 (8)
H3350.52820.49050.17950.045*
C3360.5277 (3)0.5144 (2)0.24398 (11)0.0316 (7)
H3360.52970.45600.25270.038*
C3380.5135 (3)0.7414 (2)0.29139 (11)0.0339 (7)
O3380.4943 (3)0.81240 (18)0.27849 (10)0.0545 (8)
O3390.5325 (2)0.72473 (16)0.33255 (8)0.0430 (6)
C3390.5292 (4)0.7983 (3)0.36114 (13)0.0584 (12)
H39A0.57620.84170.35110.088*
H39B0.54660.78030.39050.088*
H39C0.46270.82260.36110.088*
C3610.5325 (4)0.6949 (3)0.54871 (13)0.0520 (11)
H36A0.55060.74460.53100.078*
H36B0.58100.68750.57190.078*
H36C0.46730.70430.56140.078*
N410.7784 (2)0.67216 (19)0.35785 (9)0.0312 (6)
C420.7768 (2)0.6643 (2)0.31639 (11)0.0276 (7)
Cl420.77365 (8)0.76085 (5)0.28715 (3)0.0395 (2)
C430.7776 (2)0.5869 (2)0.29224 (11)0.0265 (7)
C440.7803 (2)0.5131 (2)0.31580 (11)0.0283 (7)
H440.78240.45930.30140.034*
C44A0.7802 (2)0.5158 (2)0.36136 (11)0.0278 (7)
C450.7793 (3)0.4418 (2)0.38798 (12)0.0338 (8)
H450.77870.38670.37490.041*
C460.7792 (3)0.4481 (3)0.43207 (13)0.0371 (9)
C470.7801 (3)0.5302 (3)0.45138 (12)0.0393 (9)
H470.78020.53470.48200.047*
C480.7811 (3)0.6034 (3)0.42712 (12)0.0371 (8)
H480.78250.65780.44090.045*
C48A0.7799 (2)0.5982 (2)0.38153 (10)0.0284 (7)
C4370.7759 (3)0.5886 (2)0.24373 (10)0.0287 (7)
H43A0.71720.62000.23330.034*
H43B0.83550.61760.23250.034*
O4310.77309 (19)0.50187 (15)0.22965 (8)0.0334 (5)
C4310.7656 (3)0.4859 (2)0.18670 (11)0.0294 (7)
C4320.7540 (2)0.4005 (2)0.17336 (11)0.0314 (7)
C4330.7493 (3)0.3835 (2)0.12886 (12)0.0388 (8)
H4330.74350.32570.11940.047*
C4340.7528 (3)0.4479 (3)0.09854 (12)0.0452 (10)
H4340.74880.43480.06860.054*
C4350.7621 (3)0.5321 (3)0.11217 (12)0.0420 (9)
H4350.76470.57700.09150.050*
C4360.7678 (3)0.5512 (2)0.15565 (12)0.0353 (8)
H4360.77320.60930.16460.042*
C4380.7472 (3)0.3232 (2)0.20179 (12)0.0347 (8)
O4380.7358 (3)0.25227 (18)0.18788 (10)0.0560 (8)
O4390.7541 (2)0.33994 (16)0.24416 (8)0.0404 (6)
C4390.7475 (4)0.2656 (3)0.27155 (13)0.0501 (10)
H49A0.74960.28350.30190.075*
H49B0.80300.22720.26560.075*
H49C0.68560.23550.26590.075*
C4610.7757 (3)0.3687 (3)0.46052 (14)0.0498 (11)
H46A0.70750.35760.46930.075*
H46B0.81630.37800.48630.075*
H46C0.80090.31930.44440.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0385 (15)0.0228 (13)0.0289 (13)0.0008 (12)0.0018 (12)0.0024 (11)
C120.0348 (17)0.0208 (15)0.0324 (16)0.0002 (14)0.0029 (14)0.0009 (13)
Cl120.0731 (6)0.0208 (4)0.0351 (4)0.0022 (4)0.0056 (4)0.0023 (3)
C130.0278 (15)0.0240 (16)0.0286 (16)0.0016 (13)0.0003 (13)0.0023 (12)
C140.0306 (16)0.0225 (16)0.0315 (16)0.0009 (13)0.0002 (14)0.0040 (13)
C14A0.0254 (15)0.0247 (16)0.0345 (17)0.0018 (13)0.0005 (13)0.0019 (13)
C150.0321 (17)0.0271 (17)0.0404 (19)0.0011 (14)0.0004 (15)0.0037 (14)
C160.0306 (17)0.040 (2)0.039 (2)0.0001 (16)0.0027 (15)0.0103 (16)
C170.0402 (19)0.048 (2)0.0259 (16)0.0039 (18)0.0017 (15)0.0029 (15)
C180.0391 (19)0.0345 (18)0.0309 (17)0.0009 (16)0.0023 (15)0.0030 (15)
C18A0.0266 (16)0.0276 (16)0.0329 (17)0.0010 (13)0.0019 (13)0.0001 (14)
C1370.0413 (18)0.0206 (15)0.0287 (16)0.0009 (14)0.0029 (14)0.0027 (13)
O1310.0548 (15)0.0209 (11)0.0282 (12)0.0041 (11)0.0016 (11)0.0038 (9)
C1310.0296 (16)0.0256 (16)0.0279 (16)0.0039 (13)0.0008 (13)0.0048 (13)
C1320.0284 (16)0.0270 (17)0.0298 (17)0.0045 (14)0.0011 (13)0.0042 (13)
C1330.0373 (18)0.0323 (18)0.0316 (18)0.0075 (15)0.0034 (15)0.0107 (14)
C1340.049 (2)0.046 (2)0.0266 (17)0.0104 (19)0.0010 (16)0.0043 (16)
C1350.049 (2)0.0355 (19)0.0326 (18)0.0083 (17)0.0029 (16)0.0056 (15)
C1360.044 (2)0.0251 (17)0.0359 (18)0.0066 (15)0.0004 (15)0.0002 (14)
C1380.0357 (18)0.0251 (17)0.0345 (17)0.0045 (14)0.0010 (14)0.0045 (14)
O1380.108 (3)0.0250 (14)0.0440 (16)0.0015 (16)0.0068 (17)0.0038 (12)
O1390.0511 (15)0.0257 (12)0.0318 (12)0.0007 (11)0.0024 (11)0.0004 (10)
C1390.053 (2)0.0323 (19)0.0382 (19)0.0024 (18)0.0049 (17)0.0082 (16)
C1610.054 (2)0.049 (2)0.044 (2)0.003 (2)0.0007 (19)0.0149 (19)
N210.0440 (17)0.0262 (15)0.0332 (15)0.0035 (13)0.0030 (13)0.0036 (12)
C220.0377 (18)0.0238 (16)0.0318 (17)0.0025 (14)0.0026 (13)0.0006 (14)
Cl220.0791 (7)0.0235 (4)0.0363 (4)0.0029 (4)0.0059 (4)0.0019 (4)
C230.0307 (16)0.0286 (17)0.0297 (17)0.0046 (14)0.0027 (13)0.0045 (14)
C240.0332 (17)0.0237 (16)0.0366 (19)0.0004 (14)0.0022 (14)0.0045 (14)
C24A0.0281 (16)0.0295 (17)0.0330 (18)0.0005 (14)0.0010 (14)0.0025 (14)
C250.0371 (19)0.0314 (18)0.039 (2)0.0024 (15)0.0011 (15)0.0001 (15)
C260.040 (2)0.045 (2)0.037 (2)0.0038 (17)0.0008 (16)0.0092 (17)
C270.046 (2)0.054 (2)0.0295 (18)0.0019 (19)0.0019 (16)0.0007 (17)
C280.048 (2)0.039 (2)0.0296 (18)0.0000 (17)0.0002 (16)0.0060 (15)
C28A0.0322 (17)0.0314 (18)0.0359 (18)0.0022 (15)0.0013 (14)0.0021 (15)
C2370.0403 (19)0.0230 (16)0.0328 (18)0.0032 (14)0.0021 (14)0.0036 (14)
O2310.0597 (16)0.0244 (12)0.0285 (13)0.0032 (11)0.0045 (11)0.0034 (10)
C2310.0297 (16)0.0290 (17)0.0316 (18)0.0023 (14)0.0020 (13)0.0035 (13)
C2320.0286 (16)0.0276 (17)0.0321 (17)0.0028 (14)0.0032 (13)0.0032 (14)
C2330.042 (2)0.0306 (18)0.0378 (19)0.0064 (16)0.0020 (16)0.0099 (15)
C2340.048 (2)0.043 (2)0.0268 (18)0.0062 (18)0.0065 (15)0.0023 (16)
C2350.041 (2)0.040 (2)0.0338 (19)0.0003 (16)0.0053 (15)0.0082 (16)
C2360.0348 (18)0.0275 (17)0.0368 (19)0.0012 (14)0.0039 (15)0.0011 (14)
C2380.0301 (16)0.0297 (18)0.039 (2)0.0025 (14)0.0013 (14)0.0053 (15)
O2380.088 (2)0.0271 (14)0.0490 (17)0.0156 (14)0.0052 (15)0.0007 (13)
O2390.0632 (18)0.0287 (13)0.0330 (13)0.0012 (12)0.0076 (12)0.0028 (11)
C2390.065 (3)0.036 (2)0.045 (2)0.0049 (19)0.0081 (19)0.0128 (18)
C2610.061 (3)0.049 (3)0.048 (2)0.005 (2)0.001 (2)0.015 (2)
N310.0335 (14)0.0237 (14)0.0274 (13)0.0006 (12)0.0016 (11)0.0024 (11)
C320.0324 (16)0.0188 (15)0.0302 (16)0.0016 (13)0.0026 (14)0.0014 (13)
Cl320.0723 (6)0.0187 (4)0.0299 (4)0.0005 (4)0.0027 (4)0.0015 (3)
C330.0249 (14)0.0211 (15)0.0300 (16)0.0011 (12)0.0012 (13)0.0023 (13)
C340.0304 (16)0.0203 (15)0.0308 (16)0.0017 (13)0.0005 (14)0.0026 (12)
C34A0.0262 (16)0.0268 (17)0.0300 (17)0.0016 (13)0.0013 (13)0.0033 (13)
C350.0377 (18)0.0281 (17)0.0377 (19)0.0022 (15)0.0022 (15)0.0068 (15)
C360.0371 (19)0.043 (2)0.0364 (19)0.0025 (17)0.0052 (15)0.0114 (16)
C370.042 (2)0.053 (2)0.0261 (17)0.0016 (18)0.0019 (16)0.0059 (16)
C380.0412 (19)0.039 (2)0.0270 (17)0.0004 (17)0.0025 (15)0.0027 (15)
C38A0.0277 (16)0.0291 (17)0.0268 (16)0.0011 (13)0.0015 (13)0.0023 (13)
C3370.0336 (16)0.0178 (14)0.0268 (16)0.0008 (13)0.0005 (13)0.0026 (12)
O3310.0517 (14)0.0184 (11)0.0251 (11)0.0017 (11)0.0010 (11)0.0016 (9)
C3310.0296 (15)0.0244 (16)0.0254 (15)0.0011 (13)0.0001 (13)0.0033 (12)
C3320.0324 (17)0.0255 (16)0.0319 (17)0.0009 (14)0.0019 (14)0.0021 (13)
C3330.045 (2)0.0304 (18)0.0345 (18)0.0046 (16)0.0043 (16)0.0113 (14)
C3340.055 (2)0.045 (2)0.0244 (16)0.007 (2)0.0042 (16)0.0058 (16)
C3350.045 (2)0.038 (2)0.0295 (17)0.0029 (17)0.0036 (16)0.0040 (15)
C3360.0418 (19)0.0226 (16)0.0304 (17)0.0010 (15)0.0016 (15)0.0016 (13)
C3380.0391 (19)0.0221 (16)0.0406 (18)0.0006 (15)0.0016 (15)0.0046 (14)
O3380.087 (2)0.0234 (14)0.0528 (17)0.0118 (14)0.0069 (16)0.0045 (12)
O3390.0746 (19)0.0206 (12)0.0338 (13)0.0021 (12)0.0089 (13)0.0035 (10)
C3390.100 (4)0.028 (2)0.047 (2)0.004 (2)0.007 (2)0.0121 (18)
C3610.057 (3)0.054 (3)0.045 (2)0.003 (2)0.003 (2)0.023 (2)
N410.0366 (16)0.0262 (14)0.0308 (14)0.0005 (12)0.0009 (12)0.0026 (12)
C420.0324 (17)0.0205 (15)0.0298 (16)0.0022 (13)0.0016 (13)0.0015 (13)
Cl420.0676 (6)0.0203 (4)0.0306 (4)0.0046 (4)0.0026 (4)0.0015 (3)
C430.0280 (16)0.0233 (16)0.0281 (16)0.0012 (13)0.0007 (13)0.0007 (13)
C440.0307 (16)0.0229 (16)0.0313 (17)0.0003 (13)0.0012 (13)0.0051 (13)
C44A0.0241 (16)0.0280 (17)0.0314 (17)0.0011 (13)0.0001 (13)0.0028 (14)
C450.0330 (18)0.0291 (18)0.039 (2)0.0034 (15)0.0007 (15)0.0065 (15)
C460.0259 (17)0.047 (2)0.039 (2)0.0050 (16)0.0011 (15)0.0125 (17)
C470.040 (2)0.052 (2)0.0260 (17)0.0009 (17)0.0003 (15)0.0090 (16)
C480.041 (2)0.039 (2)0.0312 (18)0.0008 (16)0.0028 (15)0.0050 (16)
C48A0.0274 (16)0.0318 (17)0.0260 (16)0.0013 (13)0.0010 (12)0.0002 (14)
C4370.0382 (18)0.0207 (15)0.0270 (16)0.0016 (14)0.0001 (13)0.0025 (13)
O4310.0513 (15)0.0210 (12)0.0278 (12)0.0010 (11)0.0005 (11)0.0040 (9)
C4310.0322 (17)0.0278 (17)0.0282 (16)0.0004 (14)0.0012 (13)0.0039 (13)
C4320.0329 (18)0.0305 (18)0.0307 (17)0.0020 (14)0.0026 (13)0.0029 (14)
C4330.049 (2)0.0322 (18)0.0356 (19)0.0055 (16)0.0025 (16)0.0107 (16)
C4340.061 (3)0.048 (2)0.0262 (18)0.004 (2)0.0002 (17)0.0078 (16)
C4350.056 (2)0.041 (2)0.0294 (19)0.0004 (19)0.0032 (17)0.0040 (16)
C4360.043 (2)0.0286 (17)0.0338 (19)0.0036 (16)0.0031 (15)0.0020 (15)
C4380.0402 (19)0.0263 (18)0.0376 (19)0.0000 (15)0.0007 (14)0.0065 (14)
O4380.092 (2)0.0269 (14)0.0488 (17)0.0053 (15)0.0008 (15)0.0079 (13)
O4390.0629 (17)0.0251 (12)0.0332 (13)0.0066 (11)0.0010 (12)0.0014 (10)
C4390.078 (3)0.0304 (19)0.042 (2)0.007 (2)0.002 (2)0.0069 (17)
C4610.046 (2)0.059 (3)0.045 (2)0.007 (2)0.0015 (19)0.026 (2)
Geometric parameters (Å, º) top
N11—C121.292 (4)N31—C321.287 (4)
N11—C18A1.373 (4)N31—C38A1.365 (4)
C12—C131.412 (4)C32—C331.420 (4)
C12—Cl121.752 (3)C32—Cl321.756 (3)
C13—C141.375 (4)C33—C341.369 (4)
C13—C1371.507 (4)C33—C3371.507 (4)
C14—C14A1.408 (4)C34—C34A1.409 (4)
C14—H140.9500C34—H340.9500
C14A—C18A1.414 (5)C34A—C38A1.415 (5)
C14A—C151.421 (5)C34A—C351.418 (5)
C15—C161.369 (5)C35—C361.379 (5)
C15—H150.9500C35—H350.9500
C16—C171.421 (6)C36—C371.415 (6)
C16—C1611.505 (5)C36—C3611.506 (5)
C17—C181.370 (5)C37—C381.360 (5)
C17—H170.9500C37—H370.9500
C18—C18A1.411 (5)C38—C38A1.422 (5)
C18—H180.9500C38—H380.9500
C137—O1311.419 (4)C337—O3311.417 (4)
C137—H13A0.9900C337—H33A0.9900
C137—H13B0.9900C337—H33B0.9900
O131—C1311.365 (4)O331—C3311.355 (4)
C131—C1361.391 (5)C331—C3361.393 (5)
C131—C1321.408 (5)C331—C3321.413 (4)
C132—C1331.395 (4)C332—C3331.392 (5)
C132—C1381.486 (5)C332—C3381.489 (5)
C133—C1341.378 (5)C333—C3341.380 (5)
C133—H1330.9500C333—H3330.9500
C134—C1351.386 (6)C334—C3351.380 (5)
C134—H1340.9500C334—H3340.9500
C135—C1361.379 (5)C335—C3361.383 (5)
C135—H1350.9500C335—H3350.9500
C136—H1360.9500C336—H3360.9500
C138—O1381.205 (4)C338—O3381.205 (5)
C138—O1391.331 (4)C338—O3391.325 (4)
O139—C1391.437 (4)O339—C3391.448 (4)
C139—H19A0.9800C339—H39A0.9800
C139—H19B0.9800C339—H39B0.9800
C139—H19C0.9800C339—H39C0.9800
C161—H16A0.9800C361—H36A0.9800
C161—H16B0.9800C361—H36B0.9800
C161—H16C0.9800C361—H36C0.9800
N21—C221.284 (4)N41—C421.289 (4)
N21—C28A1.367 (5)N41—C48A1.366 (4)
C22—C231.417 (5)C42—C431.419 (5)
C22—Cl221.764 (4)C42—Cl421.757 (3)
C23—C241.369 (5)C43—C441.362 (5)
C23—C2371.498 (5)C43—C4371.501 (4)
C24—C24A1.420 (5)C44—C44A1.410 (5)
C24—H240.9500C44—H440.9500
C24A—C251.415 (5)C44A—C451.417 (5)
C24A—C28A1.418 (5)C44A—C48A1.429 (5)
C25—C261.366 (5)C45—C461.368 (5)
C25—H250.9500C45—H450.9500
C26—C271.413 (6)C46—C471.413 (6)
C26—C2611.509 (5)C46—C4611.519 (5)
C27—C281.357 (6)C47—C481.365 (5)
C27—H270.9500C47—H470.9500
C28—C28A1.419 (5)C48—C48A1.413 (5)
C28—H280.9500C48—H480.9500
C237—O2311.416 (4)C437—O4311.421 (4)
C237—H23A0.9900C437—H43A0.9900
C237—H23B0.9900C437—H43B0.9900
O231—C2311.359 (4)O431—C4311.356 (4)
C231—C2361.395 (5)C431—C4361.400 (5)
C231—C2321.409 (5)C431—C4321.403 (5)
C232—C2331.394 (5)C432—C4331.404 (5)
C232—C2381.489 (5)C432—C4381.494 (5)
C233—C2341.368 (5)C433—C4341.375 (6)
C233—H2330.9500C433—H4330.9500
C234—C2351.386 (6)C434—C4351.384 (6)
C234—H2340.9500C434—H4340.9500
C235—C2361.384 (5)C435—C4361.380 (5)
C235—H2350.9500C435—H4350.9500
C236—H2360.9500C436—H4360.9500
C238—O2381.195 (4)C438—O4381.196 (5)
C238—O2391.331 (4)C438—O4391.340 (4)
O239—C2391.443 (4)O439—C4391.438 (4)
C239—H29A0.9800C439—H49A0.9800
C239—H29B0.9800C439—H49B0.9800
C239—H29C0.9800C439—H49C0.9800
C261—H26A0.9800C461—H46A0.9800
C261—H26B0.9800C461—H46B0.9800
C261—H26C0.9800C461—H46C0.9800
C12—N11—C18A116.9 (3)C32—N31—C38A116.9 (3)
N11—C12—C13127.0 (3)N31—C32—C33127.2 (3)
N11—C12—Cl12115.4 (3)N31—C32—Cl32115.7 (2)
C13—C12—Cl12117.6 (2)C33—C32—Cl32117.1 (2)
C14—C13—C12116.1 (3)C34—C33—C32115.8 (3)
C14—C13—C137123.2 (3)C34—C33—C337123.1 (3)
C12—C13—C137120.7 (3)C32—C33—C337121.1 (3)
C13—C14—C14A120.0 (3)C33—C34—C34A120.0 (3)
C13—C14—H14120.0C33—C34—H34120.0
C14A—C14—H14120.0C34A—C34—H34120.0
C14—C14A—C18A118.2 (3)C34—C34A—C38A118.3 (3)
C14—C14A—C15123.1 (3)C34—C34A—C35123.0 (3)
C18A—C14A—C15118.7 (3)C38A—C34A—C35118.8 (3)
C16—C15—C14A121.4 (3)C36—C35—C34A121.5 (3)
C16—C15—H15119.3C36—C35—H35119.3
C14A—C15—H15119.3C34A—C35—H35119.3
C15—C16—C17118.8 (3)C35—C36—C37118.4 (3)
C15—C16—C161121.8 (4)C35—C36—C361120.9 (4)
C17—C16—C161119.4 (3)C37—C36—C361120.6 (3)
C18—C17—C16121.4 (3)C38—C37—C36122.2 (3)
C18—C17—H17119.3C38—C37—H37118.9
C16—C17—H17119.3C36—C37—H37118.9
C17—C18—C18A119.9 (3)C37—C38—C38A119.7 (4)
C17—C18—H18120.0C37—C38—H38120.1
C18A—C18—H18120.0C38A—C38—H38120.1
N11—C18A—C18118.5 (3)N31—C38A—C34A121.8 (3)
N11—C18A—C14A121.8 (3)N31—C38A—C38118.8 (3)
C18—C18A—C14A119.7 (3)C34A—C38A—C38119.4 (3)
O131—C137—C13107.4 (3)O331—C337—C33107.0 (3)
O131—C137—H13A110.2O331—C337—H33A110.3
C13—C137—H13A110.2C33—C337—H33A110.3
O131—C137—H13B110.2O331—C337—H33B110.3
C13—C137—H13B110.2C33—C337—H33B110.3
H13A—C137—H13B108.5H33A—C337—H33B108.6
C131—O131—C137117.9 (2)C331—O331—C337118.5 (2)
O131—C131—C136122.4 (3)O331—C331—C336122.9 (3)
O131—C131—C132117.6 (3)O331—C331—C332117.4 (3)
C136—C131—C132120.0 (3)C336—C331—C332119.7 (3)
C133—C132—C131117.8 (3)C333—C332—C331118.1 (3)
C133—C132—C138115.4 (3)C333—C332—C338115.9 (3)
C131—C132—C138126.8 (3)C331—C332—C338126.1 (3)
C134—C133—C132122.1 (3)C334—C333—C332122.0 (3)
C134—C133—H133119.0C334—C333—H333119.0
C132—C133—H133119.0C332—C333—H333119.0
C133—C134—C135119.2 (3)C335—C334—C333119.2 (3)
C133—C134—H134120.4C335—C334—H334120.4
C135—C134—H134120.4C333—C334—H334120.4
C136—C135—C134120.4 (3)C334—C335—C336120.6 (3)
C136—C135—H135119.8C334—C335—H335119.7
C134—C135—H135119.8C336—C335—H335119.7
C135—C136—C131120.5 (3)C335—C336—C331120.3 (3)
C135—C136—H136119.8C335—C336—H336119.8
C131—C136—H136119.8C331—C336—H336119.8
O138—C138—O139121.7 (3)O338—C338—O339122.7 (3)
O138—C138—C132122.6 (3)O338—C338—C332122.6 (3)
O139—C138—C132115.6 (3)O339—C338—C332114.6 (3)
C138—O139—C139115.4 (3)C338—O339—C339115.2 (3)
O139—C139—H19A109.5O339—C339—H39A109.5
O139—C139—H19B109.5O339—C339—H39B109.5
H19A—C139—H19B109.5H39A—C339—H39B109.5
O139—C139—H19C109.5O339—C339—H39C109.5
H19A—C139—H19C109.5H39A—C339—H39C109.5
H19B—C139—H19C109.5H39B—C339—H39C109.5
C16—C161—H16A109.5C36—C361—H36A109.5
C16—C161—H16B109.5C36—C361—H36B109.5
H16A—C161—H16B109.5H36A—C361—H36B109.5
C16—C161—H16C109.5C36—C361—H36C109.5
H16A—C161—H16C109.5H36A—C361—H36C109.5
H16B—C161—H16C109.5H36B—C361—H36C109.5
C22—N21—C28A116.7 (3)C42—N41—C48A117.0 (3)
N21—C22—C23127.9 (3)N41—C42—C43127.2 (3)
N21—C22—Cl22115.2 (3)N41—C42—Cl42115.6 (3)
C23—C22—Cl22116.9 (3)C43—C42—Cl42117.2 (2)
C24—C23—C22115.5 (3)C44—C43—C42115.9 (3)
C24—C23—C237123.2 (3)C44—C43—C437123.4 (3)
C22—C23—C237121.3 (3)C42—C43—C437120.7 (3)
C23—C24—C24A120.3 (3)C43—C44—C44A120.6 (3)
C23—C24—H24119.8C43—C44—H44119.7
C24A—C24—H24119.8C44A—C44—H44119.7
C25—C24A—C28A119.0 (3)C44—C44A—C45123.8 (3)
C25—C24A—C24123.4 (3)C44—C44A—C48A117.6 (3)
C28A—C24A—C24117.6 (3)C45—C44A—C48A118.5 (3)
C26—C25—C24A121.3 (4)C46—C45—C44A121.5 (4)
C26—C25—H25119.4C46—C45—H45119.3
C24A—C25—H25119.4C44A—C45—H45119.3
C25—C26—C27118.8 (4)C45—C46—C47119.1 (3)
C25—C26—C261121.1 (4)C45—C46—C461121.4 (4)
C27—C26—C261120.0 (4)C47—C46—C461119.5 (4)
C28—C27—C26122.0 (4)C48—C47—C46121.6 (3)
C28—C27—H27119.0C48—C47—H47119.2
C26—C27—H27119.0C46—C47—H47119.2
C27—C28—C28A119.8 (4)C47—C48—C48A120.1 (4)
C27—C28—H28120.1C47—C48—H48119.9
C28A—C28—H28120.1C48A—C48—H48119.9
N21—C28A—C24A122.0 (3)N41—C48A—C48119.2 (3)
N21—C28A—C28118.9 (3)N41—C48A—C44A121.7 (3)
C24A—C28A—C28119.1 (3)C48—C48A—C44A119.1 (3)
O231—C237—C23107.4 (3)O431—C437—C43106.8 (3)
O231—C237—H23A110.2O431—C437—H43A110.4
C23—C237—H23A110.2C43—C437—H43A110.4
O231—C237—H23B110.2O431—C437—H43B110.4
C23—C237—H23B110.2C43—C437—H43B110.4
H23A—C237—H23B108.5H43A—C437—H43B108.6
C231—O231—C237118.9 (3)C431—O431—C437118.5 (3)
O231—C231—C236122.7 (3)O431—C431—C436122.6 (3)
O231—C231—C232117.5 (3)O431—C431—C432118.1 (3)
C236—C231—C232119.8 (3)C436—C431—C432119.4 (3)
C233—C232—C231117.9 (3)C431—C432—C433118.2 (3)
C233—C232—C238115.7 (3)C431—C432—C438126.8 (3)
C231—C232—C238126.3 (3)C433—C432—C438115.0 (3)
C234—C233—C232122.2 (4)C434—C433—C432122.0 (3)
C234—C233—H233118.9C434—C433—H433119.0
C232—C233—H233118.9C432—C433—H433119.0
C233—C234—C235119.5 (3)C433—C434—C435119.2 (3)
C233—C234—H234120.3C433—C434—H434120.4
C235—C234—H234120.3C435—C434—H434120.4
C236—C235—C234120.2 (3)C436—C435—C434120.5 (4)
C236—C235—H235119.9C436—C435—H435119.8
C234—C235—H235119.9C434—C435—H435119.8
C235—C236—C231120.3 (3)C435—C436—C431120.7 (3)
C235—C236—H236119.8C435—C436—H436119.6
C231—C236—H236119.8C431—C436—H436119.6
O238—C238—O239123.2 (4)O438—C438—O439122.7 (4)
O238—C238—C232122.8 (3)O438—C438—C432122.8 (3)
O239—C238—C232114.0 (3)O439—C438—C432114.5 (3)
C238—O239—C239115.4 (3)C438—O439—C439114.6 (3)
O239—C239—H29A109.5O439—C439—H49A109.5
O239—C239—H29B109.5O439—C439—H49B109.5
H29A—C239—H29B109.5H49A—C439—H49B109.5
O239—C239—H29C109.5O439—C439—H49C109.5
H29A—C239—H29C109.5H49A—C439—H49C109.5
H29B—C239—H29C109.5H49B—C439—H49C109.5
C26—C261—H26A109.5C46—C461—H46A109.5
C26—C261—H26B109.5C46—C461—H46B109.5
H26A—C261—H26B109.5H46A—C461—H46B109.5
C26—C261—H26C109.5C46—C461—H46C109.5
H26A—C261—H26C109.5H46A—C461—H46C109.5
H26B—C261—H26C109.5H46B—C461—H46C109.5
C18A—N11—C12—C131.6 (6)C38A—N31—C32—C331.5 (5)
C18A—N11—C12—Cl12178.1 (2)C38A—N31—C32—Cl32177.6 (2)
N11—C12—C13—C141.1 (5)N31—C32—C33—C342.3 (5)
Cl12—C12—C13—C14178.6 (3)Cl32—C32—C33—C34176.7 (3)
N11—C12—C13—C137179.3 (3)N31—C32—C33—C337178.2 (3)
Cl12—C12—C13—C1371.1 (5)Cl32—C32—C33—C3372.8 (4)
C12—C13—C14—C14A0.9 (5)C32—C33—C34—C34A1.1 (5)
C137—C13—C14—C14A178.8 (3)C337—C33—C34—C34A179.4 (3)
C13—C14—C14A—C18A2.1 (5)C33—C34—C34A—C38A0.5 (5)
C13—C14—C14A—C15175.6 (3)C33—C34—C34A—C35179.8 (3)
C14—C14A—C15—C16176.9 (4)C34—C34A—C35—C36178.9 (3)
C18A—C14A—C15—C160.7 (5)C38A—C34A—C35—C360.8 (6)
C14A—C15—C16—C171.9 (6)C34A—C35—C36—C370.4 (6)
C14A—C15—C16—C161178.9 (3)C34A—C35—C36—C361179.9 (4)
C15—C16—C17—C181.5 (6)C35—C36—C37—C380.1 (6)
C161—C16—C17—C18179.3 (4)C361—C36—C37—C38179.8 (4)
C16—C17—C18—C18A0.1 (6)C36—C37—C38—C38A0.2 (6)
C12—N11—C18A—C18176.9 (3)C32—N31—C38A—C34A0.4 (5)
C12—N11—C18A—C14A0.2 (5)C32—N31—C38A—C38179.8 (3)
C17—C18—C18A—N11175.8 (3)C34—C34A—C38A—N311.4 (5)
C17—C18—C18A—C14A1.3 (5)C35—C34A—C38A—N31178.9 (3)
C14—C14A—C18A—N111.6 (5)C34—C34A—C38A—C38178.9 (3)
C15—C14A—C18A—N11176.2 (3)C35—C34A—C38A—C380.9 (5)
C14—C14A—C18A—C18178.6 (3)C37—C38—C38A—N31179.2 (3)
C15—C14A—C18A—C180.9 (5)C37—C38—C38A—C34A0.6 (6)
C14—C13—C137—O1310.9 (5)C34—C33—C337—O3312.1 (4)
C12—C13—C137—O131179.4 (3)C32—C33—C337—O331178.4 (3)
C13—C137—O131—C131177.2 (3)C33—C337—O331—C331178.9 (3)
C137—O131—C131—C1363.5 (5)C337—O331—C331—C3361.8 (5)
C137—O131—C131—C132176.5 (3)C337—O331—C331—C332177.7 (3)
O131—C131—C132—C133179.1 (3)O331—C331—C332—C333178.2 (3)
C136—C131—C132—C1330.9 (5)C336—C331—C332—C3332.3 (5)
O131—C131—C132—C1381.9 (5)O331—C331—C332—C3381.8 (5)
C136—C131—C132—C138178.1 (3)C336—C331—C332—C338177.7 (3)
C131—C132—C133—C1340.6 (6)C331—C332—C333—C3341.1 (6)
C138—C132—C133—C134178.6 (3)C338—C332—C333—C334178.9 (4)
C132—C133—C134—C1350.3 (6)C332—C333—C334—C3350.8 (6)
C133—C134—C135—C1360.9 (6)C333—C334—C335—C3361.5 (6)
C134—C135—C136—C1310.5 (6)C334—C335—C336—C3310.2 (6)
O131—C131—C136—C135179.6 (3)O331—C331—C336—C335178.9 (3)
C132—C131—C136—C1350.4 (6)C332—C331—C336—C3351.7 (5)
C133—C132—C138—O1381.6 (6)C333—C332—C338—O33811.3 (6)
C131—C132—C138—O138177.5 (4)C331—C332—C338—O338168.7 (4)
C133—C132—C138—O139178.1 (3)C333—C332—C338—O339167.4 (3)
C131—C132—C138—O1392.8 (6)C331—C332—C338—O33912.7 (5)
O138—C138—O139—C1390.5 (6)O338—C338—O339—C3390.3 (6)
C132—C138—O139—C139179.2 (3)C332—C338—O339—C339178.3 (4)
C28A—N21—C22—C231.2 (6)C48A—N41—C42—C430.9 (5)
C28A—N21—C22—Cl22177.2 (3)C48A—N41—C42—Cl42179.4 (2)
N21—C22—C23—C242.1 (5)N41—C42—C43—C440.0 (5)
Cl22—C22—C23—C24176.4 (3)Cl42—C42—C43—C44179.8 (3)
N21—C22—C23—C237177.4 (3)N41—C42—C43—C437179.7 (3)
Cl22—C22—C23—C2374.2 (4)Cl42—C42—C43—C4370.1 (4)
C22—C23—C24—C24A0.7 (5)C42—C43—C44—C44A1.3 (5)
C237—C23—C24—C24A178.7 (3)C437—C43—C44—C44A179.0 (3)
C23—C24—C24A—C25179.7 (3)C43—C44—C44A—C45177.5 (3)
C23—C24—C24A—C28A1.1 (5)C43—C44—C44A—C48A1.7 (5)
C28A—C24A—C25—C261.0 (5)C44—C44A—C45—C46180.0 (3)
C24—C24A—C25—C26177.5 (4)C48A—C44A—C45—C460.8 (5)
C24A—C25—C26—C271.1 (6)C44A—C45—C46—C470.1 (6)
C24A—C25—C26—C261178.6 (4)C44A—C45—C46—C461178.5 (3)
C25—C26—C27—C280.1 (6)C45—C46—C47—C480.1 (6)
C261—C26—C27—C28179.6 (4)C461—C46—C47—C48178.5 (4)
C26—C27—C28—C28A0.9 (6)C46—C47—C48—C48A0.8 (6)
C22—N21—C28A—C24A1.0 (5)C42—N41—C48A—C48179.6 (3)
C22—N21—C28A—C28179.7 (3)C42—N41—C48A—C44A0.4 (5)
C25—C24A—C28A—N21179.3 (3)C47—C48—C48A—N41178.4 (3)
C24—C24A—C28A—N212.1 (5)C47—C48—C48A—C44A1.6 (5)
C25—C24A—C28A—C280.0 (5)C44—C44A—C48A—N410.8 (5)
C24—C24A—C28A—C28178.6 (3)C45—C44A—C48A—N41178.4 (3)
C27—C28—C28A—N21179.7 (4)C44—C44A—C48A—C48179.2 (3)
C27—C28—C28A—C24A1.0 (6)C45—C44A—C48A—C481.6 (5)
C24—C23—C237—O2310.8 (5)C44—C43—C437—O4312.7 (5)
C22—C23—C237—O231179.8 (3)C42—C43—C437—O431177.6 (3)
C23—C237—O231—C231175.9 (3)C43—C437—O431—C431176.4 (3)
C237—O231—C231—C2365.8 (5)C437—O431—C431—C4364.8 (5)
C237—O231—C231—C232174.5 (3)C437—O431—C431—C432174.4 (3)
O231—C231—C232—C233179.3 (3)O431—C431—C432—C433178.1 (3)
C236—C231—C232—C2330.3 (5)C436—C431—C432—C4332.7 (5)
O231—C231—C232—C2381.2 (5)O431—C431—C432—C4381.1 (5)
C236—C231—C232—C238179.2 (3)C436—C431—C432—C438178.1 (3)
C231—C232—C233—C2340.3 (6)C431—C432—C433—C4341.9 (6)
C238—C232—C233—C234179.2 (3)C438—C432—C433—C434178.8 (4)
C232—C233—C234—C2350.5 (6)C432—C433—C434—C4350.6 (6)
C233—C234—C235—C2360.6 (6)C433—C434—C435—C4360.1 (7)
C234—C235—C236—C2310.5 (6)C434—C435—C436—C4310.9 (6)
O231—C231—C236—C235179.2 (3)O431—C431—C436—C435178.5 (4)
C232—C231—C236—C2350.4 (5)C432—C431—C436—C4352.3 (6)
C233—C232—C238—O23814.2 (5)C431—C432—C438—O438178.9 (4)
C231—C232—C238—O238166.4 (4)C433—C432—C438—O4381.9 (6)
C233—C232—C238—O239164.7 (3)C431—C432—C438—O4390.7 (5)
C231—C232—C238—O23914.8 (5)C433—C432—C438—O439178.5 (3)
O238—C238—O239—C2392.5 (6)O438—C438—O439—C4390.4 (6)
C232—C238—O239—C239176.4 (3)C432—C438—O439—C439180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N41i0.952.633.565 (5)169
C136—H136···O138ii0.952.503.261 (4)137
C236—H236···O438iii0.952.433.223 (4)141
C336—H336···O338iv0.952.463.238 (4)139
C436—H436···O238iii0.952.513.254 (4)136
C337—H33B···Cg10.992.643.441 (4)138
C437—H43A···Cg20.992.643.446 (4)138
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline top
Crystal data top
C20H14ClNOF(000) = 332
Mr = 319.77Dx = 1.411 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 5.3165 (3) ÅCell parameters from 2014 reflections
b = 10.5098 (4) Åθ = 3.3–72.6°
c = 13.6201 (7) ŵ = 2.27 mm1
β = 98.527 (5)°T = 173 K
V = 752.62 (6) Å3Needle, colourless
Z = 20.34 × 0.10 × 0.08 mm
Data collection top
Agilent Eos Gemini
diffractometer
1938 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.029
ω scansθmax = 72.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 66
Tmin = 0.551, Tmax = 0.834k = 812
4606 measured reflectionsl = 1616
2014 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
2014 reflectionsΔρmin = 0.19 e Å3
208 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
1 restraintAbsolute structure parameter: 0.007 (18)
Crystal data top
C20H14ClNOV = 752.62 (6) Å3
Mr = 319.77Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.3165 (3) ŵ = 2.27 mm1
b = 10.5098 (4) ÅT = 173 K
c = 13.6201 (7) Å0.34 × 0.10 × 0.08 mm
β = 98.527 (5)°
Data collection top
Agilent Eos Gemini
diffractometer
2014 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1938 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.834Rint = 0.029
4606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.19 e Å3
2014 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
208 parametersAbsolute structure parameter: 0.007 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1678 (4)0.8551 (2)0.36307 (18)0.0324 (5)
C20.3087 (5)0.8457 (3)0.29394 (19)0.0300 (5)
Cl20.25067 (12)0.95854 (7)0.19826 (5)0.04033 (19)
C30.5025 (5)0.7539 (2)0.28753 (19)0.0291 (5)
C40.5420 (5)0.6680 (3)0.3636 (2)0.0311 (5)
H40.67010.60490.36410.037*
C4A0.3943 (5)0.6721 (3)0.4417 (2)0.0301 (5)
C50.4220 (6)0.5842 (3)0.5210 (2)0.0373 (6)
H50.54940.52020.52440.045*
C60.2686 (6)0.5897 (3)0.5927 (2)0.0392 (6)
H60.28630.52840.64460.047*
C70.0835 (5)0.6863 (3)0.5899 (2)0.0394 (6)
H70.02160.69030.64040.047*
C80.0539 (5)0.7742 (3)0.5151 (2)0.0375 (6)
H80.06980.83960.51450.045*
C8A0.2063 (5)0.7682 (2)0.4390 (2)0.0301 (5)
C37A0.6440 (5)0.7514 (3)0.20041 (19)0.0309 (5)
H37A0.52380.73950.13830.037*
H37B0.73510.83290.19580.037*
O310.8208 (4)0.64868 (19)0.21392 (13)0.0335 (4)
C310.9563 (5)0.6249 (3)0.13811 (19)0.0300 (5)
C320.9293 (5)0.6908 (3)0.0506 (2)0.0338 (6)
H320.80810.75760.03910.041*
C331.0815 (5)0.6599 (3)0.0230 (2)0.0359 (6)
H331.05790.70470.08420.043*
C341.2606 (5)0.5671 (3)0.0073 (2)0.0372 (6)
H341.36500.54960.05660.045*
C34A1.2927 (5)0.4962 (2)0.0824 (2)0.0323 (6)
C351.4795 (5)0.3997 (3)0.1028 (2)0.0375 (6)
H351.58730.38120.05500.045*
C361.5078 (5)0.3334 (3)0.1892 (2)0.0417 (7)
H361.63360.26870.20070.050*
C371.3522 (5)0.3594 (3)0.2622 (2)0.0386 (6)
H371.37390.31270.32260.046*
C381.1692 (5)0.4525 (3)0.24564 (19)0.0329 (5)
H381.06280.46900.29440.040*
C38A1.1379 (5)0.5238 (2)0.1565 (2)0.0288 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0306 (11)0.0295 (11)0.0363 (11)0.0035 (9)0.0022 (9)0.0015 (9)
C20.0298 (12)0.0270 (12)0.0313 (13)0.0002 (10)0.0016 (10)0.0006 (10)
Cl20.0429 (3)0.0359 (3)0.0417 (3)0.0079 (3)0.0048 (2)0.0091 (3)
C30.0259 (12)0.0279 (12)0.0319 (12)0.0018 (10)0.0011 (10)0.0042 (10)
C40.0276 (12)0.0281 (12)0.0365 (13)0.0036 (10)0.0016 (10)0.0036 (11)
C4A0.0268 (11)0.0267 (12)0.0355 (13)0.0020 (10)0.0007 (10)0.0045 (10)
C50.0376 (13)0.0330 (14)0.0403 (14)0.0040 (11)0.0029 (11)0.0025 (11)
C60.0407 (15)0.0389 (16)0.0369 (14)0.0042 (13)0.0023 (12)0.0053 (12)
C70.0346 (14)0.0493 (17)0.0356 (14)0.0025 (13)0.0090 (11)0.0027 (12)
C80.0321 (14)0.0393 (15)0.0410 (15)0.0034 (12)0.0050 (11)0.0038 (12)
C8A0.0265 (11)0.0286 (12)0.0339 (13)0.0017 (10)0.0006 (10)0.0046 (10)
C37A0.0287 (12)0.0285 (12)0.0348 (13)0.0013 (10)0.0024 (10)0.0010 (10)
O310.0363 (9)0.0332 (10)0.0320 (9)0.0074 (8)0.0078 (7)0.0022 (7)
C310.0281 (12)0.0308 (12)0.0313 (12)0.0043 (10)0.0053 (10)0.0024 (10)
C320.0327 (13)0.0349 (14)0.0331 (13)0.0000 (11)0.0027 (10)0.0005 (11)
C330.0386 (14)0.0397 (15)0.0287 (13)0.0083 (12)0.0031 (11)0.0006 (11)
C340.0365 (14)0.0416 (15)0.0348 (14)0.0083 (12)0.0095 (11)0.0087 (12)
C34A0.0290 (12)0.0316 (14)0.0355 (13)0.0061 (10)0.0024 (10)0.0088 (10)
C350.0298 (13)0.0373 (14)0.0466 (15)0.0011 (11)0.0095 (11)0.0108 (12)
C360.0313 (14)0.0358 (15)0.0571 (18)0.0044 (12)0.0033 (13)0.0027 (13)
C370.0358 (14)0.0366 (14)0.0423 (15)0.0008 (12)0.0023 (12)0.0058 (13)
C380.0301 (11)0.0324 (13)0.0367 (12)0.0015 (12)0.0063 (10)0.0015 (13)
C38A0.0259 (11)0.0270 (12)0.0327 (12)0.0043 (9)0.0013 (10)0.0039 (10)
Geometric parameters (Å, º) top
N1—C21.291 (3)C37A—H37B0.9900
N1—C8A1.372 (3)O31—C311.367 (3)
C2—C31.424 (4)C31—C321.368 (4)
C2—Cl21.755 (3)C31—C38A1.432 (4)
C3—C41.367 (4)C32—C331.416 (4)
C3—C37A1.497 (3)C32—H320.9500
C4—C4A1.413 (3)C33—C341.357 (5)
C4—H40.9500C33—H330.9500
C4A—C51.413 (4)C34—C34A1.420 (4)
C4A—C8A1.418 (4)C34—H340.9500
C5—C61.364 (4)C34A—C351.417 (4)
C5—H50.9500C34A—C38A1.423 (4)
C6—C71.410 (4)C35—C361.357 (4)
C6—H60.9500C35—H350.9500
C7—C81.366 (4)C36—C371.411 (4)
C7—H70.9500C36—H360.9500
C8—C8A1.409 (4)C37—C381.375 (4)
C8—H80.9500C37—H370.9500
C37A—O311.426 (3)C38—C38A1.416 (4)
C37A—H37A0.9900C38—H380.9500
C2—N1—C8A117.4 (2)H37A—C37A—H37B108.4
N1—C2—C3126.9 (2)C31—O31—C37A116.9 (2)
N1—C2—Cl2115.61 (19)O31—C31—C32124.5 (2)
C3—C2—Cl2117.5 (2)O31—C31—C38A114.9 (2)
C4—C3—C2115.6 (2)C32—C31—C38A120.6 (2)
C4—C3—C37A123.4 (2)C31—C32—C33120.2 (3)
C2—C3—C37A120.9 (2)C31—C32—H32119.9
C3—C4—C4A120.7 (2)C33—C32—H32119.9
C3—C4—H4119.7C34—C33—C32121.0 (3)
C4A—C4—H4119.7C34—C33—H33119.5
C4—C4A—C5123.3 (2)C32—C33—H33119.5
C4—C4A—C8A118.1 (2)C33—C34—C34A120.3 (2)
C5—C4A—C8A118.6 (2)C33—C34—H34119.9
C6—C5—C4A120.9 (3)C34A—C34—H34119.9
C6—C5—H5119.5C35—C34A—C34122.4 (3)
C4A—C5—H5119.5C35—C34A—C38A118.0 (3)
C5—C6—C7120.0 (3)C34—C34A—C38A119.6 (3)
C5—C6—H6120.0C36—C35—C34A121.5 (3)
C7—C6—H6120.0C36—C35—H35119.3
C8—C7—C6120.7 (3)C34A—C35—H35119.3
C8—C7—H7119.7C35—C36—C37120.7 (3)
C6—C7—H7119.7C35—C36—H36119.7
C7—C8—C8A120.2 (3)C37—C36—H36119.7
C7—C8—H8119.9C38—C37—C36119.8 (3)
C8A—C8—H8119.9C38—C37—H37120.1
N1—C8A—C8119.2 (2)C36—C37—H37120.1
N1—C8A—C4A121.3 (2)C37—C38—C38A120.5 (2)
C8—C8A—C4A119.5 (2)C37—C38—H38119.7
O31—C37A—C3108.1 (2)C38A—C38—H38119.7
O31—C37A—H37A110.1C38—C38A—C34A119.5 (2)
C3—C37A—H37A110.1C38—C38A—C31122.2 (2)
O31—C37A—H37B110.1C34A—C38A—C31118.2 (2)
C3—C37A—H37B110.1
C8A—N1—C2—C30.0 (4)C3—C37A—O31—C31175.4 (2)
C8A—N1—C2—Cl2179.65 (19)C37A—O31—C31—C321.4 (4)
N1—C2—C3—C40.5 (4)C37A—O31—C31—C38A177.9 (2)
Cl2—C2—C3—C4179.83 (19)O31—C31—C32—C33179.2 (3)
N1—C2—C3—C37A177.5 (2)C38A—C31—C32—C330.1 (4)
Cl2—C2—C3—C37A2.1 (3)C31—C32—C33—C341.7 (4)
C2—C3—C4—C4A0.7 (4)C32—C33—C34—C34A2.1 (4)
C37A—C3—C4—C4A177.3 (2)C33—C34—C34A—C35179.0 (2)
C3—C4—C4A—C5178.4 (3)C33—C34—C34A—C38A0.7 (4)
C3—C4—C4A—C8A0.5 (4)C34—C34A—C35—C36179.7 (3)
C4—C4A—C5—C6177.7 (3)C38A—C34A—C35—C361.4 (4)
C8A—C4A—C5—C61.2 (4)C34A—C35—C36—C370.6 (4)
C4A—C5—C6—C71.7 (4)C35—C36—C37—C380.3 (4)
C5—C6—C7—C80.7 (5)C36—C37—C38—C38A0.9 (4)
C6—C7—C8—C8A0.9 (4)C37—C38—C38A—C34A1.8 (4)
C2—N1—C8A—C8179.1 (2)C37—C38—C38A—C31177.5 (2)
C2—N1—C8A—C4A0.3 (4)C35—C34A—C38A—C382.0 (4)
C7—C8—C8A—N1178.0 (3)C34—C34A—C38A—C38179.6 (2)
C7—C8—C8A—C4A1.4 (4)C35—C34A—C38A—C31177.3 (2)
C4—C4A—C8A—N10.1 (4)C34—C34A—C38A—C311.0 (3)
C5—C4A—C8A—N1179.0 (2)O31—C31—C38A—C381.4 (3)
C4—C4A—C8A—C8179.3 (2)C32—C31—C38A—C38179.2 (2)
C5—C4A—C8A—C80.4 (4)O31—C31—C38A—C34A177.9 (2)
C4—C3—C37A—O311.1 (3)C32—C31—C38A—C34A1.4 (3)
C2—C3—C37A—O31179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C37A—H37A···Cg3i0.992.743.552 (3)139
Symmetry code: (i) x1, y, z.
(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol top
Crystal data top
C18H17ClN2O3F(000) = 720
Mr = 344.79Dx = 1.433 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.7866 (3) ÅCell parameters from 3112 reflections
b = 15.3336 (4) Åθ = 5.1–72.5°
c = 10.6570 (3) ŵ = 2.29 mm1
β = 92.381 (3)°T = 173 K
V = 1597.85 (8) Å3Block, colourless
Z = 40.42 × 0.38 × 0.32 mm
Data collection top
Agilent Eos Gemini
diffractometer
2764 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.043
ω scansθmax = 72.5°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 119
Tmin = 0.375, Tmax = 0.481k = 1718
9423 measured reflectionsl = 1312
3112 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.2783P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.32 e Å3
3112 reflectionsΔρmin = 0.25 e Å3
219 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0022 (4)
Crystal data top
C18H17ClN2O3V = 1597.85 (8) Å3
Mr = 344.79Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.7866 (3) ŵ = 2.29 mm1
b = 15.3336 (4) ÅT = 173 K
c = 10.6570 (3) Å0.42 × 0.38 × 0.32 mm
β = 92.381 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
3112 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2764 reflections with I > 2σ(I)
Tmin = 0.375, Tmax = 0.481Rint = 0.043
9423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
3112 reflectionsΔρmin = 0.25 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14131 (14)0.33261 (9)0.62337 (13)0.0316 (3)
C20.16152 (16)0.41138 (10)0.58407 (15)0.0285 (3)
Cl20.10286 (4)0.49427 (3)0.68208 (4)0.03973 (18)
C30.22557 (16)0.43634 (10)0.47234 (16)0.0289 (3)
C40.27768 (17)0.36931 (11)0.40445 (15)0.0317 (4)
H40.32410.38180.33000.038*
C4A0.26375 (17)0.28188 (11)0.44305 (16)0.0310 (4)
C50.3168 (2)0.21043 (12)0.37582 (18)0.0389 (4)
H50.36770.22030.30310.047*
C60.2941 (2)0.12723 (12)0.41650 (19)0.0429 (5)
H60.33050.07950.37200.052*
C70.2183 (2)0.11136 (12)0.52249 (19)0.0463 (5)
H70.20220.05300.54790.056*
C80.1668 (2)0.17907 (12)0.59013 (17)0.0408 (4)
H80.11550.16770.66210.049*
C8A0.19062 (18)0.26579 (10)0.55190 (16)0.0313 (4)
C370.23683 (17)0.52862 (11)0.42748 (17)0.0329 (4)
H37A0.23360.53020.33450.039*
H37B0.15960.56360.45730.039*
O310.36442 (11)0.56428 (7)0.47603 (10)0.0276 (3)
N310.51999 (13)0.70720 (9)0.25268 (13)0.0297 (3)
C320.47930 (15)0.63485 (10)0.30994 (15)0.0259 (3)
C330.39991 (15)0.64051 (10)0.41634 (14)0.0236 (3)
C340.36223 (15)0.72095 (10)0.46347 (14)0.0258 (3)
C350.40670 (16)0.79604 (10)0.40161 (15)0.0284 (3)
C360.48433 (17)0.78469 (10)0.29806 (16)0.0311 (4)
H360.51450.83540.25610.037*
C3210.52007 (17)0.54887 (11)0.25592 (17)0.0329 (4)
H32A0.59870.55720.20320.039*
H32B0.44340.52490.20490.039*
H32C0.54470.50840.32430.039*
C3410.27452 (17)0.72795 (11)0.57607 (15)0.0316 (4)
H41A0.25880.66940.61190.038*
H41B0.32040.76470.64160.038*
O3410.14772 (13)0.76632 (10)0.53514 (12)0.0437 (3)
H3410.10270.77910.60560.066*
C3510.36913 (19)0.88673 (11)0.44319 (18)0.0371 (4)
H51A0.38120.89060.53570.045*
H51B0.43210.92930.40630.045*
O3510.23190 (14)0.90946 (8)0.40706 (13)0.0434 (3)
H3510.18380.86420.43820.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0401 (7)0.0246 (7)0.0303 (7)0.0041 (5)0.0016 (6)0.0012 (5)
C20.0320 (7)0.0220 (7)0.0314 (8)0.0007 (6)0.0000 (6)0.0026 (6)
Cl20.0436 (3)0.0287 (2)0.0476 (3)0.00182 (15)0.0100 (2)0.00770 (16)
C30.0312 (8)0.0235 (8)0.0318 (8)0.0028 (6)0.0022 (6)0.0030 (6)
C40.0380 (8)0.0295 (9)0.0274 (8)0.0038 (6)0.0000 (6)0.0017 (6)
C4A0.0377 (8)0.0258 (8)0.0290 (8)0.0007 (6)0.0044 (7)0.0014 (6)
C50.0460 (10)0.0349 (9)0.0353 (9)0.0023 (7)0.0043 (8)0.0076 (7)
C60.0575 (11)0.0270 (9)0.0430 (10)0.0059 (8)0.0132 (9)0.0105 (7)
C70.0708 (13)0.0214 (8)0.0453 (11)0.0039 (8)0.0149 (10)0.0006 (7)
C80.0602 (11)0.0266 (9)0.0350 (9)0.0081 (8)0.0051 (8)0.0024 (7)
C8A0.0413 (9)0.0233 (8)0.0285 (8)0.0029 (6)0.0068 (7)0.0009 (6)
C370.0346 (8)0.0255 (8)0.0381 (9)0.0030 (6)0.0039 (7)0.0081 (7)
O310.0319 (6)0.0216 (5)0.0292 (6)0.0012 (4)0.0000 (4)0.0060 (4)
N310.0299 (7)0.0274 (7)0.0324 (7)0.0012 (5)0.0082 (5)0.0014 (5)
C320.0255 (7)0.0240 (8)0.0280 (8)0.0017 (6)0.0018 (6)0.0011 (6)
C330.0254 (7)0.0204 (7)0.0251 (7)0.0004 (5)0.0005 (6)0.0025 (5)
C340.0284 (7)0.0250 (8)0.0240 (7)0.0007 (5)0.0012 (6)0.0002 (6)
C350.0333 (8)0.0201 (7)0.0318 (8)0.0005 (6)0.0025 (6)0.0011 (6)
C360.0331 (8)0.0256 (8)0.0351 (9)0.0033 (6)0.0064 (6)0.0038 (6)
C3210.0363 (8)0.0274 (8)0.0354 (9)0.0056 (6)0.0058 (7)0.0048 (7)
C3410.0407 (9)0.0304 (8)0.0244 (8)0.0032 (6)0.0084 (6)0.0011 (6)
O3410.0404 (7)0.0575 (8)0.0343 (7)0.0124 (6)0.0145 (5)0.0018 (6)
C3510.0481 (10)0.0220 (8)0.0415 (10)0.0018 (7)0.0067 (8)0.0035 (7)
O3510.0531 (8)0.0307 (7)0.0467 (8)0.0135 (6)0.0046 (6)0.0013 (5)
Geometric parameters (Å, º) top
N1—C21.296 (2)N31—C361.335 (2)
N1—C8A1.376 (2)N31—C321.335 (2)
C2—C31.421 (2)C32—C331.404 (2)
C2—Cl21.7566 (16)C32—C3211.499 (2)
C3—C41.368 (2)C33—C341.388 (2)
C3—C371.499 (2)C34—C351.405 (2)
C4—C4A1.411 (2)C34—C3411.508 (2)
C4—H40.9500C35—C361.377 (2)
C4A—C8A1.410 (2)C35—C3511.510 (2)
C4A—C51.419 (2)C36—H360.9500
C5—C61.368 (3)C321—H32A0.9800
C5—H50.9500C321—H32B0.9800
C6—C71.398 (3)C321—H32C0.9800
C6—H60.9500C341—O3411.425 (2)
C7—C81.372 (3)C341—H41A0.9900
C7—H70.9500C341—H41B0.9900
C8—C8A1.413 (2)O341—H3410.9077
C8—H80.9500C351—O3511.425 (2)
C37—O311.4394 (19)C351—H51A0.9900
C37—H37A0.9900C351—H51B0.9900
C37—H37B0.9900O351—H3510.9093
O31—C331.3819 (18)
C2—N1—C8A116.95 (14)N31—C32—C33120.23 (14)
N1—C2—C3126.88 (15)N31—C32—C321117.78 (14)
N1—C2—Cl2115.09 (12)C33—C32—C321121.98 (14)
C3—C2—Cl2118.02 (12)O31—C33—C34120.64 (14)
C4—C3—C2115.34 (14)O31—C33—C32118.54 (13)
C4—C3—C37120.45 (15)C34—C33—C32120.78 (13)
C2—C3—C37124.21 (15)C33—C34—C35117.81 (14)
C3—C4—C4A121.15 (15)C33—C34—C341121.33 (14)
C3—C4—H4119.4C35—C34—C341120.85 (14)
C4A—C4—H4119.4C36—C35—C34117.68 (14)
C8A—C4A—C4117.69 (15)C36—C35—C351120.08 (15)
C8A—C4A—C5119.29 (15)C34—C35—C351122.22 (15)
C4—C4A—C5123.00 (16)N31—C36—C35124.36 (14)
C6—C5—C4A119.48 (18)N31—C36—H36117.8
C6—C5—H5120.3C35—C36—H36117.8
C4A—C5—H5120.3C32—C321—H32A109.5
C5—C6—C7121.11 (17)C32—C321—H32B109.5
C5—C6—H6119.4H32A—C321—H32B109.5
C7—C6—H6119.4C32—C321—H32C109.5
C8—C7—C6120.77 (17)H32A—C321—H32C109.5
C8—C7—H7119.6H32B—C321—H32C109.5
C6—C7—H7119.6O341—C341—C34107.64 (13)
C7—C8—C8A119.49 (18)O341—C341—H41A110.2
C7—C8—H8120.3C34—C341—H41A110.2
C8A—C8—H8120.3O341—C341—H41B110.2
N1—C8A—C4A121.79 (15)C34—C341—H41B110.2
N1—C8A—C8118.38 (16)H41A—C341—H41B108.5
C4A—C8A—C8119.83 (16)C341—O341—H341106.4
O31—C37—C3108.55 (12)O351—C351—C35112.61 (14)
O31—C37—H37A110.0O351—C351—H51A109.1
C3—C37—H37A110.0C35—C351—H51A109.1
O31—C37—H37B110.0O351—C351—H51B109.1
C3—C37—H37B110.0C35—C351—H51B109.1
H37A—C37—H37B108.4H51A—C351—H51B107.8
C33—O31—C37112.75 (11)C351—O351—H351102.2
C36—N31—C32119.13 (14)
C8A—N1—C2—C32.2 (2)C3—C37—O31—C33165.21 (13)
C8A—N1—C2—Cl2177.48 (11)C36—N31—C32—C330.1 (2)
N1—C2—C3—C44.1 (2)C36—N31—C32—C321179.48 (14)
Cl2—C2—C3—C4175.57 (12)C37—O31—C33—C3492.25 (17)
N1—C2—C3—C37175.40 (15)C37—O31—C33—C3290.17 (17)
Cl2—C2—C3—C374.9 (2)N31—C32—C33—O31177.42 (13)
C2—C3—C4—C4A1.8 (2)C321—C32—C33—O313.2 (2)
C37—C3—C4—C4A177.78 (14)N31—C32—C33—C340.2 (2)
C3—C4—C4A—C8A1.9 (2)C321—C32—C33—C34179.21 (14)
C3—C4—C4A—C5179.68 (15)O31—C33—C34—C35177.22 (13)
C8A—C4A—C5—C61.1 (3)C32—C33—C34—C350.3 (2)
C4—C4A—C5—C6177.29 (16)O31—C33—C34—C3413.8 (2)
C4A—C5—C6—C70.7 (3)C32—C33—C34—C341178.71 (14)
C5—C6—C7—C81.3 (3)C33—C34—C35—C360.2 (2)
C6—C7—C8—C8A0.1 (3)C341—C34—C35—C36178.80 (14)
C2—N1—C8A—C4A2.0 (2)C33—C34—C35—C351178.66 (14)
C2—N1—C8A—C8178.19 (15)C341—C34—C35—C3510.4 (2)
C4—C4A—C8A—N14.0 (2)C32—N31—C36—C350.2 (3)
C5—C4A—C8A—N1177.53 (15)C34—C35—C36—N310.0 (3)
C4—C4A—C8A—C8176.21 (15)C351—C35—C36—N31178.46 (15)
C5—C4A—C8A—C82.3 (2)C33—C34—C341—O341114.67 (16)
C7—C8—C8A—N1178.14 (16)C35—C34—C341—O34164.32 (19)
C7—C8—C8A—C4A1.7 (3)C36—C35—C351—O351102.07 (19)
C4—C3—C37—O3188.42 (18)C34—C35—C351—O35176.3 (2)
C2—C3—C37—O3192.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O341—H341···N31i0.911.812.7098 (19)174
O351—H351···O3410.911.862.7299 (19)158
C4—H4···O351ii0.952.603.374 (2)139
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Selected torsional and dihedral angles (°) for compounds (I)–(III) top
`Dihedral 1' represents the dihedral angle between the mean planes of the quinoline and phenyl rings. `Dihedral 2' represents the dihedral angle between the mean planes of the phenyl ring and the carboxyl unit.
Parameter(I)(II)(III)
xnilnil1234
Cx2—Cx3—Cx37—Ox31
-174.63 (17)-176.93 (18)-179.4 (3)179.8 (3)178.4 (3)-177.6 (3)
Cx3—Cx37—Ox31—Cx31
-175.71 (16)-179.57 (17)177.2 (3)-175.9 (3)-178.9 (3)176.4 (3)
Cx37—Ox31—Cx31—Cx32
173.73 (17)-172.62 (18)-176.8 (3)174.5 (3)177.7 (3)-174.4 (3)
Cx31—Cx32—Cx38—Ox38
4.1 (3)159.5 (3)-177.5 (4)166.4 (4)-168.7 (4)178.9 (4)
Cx31—Cx32—Cx38—Ox39
-177.01 (17)-20.7 (3)2.8 (6)-14.8 (5)12.7 (5)-0.7 (5)
Cx32—Cx38—Ox39—Cx39
-175.77 (17)-176.4 (2)179.2 (3)-176.4 (3)178.3 (4)180.0 (3)
Dihedral 10.66 (6)10.72 (8)5.44 (2)4.18 (2)3.825 (13)5.55 (3)
Dihedral 24.27 (8)19.25 (15)2.52 (3)14.66 (7)12.29 (8)1.78 (6)
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (II)–(V). top
Cg1, Cg2 and Cg3 are the centroids of rings C231–C236, C331–C336 and C31–C34,C34A,C38A, respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(II)C36-H36···O38i0.952.533.277 (3)136
(III)C28-H28···N41ii0.952.633.565 (5)169
C136-H136···O138iii0.952.503.261 (4)137
C236-H236···O438iv0.952.433.223 (4)141
C336-H336···O338v0.952.463.238 (4)139
C436-H436···O238iv0.952.513.254 (4)136
C337-H33B···Cg10.992.643.441 (4)138
C437-H43A···Cg20.992.643.446 (4)138
(IV)C37-H37A···Cg3vi0.992.743.552 (3)139
(V)O341-H341···N31vii0.911.812.7098 (19)174
O351-H351···O3410.911.862.7209 (19)158
C4-H4···O351viii0.952.603.374 (2)139
Symmetry codes: (i) x + 1/2, y, -z + 1/2; (ii) x - 1/2, -y + 3/2, -z + 1; (iii) -x, y - 1/2, -z + 1/2; (iv) -x + 1, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) x - 1, y, z; (vii) x - 1/2, -y + 3/2, z + 1/2; (viii) -x + 1/2, y - 1/2, -z + 1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC18H13BrClNO3C19H15BrClNO3C19H16ClNO3
Mr406.64420.67341.78
Crystal system, space groupMonoclinic, P21/nOrthorhombic, PbcaOrthorhombic, P212121
Temperature (K)173173173
a, b, c (Å)7.3185 (4), 18.4177 (7), 11.7870 (5)15.1920 (3), 11.98641 (19), 19.0307 (3)13.5860 (3), 15.5857 (2), 30.9389 (5)
α, β, γ (°)90, 93.609 (4), 9090, 90, 9090, 90, 90
V3)1585.62 (13)3465.44 (10)6551.2 (2)
Z4816
Radiation typeMo KαCu KαCu Kα
µ (mm1)2.784.812.21
Crystal size (mm)0.44 × 0.23 × 0.120.24 × 0.16 × 0.080.48 × 0.26 × 0.14
Data collection
DiffractometerAgilent Eos Gemini
diffractometer
Agilent Eos Gemini
diffractometer
Agilent Eos Gemini
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.335, 0.7170.399, 0.6800.472, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
17735, 4612, 3682 21861, 3421, 3062 45901, 12840, 11257
Rint0.0360.0550.048
(sin θ/λ)max1)0.7030.6180.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.06 0.034, 0.093, 1.06 0.046, 0.129, 1.04
No. of reflections4612342112840
No. of parameters218229874
No. of restraints000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.410.52, 0.490.42, 0.31
Absolute structure??Refined as an inversion twin.
Absolute structure parameter??0.152 (16)


(IV)(V)
Crystal data
Chemical formulaC20H14ClNOC18H17ClN2O3
Mr319.77344.79
Crystal system, space groupMonoclinic, P21Monoclinic, P21/n
Temperature (K)173173
a, b, c (Å)5.3165 (3), 10.5098 (4), 13.6201 (7)9.7866 (3), 15.3336 (4), 10.6570 (3)
α, β, γ (°)90, 98.527 (5), 9090, 92.381 (3), 90
V3)752.62 (6)1597.85 (8)
Z24
Radiation typeCu KαCu Kα
µ (mm1)2.272.29
Crystal size (mm)0.34 × 0.10 × 0.080.42 × 0.38 × 0.32
Data collection
DiffractometerAgilent Eos Gemini
diffractometer
Agilent Eos Gemini
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.551, 0.8340.375, 0.481
No. of measured, independent and
observed [I > 2σ(I)] reflections
4606, 2014, 1938 9423, 3112, 2764
Rint0.0290.043
(sin θ/λ)max1)0.6190.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.08 0.045, 0.127, 1.05
No. of reflections20143112
No. of parameters208219
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.190.32, 0.25
Absolute structureClassical Flack method preferred over Parsons because s.u. lower.?
Absolute structure parameter0.007 (18)?

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

HBVS and THS thank the authorities of Jain University for their support and encouragement. HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, (i), 211–276.  Google Scholar
First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAnuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013a). Acta Cryst. E69, o779.  CSD CrossRef IUCr Journals Google Scholar
First citationAnuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013b). Acta Cryst. E69, o990.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationChandrika, N., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S. & Glidewell, C. (2015). Acta Cryst. E71, o364–o365.  CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Soc. (Bangalore), 122, 677–685.  CAS Google Scholar
First citationJasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Kumar, S. (2010). Acta Cryst. E66, o2548–o2549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12.  Web of Science CrossRef PubMed Google Scholar
First citationNaylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060.  CrossRef CAS Web of Science Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabassum, S., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S., Sujan Ganapathy, P. S., Sowmya, H. V., More, S. S., Nagendrappa, G., Kaur, M. & Jose, G. (2014). J. Mol. Struct. 1070, 10–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationTannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47.  CrossRef CAS Web of Science Google Scholar
First citationThallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119.  CrossRef Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 609-617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds