research communications
Crystal structures of five (2-chloroquinolin-3-yl)methyl π–π stacking
supramolecular assembly in one and two dimensions mediated by hydrogen bonding andaPG Department of Chemistry, Jain University, 52 Bellary Road, Hebbal, Bangalore 560 024, India, bDepartment of Chemistry, UBDT College of Engineering (a Constituent College of VTU, Belagavi), Davanagere 577 004, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jpjasinski@hotmail.com
In the molecules of the title compounds, methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in P212121, and 2-chloro-3-[(naphthalen-1-yloxy)methyl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methylpyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The molecules of (I) are linked by two independent π–π stacking interactions to form chains, but there are no hydrogen bonds present in the structure. In (II), the molecules are weakly linked into chains by a single type of π–π stacking interaction. In (III), three of the four independent molecules are linked by π–π stacking interactions but the other molecule does not participate in such interactions. Weak C—H⋯O hydrogen bonds link the molecules into three types of chains, two of which contain just one type of independent molecule while the third type of chain contains two types of molecule. The molecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but π–π stacking interactions are absent. In (V), there is an intramolecular O—H⋯O hydrogen bond, and molecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and π–π stacking interactions.
1. Chemical context
The quinoline nucleus occurs in a number of natural compounds, such as the Cinchona et al., 2013). The synthesis, reactions and biological applications of 2-chloroquinoline-3-carbaldehydes have been reviewed (Abdel-Wahab et al., 2012), and the structure of a simple reduction product (2-chloroquinolin-3-yl)methanol, derived from the parent 2-chloroquinoline-3-carbaldehyde, has been reported (Hathwar et al., 2010). The structures of two related [(2-chloroquinolin-3-yl)methyl acetate and (2-chloro-6-methylquinolin-3-yl)methyl acetate], have also been reported recently along with a study of their radical-scavenging and antimicrobial activities (Tabassum et al., 2014). Here we report the structures of five related namely methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate, (I) (Fig. 1), methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, (II) (Fig. 2), methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, (III) (Figs. 3–6), 2-chloro-3-[(naphthalen-1-yloxy)methyl]quinoline (IV) (Fig. 7) and {5-[(2-chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methylpyridin-3-yl}methanol, (V) (Fig. 8). Compounds (I)–(V) are all of general type QCH2OR, where Q represents a 2-chloroquinolin-3-yl unit, which carries a 6-methyl substituent in compounds (II) and (III), although not in compounds (I), (IV) and (V), and where R represents a methoxycarbonylphenyl unit in compounds (I)–(III), a 1-naphthyl unit in compound (IV), and a multiply-substituted pyridyl unit in compound (V). Compound (I)–(V) were all prepared by reaction of the corresponding chloromethyl compounds QCH2Cl with the appropriate hydroxy compound ROH under basic conditions, with yields ranging from 86 to 97%.
and many of these are pharmacologically active substances displaying a broad range of biological activity. Quinoline itself has been found to possess antimalarial, anti-bacterial, antifungal, anthelminthic, cardiotonic, anticonvulsant, anti-inflammatory and analgesic activity (Marella2. Structural commentary
As noted above, the molecular constitutions of compounds (I)–(III) are very similar: those of compounds (I) and (II) differ only in the presence of a 6-methyl substituent in (II) which is absent from (I), while those of compounds (II) and (III) differ only in the presence of a bromo substituent in (II) which is absent from (III). Despite these close similarities, compounds (I)–(III) all crystallize in different space groups, P21/n and Pbca, respectively, for (I) and (II), both with Z′ = 1, and P212121 with Z′ = 4 for (III). A search for possible additional in compound (III) found none: comparison of the atomic coordinates for the Cl atoms within the selected shows that while the x-coordinates of atoms Cl12 and Cl32 differ by ca 0.5 and their z-coordinates are almost identical, the y-coordinates of these two atoms differ by ca 0.13; similarly the x-coordinates of atoms Cl22 and Cl42 again differ by ca 0.5 but now the y-coordinates are almost identical, while the z-coordinates differ by ca 0.18. Hence it is not possible to identify even here. For compound (III), it will be convenient to refer to the molecules containing atoms N11—N14 as molecules of types 1–4, respectively. Compounds (IV) and (V) both crystallize with Z′ = 1, in space groups P21 and P21/c, respectively.
In compounds (I)–(III), the non-H atoms are almost co-planar, as shown by the relevant torsional and dihedral angles (Table 1). It is interesting to note that the orientation of the ester function in compound (I) differs from that in compounds (II) and (III) (Table 1 and Figs. 1–6): this difference may arise, at least in part, from the participation of the carbonyl O atom of the ester unit in short C—H⋯O interactions in all of the molecules of compounds (II) and (III) but not in compound (I) (Table 2). The non-H atoms in compound (IV) are also nearly coplanar, with a dihedral angle between the mean planes of the quinoline and naphthalene units of 7.39 (12)°. By contrast, while the quinoline and pyridine units in compound (V) are nearly parallel (Fig. 8), with a dihedral angle between their mean planes of only 3.10 (9)°, they are by no means coplanar, as indicated by the values of the torsional angles C2—C3—C37—O31, 92.08 (18), C3—C37—O31—C33, 165.21 (13) and C37—O31—C33—C32, −90.17 (17)°. This again may perhaps be ascribed in part to the strong hydrogen bonds present in the of (V) (Table 2).
|
None of the molecules of compounds (I)–(V) exhibits any internal symmetry and hence all are conformationally chiral. For compounds (I), (II) and (V), the centrosymmetric space groups accommodate equal numbers of the two conformational enantiomers, but only one such enantiomer is present in each crystal of compound (IV): the of the enantiomer present in the crystal selected for data collection was established by means of the Flack x parameter (Flack, 1983), although this has no chemical significance. For compound (III), the value of the Flack x parameter gives evidence of partial inversion twinning.
3. Supramolecular interactions
The supramolecular assembly in compounds (I)–(V) is determined by a variety of direction-specific intermolecular interactions, including both π–π stacking interactions and hydrogen bonds of C—H⋯N, C—H⋯O and C—H⋯π types, as well as O—H⋯N hydrogen bonds in compound (V) only. In compound (III), there are two fairly short intermolecular C—H⋯N contacts involving C—H bonds from methyl groups bonded to the quinoline nucleus: not only are such bonds of low acidity, but these methyl groups are likely to be undergoing very rapid rotation about the adjacent C—C bonds (Riddell & Rogerson, 1996, 1997). When a group having local C3 symmetry, such as a methyl group, is directly bonded to a group having approximate local C2 symmetry, such as an aryl ring, the between these two groups is extremely low, of the order of J mol−1 rather than the usual kJ mol−1 (Naylor & Wilson, 1957; Tannenbaum et al., 1956). Accordingly, these contacts in (III) are not regarded as having any structural significance. Likewise, the C—H⋯O contact in (V) involving the methyl group bonded to the unfused pyridine ring is not regarded as significant.
There are no hydrogen bonds of any kind in the , but molecules are linked into chains by π–π stacking interactions. The fused aryl ring of the molecule at (x, y, z) and the brominated ring of the molecule at (−x + 1, −y + 1, −z + 1) make a dihedral angle of 1.04°; the ring centroid separation is 3.6168 (10) Å, and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.4132 (6) Å, with a ring-centroid offset of ca 1.20 Å. For the heterocyclic ring at (x, y, z) and the brominated aryl ring at (−x, 1 − y, 1 − z), the corresponding values are 1.52 (9)°, 3.7454 (11) Å, 3.4357 (8) Å and ca 1.49 Å. The combination of these two stacking interactions links the molecules of (I) into a chain running parallel to the [100] direction (Fig. 9). Two chains of this type pass through each but there are no direction-specific interactions between adjacent chains.
of compound (I)The only short C—H⋯O contact in the structure of compound (II) has a C—H⋯O angle of only 136° (Table 2), and so it is unlikely to be of major structural significance (Wood et al., 2009). However, there is a weak π–π stacking interaction between molecules related by a 21 screw axis. The pyridyl ring at (x, y, z) and the brominated aryl ring at (−x + , y + , z) make a dihedral angle of 3.87 (10)°: the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3816 (9) Å, but the ring-centroid separation is 3.882 (12), resulting in a ring-centroid offset of ca 1.78 Å. Thus there is only a very modest overlap of these rings and a consequently weak stacking interaction: if this interaction is, in fact, regarded as significant, it links the molecules into a π-stacked chain running parallel to [010].
Within the selected , three of the four independent molecules, those of types 2, 3 and 4 (cf. Figs. 3–6), are linked by two π–π stacking interactions, but the type 1 molecule does not participate in any such interaction. One of these stacking interactions involves the pyridyl ring of the type 2 molecule and the fused aryl ring of the type 3 molecule, while the other involves the pyridyl ring of the type 3 molecule and the fused aryl ring of the type 4 molecule. The dihedral angles between the ring planes within these two interactions are 3.11 (18) and 0.96 (7)°, respectively, the ring-centroid separations are 3.553 (2) Å and 3.544 (2) Å, and the shortest perpendicular distances from the centroid of one ring in each interaction to the plane of the other ring are 3.4014 (15) and 3.3820 (15) Å, corresponding to ring-centroid offsets of ca 1.03 and ca 1.06 Å, respectively. The only short C—H⋯N contact within the of compound (III) has an H⋯N distance which is not significantly less than the sum of the van der Waals radii, but there are four independent C—H⋯O hydrogen bonds present in the structure although all are probably weak as they have quite small C—H⋯O angles (Table 2). However, the pattern of these contacts is of interest as it precludes the possibility of any additional in this structure where Z′ = 4. One of the C—H⋯O interactions involves only molecules of type 1 which are related by the 21 screw axis along (0, y, ), forming a C(6) (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 10); an entirely similar chain is formed by type 3 molecules related to one another by the 21 screw axis along (, y, ). However, the molecules of types 2 and 4 which are related by the 21 screw axis along (, y, ) together form a C22(12) chain parallel to [010] (Fig. 11), which runs antiparallel to the chains formed by the molecules of types 1 and 3. Hence the patterns of supramolecular assembly in compounds (I)–(III), as well as their crystallization characteristics, show significant differences.
for compound (III)There are no hydrogen bonds of the C—H⋯N or C—H⋯O types in the and, despite the large number of independent aromatic rings, there are no π–π stacking interactions. The only direction-specific intermolecular interaction is a weak C—H⋯π(arene) contact involving molecules related by translation.
of compound (IV)The supramolecular assembly in compound (V) is, however, rather more elaborate, resulting in part from the presence of additional hydrogen-bond donors and acceptors in the unfused pyridine unit. An intramolecular O—H⋯O hydrogen bond (Table 2) gives rise to an S(7) (Bernstein et al., 1995) motif, and an intermolecular O—H⋯N hydrogen bond links molecules related by the n-glide plane at y = , forming a C(7) chain running parallel to the [10] direction (Fig. 12). In addition, inversion-related pairs of molecules are linked by π–π stacking interactions involving the unfused pyridine ring of one molecule and the quinoline unit of the other (Fig. 13). Thus the unfused pyridine ring of the molecule at (x, y, z) and the fused pyridine ring of the molecule at (1 − x, 1 − y, 1 − z) make a dihedral angle of 4.43 (8)°: the ring-centroid separation is 3.7499 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.5077 (7) Å, corresponding to a ring-centroid offset of ca 1.33 Å. For the unfused pyridyl ring at (x, y, z) and the fused aryl ring at (−x + 1, −y + 1, −z + 1) the corresponding values are 1.73 (8)°, 3.7333 (10) Å, 3.4637 (8) Å and ca 1.39 Å, respectively. The effect of the hydrogen-bonded chains is to link the π-stacked dimer centered at (, , ) directly to the four symmetry-related dimers centred at (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 1), thus forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (101) [Fig. 14].
4. Database survey
The structures of a number of fairly simple 2-chloroquinolione derivatives related to compounds (I)–(V) have been reported in recent years. A structural study of a closely related group of six simply substituted 2-chloroquinolines (Hathwar et al., 2010) focused on supramolecular aggregation via C—H⋯Cl hydrogen bonds and attractive Cl⋯Cl interactions. However, it must be pointed out firstly that it is now well established (Brammer et al., 2001; Thallapally & Nangia, 2001) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from strong donors such as O—H or N—H; and secondly, that for none of the compounds in this group were the shortest intermolecular Cl⋯Cl distances less than the sum of the van der Waals radii (Bondi, 1964; Nyburg & Faerman, 1985; Rowland & Taylor, 1996): indeed, the concept of the van der Waals radius was nowhere mentioned by the original authors. Two of the six compounds in this group contained 3-hydroxymethyl substituents and, in each of these, the molecules are linked into C(6) chains by means of O—H⋯N hydrogen bonds.
Molecules of 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile (Anuradha et al., 2013a) are also linked into C(6) chains by O—H⋯N hydrogen bonds, while in the closely related methyl 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylate, where Z′ = 2 (Anuradha et al., 2013b), molecules of one type are linked by O—H⋯O hydrogen bonds, again forming C(6) chains to which the molecules of the second type are linked by O—H⋯N hydrogen bonds. Chains of C(6) type are formed also in N-{(2-chloro-3-quinlinyl)methyl]-4-fluoroaniline (Jasinski et al., 2010), which is closely related to compounds (I)–(V) except that an amino linkage replaces the ether linkage in (I)–(V), so that the chains are built from N—H⋯N hydrogen bonds.
In the et al., 2014), there are no strong hydrogen bond donors: in the methylated compound, where Z′ = 2, the only hydrogen bond, of C—H⋯O type, links the two independent molecules, while in the unmethylated compound, the molecules are linked into C(5) chains by C—H⋯N hydrogen bonds. In the structure of 2-chloro-3-(dimethoxymethyl)-6-methoxyquinoline (Chandrika et al., 2015), there are no hydrogen bonds of any kind.
(2-choloroquinolin-3-yl)methyl acetate and (2-chloro-6-methylquinolin-3-yl)methyl acetate (Tabassum5. Synthesis and crystallization
For the synthesis of compounds (I)–(V), a mixture of 0.4 mmol of the appropriate quinoline derivative, 2-chloro-3-(chloromethyl)quinoline for compounds (I), (IV) and (V) or 2-chloro-3-(chloromethyl)-5-methylquinoline for compounds (II) and (III) and 0.4 mmol of the appropriate hydroxy compound, methyl 5-bromo-2-hydroxybenzoate for (I) and (II), methyl 2-hydroxybenzoate for (III), 1-hydroxynaphthalene for (IV), or 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridinium chloride for (V), were dissolved in N,N-dimethylformamide (3–5 ml) together with potassium carbonate (2 mmol) and these mixtures were stirred at ambient temperature for 6–9 h, with monitoring by TLC. When each reaction was complete, ice-cold water (5 ml) was added and the resulting solid products were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in dichloromethane, with yields in the range 86–97%.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in difference Fourier maps. C-bound H atoms were then treated as riding atoms in geometrically idealized positions: C—H distances 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for the methyl groups, which were permitted to rotate but not to tilt, and 1.2Ueq(C) for other C-bound H atoms.
details are summarized in Table 3
|
The H atoms bonded to O atoms in compound (V) were permitted to ride at the positions located in the difference Fourier map, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.91 Å. For compound (III), the Flack x parameter (Flack, 1983) for the crystal selected for data collection was x = 0.161 (1) calculated (Parsons et al., 2013) using 4617 quotients of type [(I+)−(I−)]/[(I+)+(I−)]. Use of the TWIN/BASF instructions in SHELXL2014 (Sheldrick, 2015) gave a value for the twin fraction of 0.152 (16). For compound (IV), the of the conformational enantiomer present in the crystal selected for data collection was established by means of the Flack x parameter calculated as x = −0.007 (18) by the standard method (Flack, 1983) and as x = 0.06 (2) calculated using 102 quotients of type [(I+)−(I−)]/[(I+)+(I−)].
Supporting information
10.1107/S2056989015008233/su5121sup1.cif
contains datablocks global, I, II, III, IV, V. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015008233/su5121Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S2056989015008233/su5121IIsup3.hkl
Structure factors: contains datablock III. DOI: 10.1107/S2056989015008233/su5121IIIsup4.hkl
Structure factors: contains datablock IV. DOI: 10.1107/S2056989015008233/su5121IVsup5.hkl
Structure factors: contains datablock V. DOI: 10.1107/S2056989015008233/su5121Vsup6.hkl
Supporting information file. DOI: 10.1107/S2056989015008233/su5121Isup7.cml
Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIsup8.cml
Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIIsup9.cml
Supporting information file. DOI: 10.1107/S2056989015008233/su5121IVsup10.cml
Supporting information file. DOI: 10.1107/S2056989015008233/su5121Vsup11.cml
The quinoline nucleus occurs in a number of natural compounds, such as the Cinchona
and many of these are pharmacologically active substances displaying a broad range of biological activity. Quinoline itself has been found to possess antimalarial, anti-bacterial, antifungal, anthelminthic, cardiotonic, anticonvulsant, anti-inflammatory and analgesic activity (Marella et al., 2013). The synthesis, reactions and biological applications of 2-chloroquinoline-3-carbaldehydes have been reviewed (Abdel-Wahab et al., 2012), and the structure of a simple reduction product (2-chloroquinolin-3-yl)methanol, derived from the parent 2-chloroquinoline-3-carbaldehyde, has been reported (Hathwar et al., 2010). The structures of two related [(2-chloroquinolin-3-yl)methyl acetate and (2-chloro-6-methylquinolin-3-yl)methyl acetate], have also been reported recently along with a study of their radical-scavenging and antimicrobial activities (Tabassum et al., 2014). Here we report the structures of five related namely methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate, (I) (Fig. 1), methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, (II) (Fig. 2), methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate, (III) (Figs. 3–6), 2-chloro-3-[(naphthalen-1-yloxy)methyl]quinoline (IV) (Fig. 7) and {5-[(2-chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol, (V) (Fig. 8). Compounds (I)–(V) are all of general type QCH2OR, where Q represents a 2-chloroquinolin-3-yl unit, which carries a 6-methyl substituent in compounds (II) and (III), although not in compounds (I), (IV) and (V), and where R represents a methoxycarbonylphenyl unit in compounds (I)–(III), a 1-naphthyl unit in compound (IV), and a multiply-substituted pyridyl unit in compound (V). Compound (I)–(V) were all prepared by reaction of the corresponding chloromethyl compounds QCH2Cl with the appropriate hydroxy compound ROH under basic conditions, with yields ranging from 86 to 97%.As noted above, the molecular constitutions of compounds (I)–(III) are very similar: those of compounds (I) and (II) differ only in the presence of a 6-methyl substituent in (II) which is absent from (I), while those of compounds (II) and (III) differ only in the presence of a bromo substituent in (II) which is absent from (III). Despite these close similarities, compounds (I)–(III) all crystallize in different space groups, P21/n and Pbca, respectively, for (I) and (II), both with Z' = 1, and P212121 with Z' = 4 for (III). A search for possible additional
in compound (III) found none: comparison of the atomic coordinates for the Cl atoms within the selected shows that while the x-coordinates of atoms Cl12 and Cl32 differ by ca 0.5 and their z-coordinates are almost identical, the y-coordinates of these two atoms differ by ca 0.13; similarly the x-coordinates of atoms Cl22 and Cl42 again differ by ca 0.5 but now the y-coordinates are almost identical, while the z-coordinates differ by ca 0.18. Hence it is not possible to identify even here. For compound (III), it will be convenient to refer to the molecules containing atoms N11—N14 as molecules of types 1–4, respectively. Compounds (IV) and (V) both crystallize with Z' = 1, in space groups P21 and P21/c, respectively.In compounds (I)–(III), the non-H atoms are almost co-planar, as shown by the relevant torsional and dihedral angles (Table 1). It is interesting to note that the orientation of the ester function in compound (I) differs from that in compounds (II) and (III) [Table 1 and Figs. 1–6]: this difference may arise, at least in part, from the participation of the carbonyl O atom of the ester unit in short C—H···O interactions in all of the molecules of compounds (II) and (III) but not in compound (I) (Table 2). The non-H atoms in compound (IV) are also nearly coplanar, with a dihedral angle between the mean planes of the quinoline and naphthalene units of 7.39 (12)°. By contrast, while the quinoline and pyridine units in compound (V) are nearly parallel (Fig. 8), with a dihedral angle between their mean planes of only 3.10 (9)°, they are by no means coplanar, as indicated by the values of the torsional angles C2—C3—C37—O31, 92.08 (18), C3—C37—O31—C33, 165.21 (13) and C37—O31—C33—C32, -90.17 (17)°. This again may perhaps be ascribed in part to the strong hydrogen bonds present in the
of (V) (Table 2).None of the molecules of compounds (I)–(V) exhibits any internal symmetry and hence all are conformationally chiral. For compounds (I), (II) and (V), the centrosymmetric space groups accommodate equal numbers of the two conformational enantiomers, but only one such enantiomer is present in each crystal of compound (IV): the
of the enantiomer present in the crystal selected for data collection was established by means of the Flack x parameter (Flack, 1983), although this has no chemical significance. For compound (III), the value of the Flack x parameter gives evidence of partial inversion twinning.The supramolecular assembly in compounds (I)–(V) is determined by a variety of direction-specific intermolecular interactions, including both π–π stacking interactions and hydrogen bonds of C—H···N, C—H···O and C—H···π types, as well as O—H···N hydrogen bonds in compound (V) only. In compound (III), there are two fairly short intermolecular C—H···N contacts involving C—H bonds from methyl groups bonded to the quinoline nucleus: not only are such bonds of low acidity, but these methyl groups are likely to be undergoing very rapid rotation about the adjacent C—C bonds (Riddell & Rogerson, 1996, 1997). When a group having local C3 symmetry, such as a methyl group, is directly bonded to a group having approximate local C2 symmetry, such as an aryl ring, the between these two groups is extremely low, of the order of J mol-1 rather than the usual kJ mol-1 (Naylor & Wilson, 1957; Tannenbaum et al., 1956). Accordingly, these contacts in (III) are not regarded as having any structural significance. Likewise, the C—H···O contact in (V) involving the methyl group bonded to the unfused pyridine ring is not regarded as significant.
There are no hydrogen bonds of any kind in the π–π stacking interactions. The fused aryl ring of the molecule at (x, y, z) and the brominated ring of the molecule at (-x + 1, -y + 1, -z + 1) make a dihedral angle of 1.04°; the ring centroid separation is 3.6168 (10) Å, and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.4132 (6) Å, with a ring-centroid offset of ca 1.20 Å. For the heterocyclic ring at (x, y, z) and the brominated aryl ring at (-x, 1 - y, 1 - z), the corresponding values are 1.52 (9)°, 3.7454 (11) Å, 3.4357 (8) Å and ca 1.49 Å. The combination of these two stacking interactions links the molecules of (I) into a chain running parallel to the [100] direction (Fig. 9). Two chains of this type pass through each but there are no direction-specific interactions between adjacent chains.
of compound (I), but molecules are linked into chains byThe only short C—H···O contact in the structure of compound (II) has a C—H···O angle of only 136° (Table 2), and so it is unlikely to be of major structural significance (Wood et al., 2009). However, there is a weak π–π stacking interaction between molecules related by a 21 screw axis. The pyridyl ring at (x, y, z) and the brominated aryl ring at (- x + 1/2, y + 1/2, z) make a dihedral angle of 3.87 (10)°: the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3816 (9) Å, but the ring-centroid separation is 3.882 (12), resulting in a ring-centroid offset of ca 1.78 Å. Thus there is only a very modest overlap of these ring and a consequently weak stacking interaction: if this interaction is, in fact, regarded as significant, it links the molecules into a π-stacked chain running parallel to [010].
Within the selected π–π stacking interactions, but the type 1 molecule does not participate in any such interaction. One of these stacking interactions involves the pyridyl ring of the type 2 molecule and the fused aryl ring of the type 3 molecule, while the other involves the pyridyl ring of the type 3 molecule and the fused aryl ring of the type 4 molecule. The dihedral angles between the ring planes within these two interactions are 3.11 (18) and 0.96 (7)°, respectively, the ring-centroid separations are 3.553 (2) Å and 3.544 (2) Å, and the shortest perpendicular distances from the centroid of one ring in each interaction to the plane of the other ring are 3.4014 (15) and 3.3820 (15) Å, corresponding to ring-centroid offsets of ca 1.03 and ca 1.06 Å, respectively. The only short C—H···N contact within the of compound (III) has an H···N distance which is not significantly less than the sum of the van der Waals radii, but there are four independent C—H···O hydrogen bonds present in the structure although all are probably weak as they have quite small C—H···O angles (Table 2). However, the pattern of these contacts is of interest as it precludes the possibility of any additional in this structure where Z' = 4. One of the C—H···O interactions involves only molecules of type 1 which are related by the 21 screw axis along (0, y, 1/4), forming a C(6) (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 10); an entirely similar chain is formed by type 3 molecules related to one another by the 21 screw axis along (1/2, y, 1/4). However, the molecules of types 2 and 4 which are related by the 21 screw axis along (1/2, y, 1/4) together form a C22(12) chain parallel to [010] (Fig. 11), which runs antiparallel to the chains formed by the molecules of types 1 and 3. Hence the patterns of supramolecular assembly in compounds (I)–(III), as well as their crystallization characteristics, show significant differences.
for compound (III), three of the four independent molecules, those of types 2, 3 and 4 (cf. Figs. 3–6), are linked by twoThere are no hydrogen bonds of the C—H···N or C—H···O types in the π–π stacking interactions. The only direction-specific intermolecular interaction is a weak C—H···π(arene) contact involving molecules related by translation.
of compound (IV) and, despite the large number of independent aromatic rings, there are noThe supramolecular assembly in compound (V) is, however, rather more elaborate, resulting in part from the presence of additional hydrogen-bond donors and acceptors in the unfused pyridine unit. An intramolecular O—H···O hydrogen bond (Table 2) gives rise to an S(7) (Bernstein et al., 1995) motif, and an intermolecular O—H···N hydrogen bond links molecules related by the n-glide plane at y = 0.75, forming a C(7) chain running parallel to the [101] direction (Fig. 12). In addition, inversion-related pairs of molecules are linked by π–π stacking interactions involving the unfused pyridine ring of one molecule and the quinoline unit of the other (Fig. 13). Thus the unfused pyridine ring of the molecule at (x, y, z) and the fused pyridine ring of the molecule at (1 - x, 1 - y, 1 - z) make a dihedral angle of 4.43 (8)°: the ring-centroid separation is 3.7499 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.5077 (7) Å, corresponding to a ring-centroid offset of ca 1.33 Å. For the unfused pyridyl ring at (x, y, z) and the fused aryl ring at (-x + 1, -y + 1, -z + 1) the corresponding values are 1.73 (8)°, 3.7333 (10) Å, 3.4637 (8) Å and ca 1.39 Å, respectively. The effect of the hydrogen-bonded chains is to link the π-stacked dimer centered at (1/2, 1/2, 1/2) directly to the four symmetry-related dimers centred at (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 1), thus forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (101) [Fig. 14].
The structures of a number of fairly simple 2-chloroquinolione derivatives related to compounds (I)–(V) have been reported in recent years. A structural study of a closely related group of six simply substituted 2-chloroquinolines (Hathwar et al., 2010) focused on supramolecular aggregation via C—H···Cl hydrogen bonds and attractive l···Cl interactions. However, it must be pointed out firstly that it is now well established (Brammer et al., 2001; Thallapally & Nangia, 2001) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from strong donors such as O—H or N—H; and secondly, that for none of the compounds in this group were the shortest intermolecular Cl···Cl distances less than the sum of the van der Waals radii (Bondi, 1964; Nyburg & Faerman, 1985; Rowland & Taylor, 1996): indeed, the concept of the van der Waals radius was nowhere mentioned by the original authors. Two of the six compounds in this group contained 3-hydroxymethyl substituents and, in each of these, the molecules are linked into C(6) chains by means of O—H···N hydrogen bonds.
Molecules of 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile (Anuradha et al., 2013a) are also linked into C(6) chains by O—H···N hydrogen bonds, while in the closely related methyl 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylate, where Z' = 2 (Anuradha et al., 2013b), molecules of one type are linked by O—H···O hydrogen bonds, again forming C(6) chains to which the molecules of the second type are linked by O—H···N hydrogen bonds. Chains of C(6) type are formed also in N-{(2-chloro-3-quinlinyl)methyl]-4-fluoroaniline (Jasinski et al., 2010), which is closely related to compounds (I)–(V) except that an amino linkage replaces the ether linkage in (I)–(V), so that the chains are built from N—H···N hydrogen bonds.
In the
(2-choloroquinolin-3-yl)methyl acetate and (2-chloro-6-methylquinolin-3-yl)methyl acetate (Tabassum et al., 2014), there are no strong hydrogen bond donors: in the methylated compound, where Z' = 2, the only hydrogen bond, of C—H···O type, links the two independent molecules, while in the unmethylated compound, the molecules are linked into C(5) chains by C—H···N hydrogen bonds. In the structure of 2-chloro-3-(dimethoxymethyl)-6-methoxyquinoline (Chandrika et al., 2015), there are no hydrogen bonds of any kind.For the synthesis of compounds (I)–(V), a mixture of 0.4 mmol of the appropriate quinoline derivative, 2-chloro-3-(chloromethyl)quinoline for compounds (I), (IV) and (V) or 2-chloro-3-(chloromethyl)-5-methylquinoline for compounds (II) and (III) and 0.4 mmol of the appropriate hydroxy compound, methyl 5-bromo-2-hydroxybenzoate for (I) and (II), methyl 2-hydroxybenzoate for (III), 1-hydroxynaphthalene for (IV), or 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridinium chloride for (V), were dissolved in N,N-dimethylformamide (3–5 ml) together with potassium carbonate (2 mmol) and these mixtures were stirred at ambient temperature for 6–9 h, with monitoring by TLC. When each reaction was complete, ice-cold water (5 ml) was added and the resulting solid products were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in dichloromethane, with yields in the range 86–97%.
Crystal data, data collection and structure
details are summarized in Table 3. All H atoms were located in difference Fourier maps. C-bound H atoms were then treated as riding atoms in geometrically idealized positions: C—H distances 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for the methyl groups, which were permitted to rotate but not to tilt, and 1.2Ueq(C) for other C-bound H atoms.The H atoms bonded to O atoms in compound (V) were permitted to ride at the positions located in the difference Fourier map, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.91 Å. For compound (III), the Flack x parameter (Flack, 1983) for the crystal selected for data collection was x = 0.161 (1) calculated (Parsons et al., 2013) using 4617 quotients of type [(I+)-(I-)]/[(I+)+(I-)]. Use of the TWIN/BASF instructions in SHELXL2014 (Sheldrick, 2015) gave a value for the twin fraction of 0.152 (16). For compound (IV), the
of the conformational enantiomer present in the crystal selected for data collection was established by means of the Flack x parameter calculated as x = -0.007 (18) by the standard method (Flack, 1983) and as x = 0.06 (2) calculated using 102 quotients of type [(I+)-(I-)]/[(I+)+(I-)].For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 3. The structure of a type 1 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 4. The structure of a type 2 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 5. The structure of a type 3 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 6. The structure of a type 4 molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 7. The molecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 8. The molecular structure of compound (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 9. Part of the crystal structure of compound (I) showing the formation of a π-stacked chain along [100]. For the sake of clarity, H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (-x, -y + 1, -z + 1), (-x + 1, -y + 1, -z + 1), (x - 1, y, z) and (x + 1, y, z), respectively. | |
Fig. 10. Part of the crystal structure of compound (III) showing the formation of two independent chains running parallel to the [010] direction and formed separately by the molecules of types 1 and 3. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (-x, y - 1/2, -z + 1/2), (x, y - 1, z) and (-x + 1, y - 1/2 , -z + 1/2), respectively. | |
Fig. 11. Part of the crystal structure of compound (III) showing the formation of a chain running parallel to the [010] direction and containing alternating molecules of types 2 and 4. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-x + 1, y + 1/2, -z + 1/2) and (x, y + 1, z), respectively. | |
Fig. 12. A stereoview of part of the crystal structure of compound (V) showing the formation of a C(7) chain formed by O—H···N hydrogen bonds and running parallel to [101]. For the sake of clarity, H atoms bonded to C atoms have been omitted. | |
Fig. 13. Part of the crystal structure of compound (V) showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1). | |
Fig. 14. A stereoview of part of the crystal structure of compound (V) showing the formation of a π-stacked sheet of hydrogen bonded chains lying parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted. |
C18H13BrClNO3 | F(000) = 816 |
Mr = 406.64 | Dx = 1.703 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3185 (4) Å | Cell parameters from 5443 reflections |
b = 18.4177 (7) Å | θ = 3.0–33.0° |
c = 11.7870 (5) Å | µ = 2.78 mm−1 |
β = 93.609 (4)° | T = 173 K |
V = 1585.62 (13) Å3 | Plate, colourles |
Z = 4 | 0.44 × 0.23 × 0.12 mm |
Agilent Eos Gemini diffractometer | 3682 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.036 |
ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −10→8 |
Tmin = 0.335, Tmax = 0.717 | k = −24→25 |
17735 measured reflections | l = −16→16 |
4612 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0288P)2 + 0.6015P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4612 reflections | Δρmax = 0.42 e Å−3 |
218 parameters | Δρmin = −0.41 e Å−3 |
C18H13BrClNO3 | V = 1585.62 (13) Å3 |
Mr = 406.64 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3185 (4) Å | µ = 2.78 mm−1 |
b = 18.4177 (7) Å | T = 173 K |
c = 11.7870 (5) Å | 0.44 × 0.23 × 0.12 mm |
β = 93.609 (4)° |
Agilent Eos Gemini diffractometer | 4612 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3682 reflections with I > 2σ(I) |
Tmin = 0.335, Tmax = 0.717 | Rint = 0.036 |
17735 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.42 e Å−3 |
4612 reflections | Δρmin = −0.41 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3544 (2) | 0.64638 (8) | 0.75859 (12) | 0.0228 (3) | |
C2 | 0.3622 (2) | 0.57729 (10) | 0.74061 (14) | 0.0218 (4) | |
Cl2 | 0.44084 (7) | 0.52448 (3) | 0.85755 (4) | 0.03157 (12) | |
C3 | 0.3125 (2) | 0.54040 (10) | 0.63773 (15) | 0.0209 (4) | |
C4 | 0.2421 (2) | 0.58250 (10) | 0.55035 (15) | 0.0219 (4) | |
H4 | 0.2034 | 0.5606 | 0.4799 | 0.026* | |
C4A | 0.2265 (2) | 0.65814 (10) | 0.56389 (15) | 0.0209 (4) | |
C5 | 0.1545 (3) | 0.70490 (11) | 0.47672 (16) | 0.0257 (4) | |
H5 | 0.1115 | 0.6851 | 0.4055 | 0.031* | |
C6 | 0.1462 (3) | 0.77791 (11) | 0.49390 (17) | 0.0303 (4) | |
H6 | 0.0952 | 0.8087 | 0.4354 | 0.036* | |
C7 | 0.2134 (3) | 0.80793 (11) | 0.59853 (18) | 0.0315 (4) | |
H7 | 0.2101 | 0.8590 | 0.6093 | 0.038* | |
C8 | 0.2826 (3) | 0.76456 (11) | 0.68391 (17) | 0.0276 (4) | |
H8 | 0.3271 | 0.7855 | 0.7539 | 0.033* | |
C8A | 0.2888 (2) | 0.68865 (10) | 0.66944 (14) | 0.0212 (4) | |
C37 | 0.3404 (3) | 0.46017 (10) | 0.62654 (15) | 0.0246 (4) | |
H37A | 0.4696 | 0.4471 | 0.6467 | 0.030* | |
H37B | 0.2612 | 0.4333 | 0.6772 | 0.030* | |
O31 | 0.2926 (2) | 0.44326 (7) | 0.51108 (10) | 0.0275 (3) | |
C31 | 0.2926 (2) | 0.37331 (9) | 0.47662 (14) | 0.0203 (3) | |
C32 | 0.2264 (2) | 0.35949 (9) | 0.36438 (14) | 0.0191 (3) | |
C33 | 0.2199 (2) | 0.28798 (9) | 0.32599 (14) | 0.0203 (3) | |
H33 | 0.1751 | 0.2779 | 0.2502 | 0.024* | |
C34 | 0.2772 (3) | 0.23189 (9) | 0.39624 (15) | 0.0212 (4) | |
Br34 | 0.26437 (3) | 0.13590 (2) | 0.33927 (2) | 0.03066 (7) | |
C35 | 0.3456 (3) | 0.24530 (10) | 0.50667 (15) | 0.0235 (4) | |
H35 | 0.3860 | 0.2064 | 0.5548 | 0.028* | |
C36 | 0.3543 (3) | 0.31595 (10) | 0.54578 (15) | 0.0224 (4) | |
H36 | 0.4030 | 0.3255 | 0.6209 | 0.027* | |
C38 | 0.1676 (2) | 0.41935 (10) | 0.28586 (14) | 0.0217 (4) | |
O38 | 0.1774 (2) | 0.48297 (8) | 0.30438 (12) | 0.0415 (4) | |
O39 | 0.1018 (2) | 0.39288 (7) | 0.18579 (11) | 0.0361 (4) | |
C39 | 0.0528 (3) | 0.44627 (11) | 0.10042 (18) | 0.0380 (5) | |
H39A | −0.0067 | 0.4223 | 0.0336 | 0.057* | |
H39B | 0.1633 | 0.4714 | 0.0786 | 0.057* | |
H39C | −0.0317 | 0.4815 | 0.1308 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0241 (8) | 0.0260 (8) | 0.0181 (7) | −0.0004 (6) | 0.0007 (6) | −0.0038 (6) |
C2 | 0.0222 (9) | 0.0266 (9) | 0.0164 (8) | 0.0002 (7) | −0.0006 (7) | 0.0005 (7) |
Cl2 | 0.0414 (3) | 0.0328 (3) | 0.0196 (2) | 0.0036 (2) | −0.00517 (19) | 0.00316 (18) |
C3 | 0.0220 (9) | 0.0205 (9) | 0.0202 (8) | −0.0018 (7) | 0.0021 (7) | −0.0023 (7) |
C4 | 0.0240 (9) | 0.0237 (9) | 0.0178 (8) | −0.0012 (7) | 0.0002 (7) | −0.0028 (7) |
C4A | 0.0207 (9) | 0.0222 (9) | 0.0201 (8) | 0.0005 (7) | 0.0031 (7) | −0.0006 (7) |
C5 | 0.0272 (10) | 0.0282 (10) | 0.0215 (8) | 0.0036 (8) | 0.0006 (7) | 0.0006 (7) |
C6 | 0.0314 (11) | 0.0278 (10) | 0.0320 (10) | 0.0073 (8) | 0.0048 (8) | 0.0068 (8) |
C7 | 0.0334 (11) | 0.0228 (10) | 0.0390 (11) | 0.0045 (8) | 0.0077 (9) | −0.0024 (8) |
C8 | 0.0304 (11) | 0.0242 (10) | 0.0282 (9) | 0.0009 (8) | 0.0034 (8) | −0.0079 (8) |
C8A | 0.0199 (9) | 0.0227 (9) | 0.0213 (8) | 0.0014 (7) | 0.0036 (7) | −0.0029 (7) |
C37 | 0.0354 (11) | 0.0211 (9) | 0.0170 (8) | 0.0003 (7) | −0.0022 (7) | −0.0010 (7) |
O31 | 0.0467 (9) | 0.0168 (6) | 0.0181 (6) | 0.0019 (6) | −0.0048 (6) | −0.0020 (5) |
C31 | 0.0231 (9) | 0.0188 (9) | 0.0191 (8) | −0.0002 (7) | 0.0020 (7) | 0.0000 (6) |
C32 | 0.0215 (9) | 0.0172 (8) | 0.0186 (8) | 0.0003 (6) | 0.0009 (6) | 0.0019 (6) |
C33 | 0.0228 (9) | 0.0187 (8) | 0.0193 (8) | −0.0016 (7) | 0.0003 (7) | 0.0000 (6) |
C34 | 0.0250 (9) | 0.0158 (8) | 0.0227 (8) | −0.0012 (6) | 0.0008 (7) | 0.0006 (7) |
Br34 | 0.04557 (13) | 0.01513 (9) | 0.03011 (11) | −0.00002 (8) | −0.00682 (8) | −0.00001 (7) |
C35 | 0.0284 (10) | 0.0198 (9) | 0.0224 (9) | 0.0007 (7) | 0.0010 (7) | 0.0058 (7) |
C36 | 0.0280 (10) | 0.0209 (9) | 0.0178 (8) | −0.0014 (7) | −0.0013 (7) | 0.0026 (7) |
C38 | 0.0247 (9) | 0.0207 (9) | 0.0197 (8) | 0.0003 (7) | 0.0011 (7) | 0.0010 (7) |
O38 | 0.0816 (12) | 0.0175 (7) | 0.0240 (7) | 0.0027 (7) | −0.0074 (7) | 0.0014 (6) |
O39 | 0.0601 (10) | 0.0178 (7) | 0.0272 (7) | −0.0043 (6) | −0.0220 (7) | 0.0050 (6) |
C39 | 0.0540 (14) | 0.0263 (11) | 0.0307 (10) | −0.0027 (9) | −0.0207 (10) | 0.0108 (8) |
N1—C2 | 1.292 (2) | C37—H37B | 0.9900 |
N1—C8A | 1.370 (2) | O31—C31 | 1.351 (2) |
C2—C3 | 1.417 (2) | C31—C36 | 1.392 (2) |
C2—Cl2 | 1.7542 (18) | C31—C32 | 1.403 (2) |
C3—C4 | 1.364 (2) | C32—C33 | 1.393 (2) |
C3—C37 | 1.499 (2) | C32—C38 | 1.486 (2) |
C4—C4A | 1.408 (3) | C33—C34 | 1.373 (2) |
C4—H4 | 0.9500 | C33—H33 | 0.9500 |
C4A—C8A | 1.414 (2) | C34—C35 | 1.387 (2) |
C4A—C5 | 1.417 (3) | C34—Br34 | 1.8913 (18) |
C5—C6 | 1.362 (3) | C35—C36 | 1.380 (3) |
C5—H5 | 0.9500 | C35—H35 | 0.9500 |
C6—C7 | 1.411 (3) | C36—H36 | 0.9500 |
C6—H6 | 0.9500 | C38—O38 | 1.193 (2) |
C7—C8 | 1.358 (3) | C38—O39 | 1.338 (2) |
C7—H7 | 0.9500 | O39—C39 | 1.436 (2) |
C8—C8A | 1.410 (3) | C39—H39A | 0.9800 |
C8—H8 | 0.9500 | C39—H39B | 0.9800 |
C37—O31 | 1.418 (2) | C39—H39C | 0.9800 |
C37—H37A | 0.9900 | ||
C2—N1—C8A | 116.80 (15) | C3—C37—H37B | 110.6 |
N1—C2—C3 | 126.94 (16) | H37A—C37—H37B | 108.7 |
N1—C2—Cl2 | 115.65 (13) | C31—O31—C37 | 119.56 (14) |
C3—C2—Cl2 | 117.41 (14) | O31—C31—C36 | 123.63 (15) |
C4—C3—C2 | 115.97 (16) | O31—C31—C32 | 116.73 (15) |
C4—C3—C37 | 122.75 (16) | C36—C31—C32 | 119.63 (16) |
C2—C3—C37 | 121.27 (16) | C33—C32—C31 | 118.73 (15) |
C3—C4—C4A | 120.43 (16) | C33—C32—C38 | 119.78 (15) |
C3—C4—H4 | 119.8 | C31—C32—C38 | 121.48 (15) |
C4A—C4—H4 | 119.8 | C34—C33—C32 | 120.84 (16) |
C4—C4A—C8A | 117.96 (16) | C34—C33—H33 | 119.6 |
C4—C4A—C5 | 123.28 (16) | C32—C33—H33 | 119.6 |
C8A—C4A—C5 | 118.75 (17) | C33—C34—C35 | 120.69 (16) |
C6—C5—C4A | 120.70 (18) | C33—C34—Br34 | 118.86 (13) |
C6—C5—H5 | 119.7 | C35—C34—Br34 | 120.44 (13) |
C4A—C5—H5 | 119.7 | C36—C35—C34 | 119.18 (16) |
C5—C6—C7 | 120.03 (18) | C36—C35—H35 | 120.4 |
C5—C6—H6 | 120.0 | C34—C35—H35 | 120.4 |
C7—C6—H6 | 120.0 | C35—C36—C31 | 120.88 (16) |
C8—C7—C6 | 120.69 (19) | C35—C36—H36 | 119.6 |
C8—C7—H7 | 119.7 | C31—C36—H36 | 119.6 |
C6—C7—H7 | 119.7 | O38—C38—O39 | 122.23 (16) |
C7—C8—C8A | 120.48 (18) | O38—C38—C32 | 127.08 (16) |
C7—C8—H8 | 119.8 | O39—C38—C32 | 110.68 (15) |
C8A—C8—H8 | 119.8 | C38—O39—C39 | 115.37 (15) |
N1—C8A—C8 | 118.90 (16) | O39—C39—H39A | 109.5 |
N1—C8A—C4A | 121.80 (16) | O39—C39—H39B | 109.5 |
C8—C8A—C4A | 119.31 (17) | H39A—C39—H39B | 109.5 |
O31—C37—C3 | 105.92 (14) | O39—C39—H39C | 109.5 |
O31—C37—H37A | 110.6 | H39A—C39—H39C | 109.5 |
C3—C37—H37A | 110.6 | H39B—C39—H39C | 109.5 |
O31—C37—H37B | 110.6 | ||
C8A—N1—C2—C3 | 1.0 (3) | C2—C3—C37—O31 | −174.63 (17) |
C8A—N1—C2—Cl2 | −178.33 (13) | C3—C37—O31—C31 | −175.71 (16) |
N1—C2—C3—C4 | −2.9 (3) | C37—O31—C31—C36 | −6.4 (3) |
Cl2—C2—C3—C4 | 176.39 (14) | C37—O31—C31—C32 | 173.73 (17) |
N1—C2—C3—C37 | 175.89 (19) | O31—C31—C32—C33 | −178.50 (16) |
Cl2—C2—C3—C37 | −4.8 (2) | C36—C31—C32—C33 | 1.6 (3) |
C2—C3—C4—C4A | 1.6 (3) | O31—C31—C32—C38 | 2.8 (3) |
C37—C3—C4—C4A | −177.14 (17) | C36—C31—C32—C38 | −177.03 (17) |
C3—C4—C4A—C8A | 1.1 (3) | C31—C32—C33—C34 | −0.1 (3) |
C3—C4—C4A—C5 | −179.93 (18) | C38—C32—C33—C34 | 178.58 (17) |
C4—C4A—C5—C6 | −178.59 (19) | C32—C33—C34—C35 | −1.0 (3) |
C8A—C4A—C5—C6 | 0.3 (3) | C32—C33—C34—Br34 | 179.85 (14) |
C4A—C5—C6—C7 | 1.4 (3) | C33—C34—C35—C36 | 0.5 (3) |
C5—C6—C7—C8 | −1.6 (3) | Br34—C34—C35—C36 | 179.65 (14) |
C6—C7—C8—C8A | 0.1 (3) | C34—C35—C36—C31 | 1.1 (3) |
C2—N1—C8A—C8 | −178.21 (17) | O31—C31—C36—C35 | 178.00 (17) |
C2—N1—C8A—C4A | 2.2 (3) | C32—C31—C36—C35 | −2.2 (3) |
C7—C8—C8A—N1 | −178.03 (18) | C33—C32—C38—O38 | −174.5 (2) |
C7—C8—C8A—C4A | 1.6 (3) | C31—C32—C38—O38 | 4.1 (3) |
C4—C4A—C8A—N1 | −3.2 (3) | C33—C32—C38—O39 | 4.3 (2) |
C5—C4A—C8A—N1 | 177.82 (17) | C31—C32—C38—O39 | −177.01 (17) |
C4—C4A—C8A—C8 | 177.18 (17) | O38—C38—O39—C39 | 3.1 (3) |
C5—C4A—C8A—C8 | −1.8 (3) | C32—C38—O39—C39 | −175.77 (17) |
C4—C3—C37—O31 | 4.1 (3) |
C19H15BrClNO3 | Dx = 1.613 Mg m−3 |
Mr = 420.67 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 3421 reflections |
a = 15.1920 (3) Å | θ = 4.7–72.5° |
b = 11.98641 (19) Å | µ = 4.81 mm−1 |
c = 19.0307 (3) Å | T = 173 K |
V = 3465.44 (10) Å3 | Block, colourless |
Z = 8 | 0.24 × 0.16 × 0.08 mm |
F(000) = 1696 |
Agilent Eos Gemini diffractometer | 3062 reflections with I > 2σ(I) |
Radiation source: Enhance (Cu) X-ray Source | Rint = 0.055 |
ω scans | θmax = 72.5°, θmin = 4.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −18→18 |
Tmin = 0.399, Tmax = 0.680 | k = −14→12 |
21861 measured reflections | l = −23→18 |
3421 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0523P)2 + 1.8465P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.52 e Å−3 |
3421 reflections | Δρmin = −0.49 e Å−3 |
229 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00048 (6) |
C19H15BrClNO3 | V = 3465.44 (10) Å3 |
Mr = 420.67 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 15.1920 (3) Å | µ = 4.81 mm−1 |
b = 11.98641 (19) Å | T = 173 K |
c = 19.0307 (3) Å | 0.24 × 0.16 × 0.08 mm |
Agilent Eos Gemini diffractometer | 3421 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3062 reflections with I > 2σ(I) |
Tmin = 0.399, Tmax = 0.680 | Rint = 0.055 |
21861 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.52 e Å−3 |
3421 reflections | Δρmin = −0.49 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.42983 (12) | 0.87307 (15) | 0.45790 (10) | 0.0272 (4) | |
C2 | 0.42690 (13) | 0.78272 (18) | 0.42079 (11) | 0.0249 (4) | |
Cl2 | 0.52936 (3) | 0.72811 (5) | 0.39507 (3) | 0.03655 (16) | |
C3 | 0.35033 (14) | 0.72343 (17) | 0.40030 (10) | 0.0226 (4) | |
C4 | 0.27189 (13) | 0.76626 (18) | 0.42260 (11) | 0.0224 (4) | |
H4 | 0.2185 | 0.7297 | 0.4106 | 0.027* | |
C4A | 0.26987 (13) | 0.86525 (18) | 0.46363 (11) | 0.0219 (4) | |
C5 | 0.19142 (14) | 0.91446 (18) | 0.48888 (11) | 0.0253 (4) | |
H5 | 0.1366 | 0.8805 | 0.4780 | 0.030* | |
C6 | 0.19242 (15) | 1.00976 (18) | 0.52857 (11) | 0.0267 (4) | |
C7 | 0.27500 (15) | 1.05991 (19) | 0.54421 (12) | 0.0302 (5) | |
H7 | 0.2765 | 1.1261 | 0.5716 | 0.036* | |
C8 | 0.35220 (15) | 1.01485 (19) | 0.52062 (12) | 0.0299 (5) | |
H8 | 0.4066 | 1.0499 | 0.5316 | 0.036* | |
C8A | 0.35123 (14) | 0.91644 (17) | 0.48007 (11) | 0.0242 (4) | |
C37 | 0.35875 (13) | 0.61865 (18) | 0.35765 (11) | 0.0243 (4) | |
H37A | 0.3916 | 0.6338 | 0.3137 | 0.029* | |
H37B | 0.3909 | 0.5610 | 0.3846 | 0.029* | |
O31 | 0.27182 (9) | 0.58119 (13) | 0.34187 (8) | 0.0254 (3) | |
C31 | 0.26370 (13) | 0.48636 (18) | 0.30374 (11) | 0.0224 (4) | |
C32 | 0.17885 (14) | 0.45623 (18) | 0.28094 (11) | 0.0236 (4) | |
C33 | 0.16860 (15) | 0.36086 (18) | 0.23979 (11) | 0.0267 (4) | |
H33 | 0.1116 | 0.3399 | 0.2240 | 0.032* | |
C34 | 0.24049 (16) | 0.29669 (19) | 0.22183 (11) | 0.0271 (5) | |
Br34 | 0.22547 (2) | 0.17010 (2) | 0.16308 (2) | 0.03596 (12) | |
C35 | 0.32387 (16) | 0.32597 (18) | 0.24421 (12) | 0.0297 (5) | |
H35 | 0.3731 | 0.2813 | 0.2317 | 0.036* | |
C36 | 0.33537 (14) | 0.42003 (18) | 0.28463 (11) | 0.0273 (5) | |
H36 | 0.3928 | 0.4401 | 0.2997 | 0.033* | |
C38 | 0.09631 (14) | 0.5209 (2) | 0.29458 (12) | 0.0309 (5) | |
O38 | 0.03146 (13) | 0.5097 (2) | 0.25963 (13) | 0.0739 (8) | |
O39 | 0.10112 (11) | 0.59054 (16) | 0.34798 (9) | 0.0380 (4) | |
C39 | 0.02126 (19) | 0.6494 (3) | 0.36541 (18) | 0.0522 (7) | |
H39A | 0.0089 | 0.7052 | 0.3291 | 0.078* | |
H39B | 0.0283 | 0.6866 | 0.4109 | 0.078* | |
H39C | −0.0277 | 0.5963 | 0.3680 | 0.078* | |
C61 | 0.10926 (16) | 1.0618 (2) | 0.55704 (13) | 0.0365 (5) | |
H61A | 0.0590 | 1.0382 | 0.5284 | 0.055* | |
H61B | 0.1145 | 1.1432 | 0.5555 | 0.055* | |
H61C | 0.1003 | 1.0376 | 0.6057 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0241 (9) | 0.0257 (9) | 0.0319 (10) | −0.0054 (7) | −0.0027 (7) | −0.0008 (8) |
C2 | 0.0193 (10) | 0.0264 (11) | 0.0291 (11) | −0.0017 (8) | 0.0002 (8) | 0.0026 (8) |
Cl2 | 0.0207 (3) | 0.0373 (3) | 0.0516 (4) | −0.0023 (2) | 0.0022 (2) | −0.0088 (3) |
C3 | 0.0236 (10) | 0.0229 (10) | 0.0214 (10) | −0.0037 (8) | −0.0022 (8) | 0.0021 (8) |
C4 | 0.0202 (10) | 0.0249 (10) | 0.0222 (10) | −0.0041 (8) | −0.0023 (7) | 0.0023 (8) |
C4A | 0.0236 (10) | 0.0226 (10) | 0.0196 (10) | −0.0023 (8) | −0.0023 (7) | 0.0033 (8) |
C5 | 0.0248 (10) | 0.0288 (11) | 0.0224 (10) | −0.0030 (9) | −0.0021 (8) | 0.0012 (8) |
C6 | 0.0309 (11) | 0.0263 (11) | 0.0228 (10) | 0.0025 (9) | −0.0017 (8) | 0.0019 (8) |
C7 | 0.0397 (13) | 0.0231 (10) | 0.0276 (11) | −0.0022 (9) | −0.0023 (9) | −0.0035 (9) |
C8 | 0.0308 (11) | 0.0263 (11) | 0.0325 (11) | −0.0059 (9) | −0.0045 (9) | −0.0022 (9) |
C8A | 0.0262 (10) | 0.0227 (10) | 0.0238 (10) | −0.0040 (8) | −0.0038 (8) | 0.0014 (8) |
C37 | 0.0199 (10) | 0.0245 (10) | 0.0285 (11) | −0.0029 (8) | −0.0007 (8) | −0.0021 (9) |
O31 | 0.0198 (7) | 0.0252 (8) | 0.0312 (8) | −0.0013 (6) | −0.0016 (5) | −0.0079 (6) |
C31 | 0.0241 (10) | 0.0226 (10) | 0.0204 (10) | −0.0015 (8) | 0.0002 (7) | 0.0013 (8) |
C32 | 0.0230 (10) | 0.0237 (10) | 0.0242 (10) | −0.0026 (8) | −0.0009 (8) | 0.0037 (8) |
C33 | 0.0283 (11) | 0.0279 (11) | 0.0238 (10) | −0.0068 (9) | −0.0032 (8) | 0.0032 (9) |
C34 | 0.0407 (12) | 0.0212 (10) | 0.0195 (10) | −0.0054 (9) | −0.0007 (9) | −0.0012 (8) |
Br34 | 0.0551 (2) | 0.02513 (16) | 0.02764 (17) | −0.00542 (10) | −0.00230 (10) | −0.00488 (9) |
C35 | 0.0322 (11) | 0.0286 (12) | 0.0283 (11) | 0.0027 (9) | 0.0045 (9) | −0.0016 (9) |
C36 | 0.0225 (10) | 0.0300 (12) | 0.0294 (11) | −0.0023 (9) | 0.0004 (8) | −0.0022 (9) |
C38 | 0.0225 (10) | 0.0334 (12) | 0.0369 (12) | −0.0003 (9) | −0.0027 (9) | −0.0007 (10) |
O38 | 0.0309 (10) | 0.100 (2) | 0.0905 (17) | 0.0164 (11) | −0.0257 (11) | −0.0441 (16) |
O39 | 0.0232 (8) | 0.0460 (11) | 0.0446 (10) | 0.0068 (7) | 0.0006 (7) | −0.0115 (8) |
C39 | 0.0298 (13) | 0.0636 (19) | 0.0632 (19) | 0.0151 (13) | 0.0099 (13) | −0.0070 (16) |
C61 | 0.0372 (13) | 0.0366 (13) | 0.0357 (13) | 0.0042 (10) | 0.0022 (10) | −0.0082 (10) |
N1—C2 | 1.294 (3) | O31—C31 | 1.354 (3) |
N1—C8A | 1.369 (3) | C31—C36 | 1.396 (3) |
C2—C3 | 1.418 (3) | C31—C32 | 1.407 (3) |
C2—Cl2 | 1.758 (2) | C32—C33 | 1.394 (3) |
C3—C4 | 1.365 (3) | C32—C38 | 1.497 (3) |
C3—C37 | 1.501 (3) | C33—C34 | 1.379 (3) |
C4—C4A | 1.421 (3) | C33—H33 | 0.9500 |
C4—H4 | 0.9500 | C34—C35 | 1.382 (3) |
C4A—C5 | 1.414 (3) | C34—Br34 | 1.899 (2) |
C4A—C8A | 1.415 (3) | C35—C36 | 1.376 (3) |
C5—C6 | 1.370 (3) | C35—H35 | 0.9500 |
C5—H5 | 0.9500 | C36—H36 | 0.9500 |
C6—C7 | 1.423 (3) | C38—O38 | 1.196 (3) |
C6—C61 | 1.509 (3) | C38—O39 | 1.317 (3) |
C7—C8 | 1.367 (3) | O39—C39 | 1.442 (3) |
C7—H7 | 0.9500 | C39—H39A | 0.9800 |
C8—C8A | 1.410 (3) | C39—H39B | 0.9800 |
C8—H8 | 0.9500 | C39—H39C | 0.9800 |
C37—O31 | 1.427 (2) | C61—H61A | 0.9800 |
C37—H37A | 0.9900 | C61—H61B | 0.9800 |
C37—H37B | 0.9900 | C61—H61C | 0.9800 |
C2—N1—C8A | 117.13 (18) | O31—C31—C36 | 123.12 (19) |
N1—C2—C3 | 126.73 (19) | O31—C31—C32 | 117.66 (18) |
N1—C2—Cl2 | 115.67 (15) | C36—C31—C32 | 119.2 (2) |
C3—C2—Cl2 | 117.59 (16) | C33—C32—C31 | 119.1 (2) |
C4—C3—C2 | 116.24 (19) | C33—C32—C38 | 115.38 (19) |
C4—C3—C37 | 123.86 (18) | C31—C32—C38 | 125.50 (19) |
C2—C3—C37 | 119.89 (19) | C34—C33—C32 | 120.5 (2) |
C3—C4—C4A | 120.25 (18) | C34—C33—H33 | 119.7 |
C3—C4—H4 | 119.9 | C32—C33—H33 | 119.7 |
C4A—C4—H4 | 119.9 | C33—C34—C35 | 120.5 (2) |
C5—C4A—C8A | 118.7 (2) | C33—C34—Br34 | 119.77 (17) |
C5—C4A—C4 | 123.60 (18) | C35—C34—Br34 | 119.65 (18) |
C8A—C4A—C4 | 117.70 (18) | C36—C35—C34 | 119.8 (2) |
C6—C5—C4A | 121.7 (2) | C36—C35—H35 | 120.1 |
C6—C5—H5 | 119.1 | C34—C35—H35 | 120.1 |
C4A—C5—H5 | 119.1 | C35—C36—C31 | 120.9 (2) |
C5—C6—C7 | 118.5 (2) | C35—C36—H36 | 119.6 |
C5—C6—C61 | 122.2 (2) | C31—C36—H36 | 119.6 |
C7—C6—C61 | 119.2 (2) | O38—C38—O39 | 123.1 (2) |
C8—C7—C6 | 121.4 (2) | O38—C38—C32 | 122.3 (2) |
C8—C7—H7 | 119.3 | O39—C38—C32 | 114.56 (18) |
C6—C7—H7 | 119.3 | C38—O39—C39 | 116.1 (2) |
C7—C8—C8A | 120.1 (2) | O39—C39—H39A | 109.5 |
C7—C8—H8 | 120.0 | O39—C39—H39B | 109.5 |
C8A—C8—H8 | 120.0 | H39A—C39—H39B | 109.5 |
N1—C8A—C8 | 118.51 (19) | O39—C39—H39C | 109.5 |
N1—C8A—C4A | 121.94 (19) | H39A—C39—H39C | 109.5 |
C8—C8A—C4A | 119.5 (2) | H39B—C39—H39C | 109.5 |
O31—C37—C3 | 107.35 (16) | C6—C61—H61A | 109.5 |
O31—C37—H37A | 110.2 | C6—C61—H61B | 109.5 |
C3—C37—H37A | 110.2 | H61A—C61—H61B | 109.5 |
O31—C37—H37B | 110.2 | C6—C61—H61C | 109.5 |
C3—C37—H37B | 110.2 | H61A—C61—H61C | 109.5 |
H37A—C37—H37B | 108.5 | H61B—C61—H61C | 109.5 |
C31—O31—C37 | 117.47 (16) | ||
C8A—N1—C2—C3 | 0.2 (3) | C4—C3—C37—O31 | 4.3 (3) |
C8A—N1—C2—Cl2 | −178.63 (15) | C2—C3—C37—O31 | −176.93 (18) |
N1—C2—C3—C4 | −0.4 (3) | C3—C37—O31—C31 | −179.57 (17) |
Cl2—C2—C3—C4 | 178.35 (16) | C37—O31—C31—C36 | 5.4 (3) |
N1—C2—C3—C37 | −179.3 (2) | C37—O31—C31—C32 | −172.62 (18) |
Cl2—C2—C3—C37 | −0.5 (3) | O31—C31—C32—C33 | 178.09 (18) |
C2—C3—C4—C4A | 0.3 (3) | C36—C31—C32—C33 | 0.0 (3) |
C37—C3—C4—C4A | 179.16 (19) | O31—C31—C32—C38 | 0.7 (3) |
C3—C4—C4A—C5 | −179.75 (19) | C36—C31—C32—C38 | −177.4 (2) |
C3—C4—C4A—C8A | 0.0 (3) | C31—C32—C33—C34 | 0.2 (3) |
C8A—C4A—C5—C6 | 0.0 (3) | C38—C32—C33—C34 | 177.8 (2) |
C4—C4A—C5—C6 | 179.7 (2) | C32—C33—C34—C35 | −0.1 (3) |
C4A—C5—C6—C7 | 0.2 (3) | C32—C33—C34—Br34 | −177.84 (16) |
C4A—C5—C6—C61 | −178.7 (2) | C33—C34—C35—C36 | −0.1 (3) |
C5—C6—C7—C8 | −0.1 (3) | Br34—C34—C35—C36 | 177.58 (17) |
C61—C6—C7—C8 | 178.9 (2) | C34—C35—C36—C31 | 0.3 (3) |
C6—C7—C8—C8A | −0.2 (4) | O31—C31—C36—C35 | −178.2 (2) |
C2—N1—C8A—C8 | 180.0 (2) | C32—C31—C36—C35 | −0.2 (3) |
C2—N1—C8A—C4A | 0.2 (3) | C33—C32—C38—O38 | −18.0 (4) |
C7—C8—C8A—N1 | −179.4 (2) | C31—C32—C38—O38 | 159.5 (3) |
C7—C8—C8A—C4A | 0.4 (3) | C33—C32—C38—O39 | 161.8 (2) |
C5—C4A—C8A—N1 | 179.49 (19) | C31—C32—C38—O39 | −20.7 (3) |
C4—C4A—C8A—N1 | −0.3 (3) | O38—C38—O39—C39 | 3.5 (4) |
C5—C4A—C8A—C8 | −0.3 (3) | C32—C38—O39—C39 | −176.4 (2) |
C4—C4A—C8A—C8 | 179.95 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C36—H36···O38i | 0.95 | 2.53 | 3.277 (3) | 136 |
Symmetry code: (i) x+1/2, y, −z+1/2. |
C19H16ClNO3 | Dx = 1.386 Mg m−3 |
Mr = 341.78 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 12841 reflections |
a = 13.5860 (3) Å | θ = 3.6–72.6° |
b = 15.5857 (2) Å | µ = 2.21 mm−1 |
c = 30.9389 (5) Å | T = 173 K |
V = 6551.2 (2) Å3 | Block, colourless |
Z = 16 | 0.48 × 0.26 × 0.14 mm |
F(000) = 2848 |
Agilent Eos Gemini diffractometer | 11257 reflections with I > 2σ(I) |
Radiation source: Enhance (Cu) X-ray Source | Rint = 0.048 |
ω scans | θmax = 72.6°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −16→15 |
Tmin = 0.472, Tmax = 0.734 | k = −19→15 |
45901 measured reflections | l = −38→30 |
12840 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0759P)2 + 0.9452P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.129 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.42 e Å−3 |
12840 reflections | Δρmin = −0.31 e Å−3 |
874 parameters | Absolute structure: Refined as an inversion twin. |
0 restraints | Absolute structure parameter: 0.152 (16) |
C19H16ClNO3 | V = 6551.2 (2) Å3 |
Mr = 341.78 | Z = 16 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 13.5860 (3) Å | µ = 2.21 mm−1 |
b = 15.5857 (2) Å | T = 173 K |
c = 30.9389 (5) Å | 0.48 × 0.26 × 0.14 mm |
Agilent Eos Gemini diffractometer | 12840 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 11257 reflections with I > 2σ(I) |
Tmin = 0.472, Tmax = 0.734 | Rint = 0.048 |
45901 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.129 | Δρmax = 0.42 e Å−3 |
S = 1.04 | Δρmin = −0.31 e Å−3 |
12840 reflections | Absolute structure: Refined as an inversion twin. |
874 parameters | Absolute structure parameter: 0.152 (16) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.0311 (2) | 0.26008 (18) | 0.44748 (8) | 0.0301 (6) | |
C12 | 0.0259 (3) | 0.2694 (2) | 0.40606 (10) | 0.0293 (7) | |
Cl12 | 0.02044 (8) | 0.17391 (5) | 0.37626 (3) | 0.0430 (2) | |
C13 | 0.0238 (2) | 0.3474 (2) | 0.38287 (10) | 0.0268 (6) | |
C14 | 0.0259 (2) | 0.4211 (2) | 0.40728 (10) | 0.0282 (7) | |
H14 | 0.0256 | 0.4756 | 0.3935 | 0.034* | |
C14A | 0.0287 (2) | 0.4159 (2) | 0.45268 (11) | 0.0282 (7) | |
C15 | 0.0243 (3) | 0.4892 (2) | 0.47997 (12) | 0.0332 (7) | |
H15 | 0.0226 | 0.5447 | 0.4674 | 0.040* | |
C16 | 0.0225 (3) | 0.4814 (3) | 0.52403 (12) | 0.0363 (8) | |
C17 | 0.0282 (3) | 0.3981 (3) | 0.54256 (11) | 0.0382 (8) | |
H17 | 0.0286 | 0.3923 | 0.5731 | 0.046* | |
C18 | 0.0332 (3) | 0.3261 (2) | 0.51731 (11) | 0.0348 (7) | |
H18 | 0.0371 | 0.2710 | 0.5304 | 0.042* | |
C18A | 0.0325 (2) | 0.3337 (2) | 0.47186 (11) | 0.0290 (7) | |
C137 | 0.0188 (3) | 0.3476 (2) | 0.33422 (10) | 0.0302 (7) | |
H13A | 0.0764 | 0.3171 | 0.3220 | 0.036* | |
H13B | −0.0418 | 0.3184 | 0.3243 | 0.036* | |
O131 | 0.0187 (2) | 0.43457 (15) | 0.32062 (7) | 0.0346 (5) | |
C131 | 0.0188 (3) | 0.4508 (2) | 0.27728 (10) | 0.0277 (7) | |
C132 | 0.0243 (3) | 0.5371 (2) | 0.26405 (10) | 0.0284 (7) | |
C133 | 0.0259 (3) | 0.5540 (2) | 0.21978 (11) | 0.0338 (8) | |
H133 | 0.0303 | 0.6119 | 0.2103 | 0.041* | |
C134 | 0.0215 (3) | 0.4895 (3) | 0.18938 (11) | 0.0404 (9) | |
H134 | 0.0230 | 0.5027 | 0.1594 | 0.048* | |
C135 | 0.0147 (3) | 0.4051 (3) | 0.20307 (12) | 0.0391 (8) | |
H135 | 0.0107 | 0.3602 | 0.1824 | 0.047* | |
C136 | 0.0138 (3) | 0.3858 (2) | 0.24656 (11) | 0.0349 (8) | |
H136 | 0.0097 | 0.3276 | 0.2556 | 0.042* | |
C138 | 0.0272 (3) | 0.6138 (2) | 0.29250 (11) | 0.0318 (7) | |
O138 | 0.0287 (3) | 0.68600 (18) | 0.27853 (9) | 0.0590 (8) | |
O139 | 0.0286 (2) | 0.59794 (16) | 0.33477 (8) | 0.0362 (6) | |
C139 | 0.0327 (3) | 0.6724 (3) | 0.36214 (12) | 0.0412 (9) | |
H19A | 0.0351 | 0.6543 | 0.3925 | 0.062* | |
H19B | −0.0259 | 0.7077 | 0.3574 | 0.062* | |
H19C | 0.0917 | 0.7058 | 0.3553 | 0.062* | |
C161 | 0.0161 (4) | 0.5585 (3) | 0.55315 (13) | 0.0489 (10) | |
H16A | 0.0696 | 0.5566 | 0.5743 | 0.073* | |
H16B | −0.0473 | 0.5583 | 0.5683 | 0.073* | |
H16C | 0.0217 | 0.6109 | 0.5358 | 0.073* | |
N21 | 0.2866 (2) | 0.67705 (19) | 0.53534 (10) | 0.0345 (6) | |
C22 | 0.2884 (3) | 0.6675 (2) | 0.49411 (11) | 0.0311 (7) | |
Cl22 | 0.30603 (8) | 0.76266 (6) | 0.46423 (3) | 0.0463 (2) | |
C23 | 0.2803 (2) | 0.5902 (2) | 0.47028 (11) | 0.0297 (7) | |
C24 | 0.2724 (3) | 0.5170 (2) | 0.49451 (11) | 0.0312 (7) | |
H24 | 0.2675 | 0.4628 | 0.4806 | 0.037* | |
C24A | 0.2716 (3) | 0.5217 (2) | 0.54036 (11) | 0.0302 (7) | |
C25 | 0.2632 (3) | 0.4488 (2) | 0.56743 (12) | 0.0359 (8) | |
H25 | 0.2604 | 0.3933 | 0.5548 | 0.043* | |
C26 | 0.2590 (3) | 0.4568 (3) | 0.61136 (13) | 0.0406 (9) | |
C27 | 0.2650 (3) | 0.5396 (3) | 0.62980 (13) | 0.0434 (9) | |
H27 | 0.2622 | 0.5453 | 0.6603 | 0.052* | |
C28 | 0.2746 (3) | 0.6112 (3) | 0.60521 (12) | 0.0388 (8) | |
H28 | 0.2794 | 0.6660 | 0.6186 | 0.047* | |
C28A | 0.2774 (3) | 0.6041 (2) | 0.55952 (12) | 0.0332 (7) | |
C237 | 0.2795 (3) | 0.5903 (2) | 0.42186 (11) | 0.0320 (7) | |
H23A | 0.2233 | 0.6245 | 0.4110 | 0.038* | |
H23B | 0.3411 | 0.6158 | 0.4106 | 0.038* | |
O231 | 0.2709 (2) | 0.50396 (16) | 0.40813 (8) | 0.0375 (6) | |
C231 | 0.2748 (3) | 0.4863 (2) | 0.36514 (11) | 0.0301 (7) | |
C232 | 0.2748 (3) | 0.3993 (2) | 0.35269 (11) | 0.0294 (7) | |
C233 | 0.2777 (3) | 0.3806 (2) | 0.30865 (12) | 0.0367 (8) | |
H233 | 0.2774 | 0.3223 | 0.2998 | 0.044* | |
C234 | 0.2811 (3) | 0.4434 (3) | 0.27777 (12) | 0.0392 (9) | |
H234 | 0.2836 | 0.4286 | 0.2480 | 0.047* | |
C235 | 0.2810 (3) | 0.5288 (3) | 0.29027 (12) | 0.0383 (8) | |
H235 | 0.2827 | 0.5727 | 0.2690 | 0.046* | |
C236 | 0.2782 (3) | 0.5503 (2) | 0.33367 (12) | 0.0330 (7) | |
H236 | 0.2787 | 0.6090 | 0.3421 | 0.040* | |
C238 | 0.2727 (3) | 0.3238 (2) | 0.38217 (12) | 0.0331 (8) | |
O238 | 0.2553 (3) | 0.25274 (18) | 0.36991 (10) | 0.0546 (8) | |
O239 | 0.2936 (2) | 0.34248 (17) | 0.42314 (8) | 0.0417 (6) | |
C239 | 0.2981 (3) | 0.2700 (3) | 0.45206 (13) | 0.0485 (10) | |
H29A | 0.3414 | 0.2260 | 0.4398 | 0.073* | |
H29B | 0.2319 | 0.2462 | 0.4559 | 0.073* | |
H29C | 0.3241 | 0.2885 | 0.4801 | 0.073* | |
C261 | 0.2477 (4) | 0.3792 (3) | 0.64007 (14) | 0.0528 (11) | |
H26A | 0.3075 | 0.3716 | 0.6574 | 0.079* | |
H26B | 0.2372 | 0.3281 | 0.6222 | 0.079* | |
H26C | 0.1912 | 0.3873 | 0.6593 | 0.079* | |
N31 | 0.5271 (2) | 0.39181 (18) | 0.44626 (9) | 0.0282 (6) | |
C32 | 0.5293 (2) | 0.3996 (2) | 0.40484 (10) | 0.0272 (7) | |
Cl32 | 0.53360 (8) | 0.30319 (5) | 0.37552 (3) | 0.0403 (2) | |
C33 | 0.5300 (2) | 0.4771 (2) | 0.38069 (10) | 0.0253 (6) | |
C34 | 0.5317 (2) | 0.5512 (2) | 0.40443 (10) | 0.0272 (7) | |
H34 | 0.5335 | 0.6052 | 0.3902 | 0.033* | |
C34A | 0.5309 (3) | 0.5474 (2) | 0.44993 (11) | 0.0277 (7) | |
C35 | 0.5330 (3) | 0.6216 (2) | 0.47646 (12) | 0.0345 (8) | |
H35 | 0.5362 | 0.6766 | 0.4633 | 0.041* | |
C36 | 0.5305 (3) | 0.6157 (3) | 0.52091 (12) | 0.0387 (8) | |
C37 | 0.5264 (3) | 0.5331 (3) | 0.53988 (11) | 0.0401 (8) | |
H37 | 0.5248 | 0.5285 | 0.5705 | 0.048* | |
C38 | 0.5248 (3) | 0.4602 (3) | 0.51574 (11) | 0.0356 (8) | |
H38 | 0.5219 | 0.4057 | 0.5295 | 0.043* | |
C38A | 0.5275 (3) | 0.4658 (2) | 0.46987 (10) | 0.0279 (7) | |
C337 | 0.5297 (3) | 0.4760 (2) | 0.33200 (10) | 0.0261 (6) | |
H33A | 0.5895 | 0.4469 | 0.3210 | 0.031* | |
H33B | 0.4711 | 0.4450 | 0.3211 | 0.031* | |
O331 | 0.5278 (2) | 0.56258 (14) | 0.31813 (7) | 0.0317 (5) | |
C331 | 0.5256 (2) | 0.5789 (2) | 0.27513 (10) | 0.0265 (6) | |
C332 | 0.5200 (3) | 0.6657 (2) | 0.26216 (10) | 0.0299 (7) | |
C333 | 0.5204 (3) | 0.6837 (2) | 0.21809 (11) | 0.0368 (8) | |
H333 | 0.5178 | 0.7418 | 0.2089 | 0.044* | |
C334 | 0.5244 (3) | 0.6196 (3) | 0.18732 (11) | 0.0417 (9) | |
H334 | 0.5254 | 0.6336 | 0.1574 | 0.050* | |
C335 | 0.5269 (3) | 0.5350 (2) | 0.20050 (11) | 0.0372 (8) | |
H335 | 0.5282 | 0.4905 | 0.1795 | 0.045* | |
C336 | 0.5277 (3) | 0.5144 (2) | 0.24398 (11) | 0.0316 (7) | |
H336 | 0.5297 | 0.4560 | 0.2527 | 0.038* | |
C338 | 0.5135 (3) | 0.7414 (2) | 0.29139 (11) | 0.0339 (7) | |
O338 | 0.4943 (3) | 0.81240 (18) | 0.27849 (10) | 0.0545 (8) | |
O339 | 0.5325 (2) | 0.72473 (16) | 0.33255 (8) | 0.0430 (6) | |
C339 | 0.5292 (4) | 0.7983 (3) | 0.36114 (13) | 0.0584 (12) | |
H39A | 0.5762 | 0.8417 | 0.3511 | 0.088* | |
H39B | 0.5466 | 0.7803 | 0.3905 | 0.088* | |
H39C | 0.4627 | 0.8226 | 0.3611 | 0.088* | |
C361 | 0.5325 (4) | 0.6949 (3) | 0.54871 (13) | 0.0520 (11) | |
H36A | 0.5506 | 0.7446 | 0.5310 | 0.078* | |
H36B | 0.5810 | 0.6875 | 0.5719 | 0.078* | |
H36C | 0.4673 | 0.7043 | 0.5614 | 0.078* | |
N41 | 0.7784 (2) | 0.67216 (19) | 0.35785 (9) | 0.0312 (6) | |
C42 | 0.7768 (2) | 0.6643 (2) | 0.31639 (11) | 0.0276 (7) | |
Cl42 | 0.77365 (8) | 0.76085 (5) | 0.28715 (3) | 0.0395 (2) | |
C43 | 0.7776 (2) | 0.5869 (2) | 0.29224 (11) | 0.0265 (7) | |
C44 | 0.7803 (2) | 0.5131 (2) | 0.31580 (11) | 0.0283 (7) | |
H44 | 0.7824 | 0.4593 | 0.3014 | 0.034* | |
C44A | 0.7802 (2) | 0.5158 (2) | 0.36136 (11) | 0.0278 (7) | |
C45 | 0.7793 (3) | 0.4418 (2) | 0.38798 (12) | 0.0338 (8) | |
H45 | 0.7787 | 0.3867 | 0.3749 | 0.041* | |
C46 | 0.7792 (3) | 0.4481 (3) | 0.43207 (13) | 0.0371 (9) | |
C47 | 0.7801 (3) | 0.5302 (3) | 0.45138 (12) | 0.0393 (9) | |
H47 | 0.7802 | 0.5347 | 0.4820 | 0.047* | |
C48 | 0.7811 (3) | 0.6034 (3) | 0.42712 (12) | 0.0371 (8) | |
H48 | 0.7825 | 0.6578 | 0.4409 | 0.045* | |
C48A | 0.7799 (2) | 0.5982 (2) | 0.38153 (10) | 0.0284 (7) | |
C437 | 0.7759 (3) | 0.5886 (2) | 0.24373 (10) | 0.0287 (7) | |
H43A | 0.7172 | 0.6200 | 0.2333 | 0.034* | |
H43B | 0.8355 | 0.6176 | 0.2325 | 0.034* | |
O431 | 0.77309 (19) | 0.50187 (15) | 0.22965 (8) | 0.0334 (5) | |
C431 | 0.7656 (3) | 0.4859 (2) | 0.18670 (11) | 0.0294 (7) | |
C432 | 0.7540 (2) | 0.4005 (2) | 0.17336 (11) | 0.0314 (7) | |
C433 | 0.7493 (3) | 0.3835 (2) | 0.12886 (12) | 0.0388 (8) | |
H433 | 0.7435 | 0.3257 | 0.1194 | 0.047* | |
C434 | 0.7528 (3) | 0.4479 (3) | 0.09854 (12) | 0.0452 (10) | |
H434 | 0.7488 | 0.4348 | 0.0686 | 0.054* | |
C435 | 0.7621 (3) | 0.5321 (3) | 0.11217 (12) | 0.0420 (9) | |
H435 | 0.7647 | 0.5770 | 0.0915 | 0.050* | |
C436 | 0.7678 (3) | 0.5512 (2) | 0.15565 (12) | 0.0353 (8) | |
H436 | 0.7732 | 0.6093 | 0.1646 | 0.042* | |
C438 | 0.7472 (3) | 0.3232 (2) | 0.20179 (12) | 0.0347 (8) | |
O438 | 0.7358 (3) | 0.25227 (18) | 0.18788 (10) | 0.0560 (8) | |
O439 | 0.7541 (2) | 0.33994 (16) | 0.24416 (8) | 0.0404 (6) | |
C439 | 0.7475 (4) | 0.2656 (3) | 0.27155 (13) | 0.0501 (10) | |
H49A | 0.7496 | 0.2835 | 0.3019 | 0.075* | |
H49B | 0.8030 | 0.2272 | 0.2656 | 0.075* | |
H49C | 0.6856 | 0.2355 | 0.2659 | 0.075* | |
C461 | 0.7757 (3) | 0.3687 (3) | 0.46052 (14) | 0.0498 (11) | |
H46A | 0.7075 | 0.3576 | 0.4693 | 0.075* | |
H46B | 0.8163 | 0.3780 | 0.4863 | 0.075* | |
H46C | 0.8009 | 0.3193 | 0.4444 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0385 (15) | 0.0228 (13) | 0.0289 (13) | 0.0008 (12) | −0.0018 (12) | 0.0024 (11) |
C12 | 0.0348 (17) | 0.0208 (15) | 0.0324 (16) | 0.0002 (14) | −0.0029 (14) | −0.0009 (13) |
Cl12 | 0.0731 (6) | 0.0208 (4) | 0.0351 (4) | −0.0022 (4) | −0.0056 (4) | −0.0023 (3) |
C13 | 0.0278 (15) | 0.0240 (16) | 0.0286 (16) | 0.0016 (13) | −0.0003 (13) | 0.0023 (12) |
C14 | 0.0306 (16) | 0.0225 (16) | 0.0315 (16) | −0.0009 (13) | −0.0002 (14) | 0.0040 (13) |
C14A | 0.0254 (15) | 0.0247 (16) | 0.0345 (17) | −0.0018 (13) | −0.0005 (13) | −0.0019 (13) |
C15 | 0.0321 (17) | 0.0271 (17) | 0.0404 (19) | 0.0011 (14) | 0.0004 (15) | −0.0037 (14) |
C16 | 0.0306 (17) | 0.040 (2) | 0.039 (2) | −0.0001 (16) | −0.0027 (15) | −0.0103 (16) |
C17 | 0.0402 (19) | 0.048 (2) | 0.0259 (16) | −0.0039 (18) | −0.0017 (15) | −0.0029 (15) |
C18 | 0.0391 (19) | 0.0345 (18) | 0.0309 (17) | −0.0009 (16) | −0.0023 (15) | 0.0030 (15) |
C18A | 0.0266 (16) | 0.0276 (16) | 0.0329 (17) | −0.0010 (13) | −0.0019 (13) | 0.0001 (14) |
C137 | 0.0413 (18) | 0.0206 (15) | 0.0287 (16) | 0.0009 (14) | −0.0029 (14) | 0.0027 (13) |
O131 | 0.0548 (15) | 0.0209 (11) | 0.0282 (12) | 0.0041 (11) | −0.0016 (11) | 0.0038 (9) |
C131 | 0.0296 (16) | 0.0256 (16) | 0.0279 (16) | 0.0039 (13) | 0.0008 (13) | 0.0048 (13) |
C132 | 0.0284 (16) | 0.0270 (17) | 0.0298 (17) | 0.0045 (14) | 0.0011 (13) | 0.0042 (13) |
C133 | 0.0373 (18) | 0.0323 (18) | 0.0316 (18) | 0.0075 (15) | 0.0034 (15) | 0.0107 (14) |
C134 | 0.049 (2) | 0.046 (2) | 0.0266 (17) | 0.0104 (19) | 0.0010 (16) | 0.0043 (16) |
C135 | 0.049 (2) | 0.0355 (19) | 0.0326 (18) | 0.0083 (17) | −0.0029 (16) | −0.0056 (15) |
C136 | 0.044 (2) | 0.0251 (17) | 0.0359 (18) | 0.0066 (15) | 0.0004 (15) | −0.0002 (14) |
C138 | 0.0357 (18) | 0.0251 (17) | 0.0345 (17) | 0.0045 (14) | −0.0010 (14) | 0.0045 (14) |
O138 | 0.108 (3) | 0.0250 (14) | 0.0440 (16) | 0.0015 (16) | −0.0068 (17) | 0.0038 (12) |
O139 | 0.0511 (15) | 0.0257 (12) | 0.0318 (12) | −0.0007 (11) | −0.0024 (11) | −0.0004 (10) |
C139 | 0.053 (2) | 0.0323 (19) | 0.0382 (19) | −0.0024 (18) | −0.0049 (17) | −0.0082 (16) |
C161 | 0.054 (2) | 0.049 (2) | 0.044 (2) | 0.003 (2) | 0.0007 (19) | −0.0149 (19) |
N21 | 0.0440 (17) | 0.0262 (15) | 0.0332 (15) | 0.0035 (13) | −0.0030 (13) | −0.0036 (12) |
C22 | 0.0377 (18) | 0.0238 (16) | 0.0318 (17) | 0.0025 (14) | −0.0026 (13) | 0.0006 (14) |
Cl22 | 0.0791 (7) | 0.0235 (4) | 0.0363 (4) | 0.0029 (4) | −0.0059 (4) | 0.0019 (4) |
C23 | 0.0307 (16) | 0.0286 (17) | 0.0297 (17) | 0.0046 (14) | −0.0027 (13) | −0.0045 (14) |
C24 | 0.0332 (17) | 0.0237 (16) | 0.0366 (19) | 0.0004 (14) | −0.0022 (14) | −0.0045 (14) |
C24A | 0.0281 (16) | 0.0295 (17) | 0.0330 (18) | −0.0005 (14) | −0.0010 (14) | −0.0025 (14) |
C25 | 0.0371 (19) | 0.0314 (18) | 0.039 (2) | −0.0024 (15) | −0.0011 (15) | 0.0001 (15) |
C26 | 0.040 (2) | 0.045 (2) | 0.037 (2) | −0.0038 (17) | −0.0008 (16) | 0.0092 (17) |
C27 | 0.046 (2) | 0.054 (2) | 0.0295 (18) | −0.0019 (19) | −0.0019 (16) | −0.0007 (17) |
C28 | 0.048 (2) | 0.039 (2) | 0.0296 (18) | 0.0000 (17) | −0.0002 (16) | −0.0060 (15) |
C28A | 0.0322 (17) | 0.0314 (18) | 0.0359 (18) | 0.0022 (15) | −0.0013 (14) | −0.0021 (15) |
C237 | 0.0403 (19) | 0.0230 (16) | 0.0328 (18) | 0.0032 (14) | −0.0021 (14) | −0.0036 (14) |
O231 | 0.0597 (16) | 0.0244 (12) | 0.0285 (13) | −0.0032 (11) | 0.0045 (11) | −0.0034 (10) |
C231 | 0.0297 (16) | 0.0290 (17) | 0.0316 (18) | −0.0023 (14) | −0.0020 (13) | −0.0035 (13) |
C232 | 0.0286 (16) | 0.0276 (17) | 0.0321 (17) | −0.0028 (14) | −0.0032 (13) | −0.0032 (14) |
C233 | 0.042 (2) | 0.0306 (18) | 0.0378 (19) | −0.0064 (16) | −0.0020 (16) | −0.0099 (15) |
C234 | 0.048 (2) | 0.043 (2) | 0.0268 (18) | −0.0062 (18) | −0.0065 (15) | −0.0023 (16) |
C235 | 0.041 (2) | 0.040 (2) | 0.0338 (19) | 0.0003 (16) | −0.0053 (15) | 0.0082 (16) |
C236 | 0.0348 (18) | 0.0275 (17) | 0.0368 (19) | 0.0012 (14) | −0.0039 (15) | 0.0011 (14) |
C238 | 0.0301 (16) | 0.0297 (18) | 0.039 (2) | −0.0025 (14) | 0.0013 (14) | −0.0053 (15) |
O238 | 0.088 (2) | 0.0271 (14) | 0.0490 (17) | −0.0156 (14) | −0.0052 (15) | −0.0007 (13) |
O239 | 0.0632 (18) | 0.0287 (13) | 0.0330 (13) | 0.0012 (12) | −0.0076 (12) | 0.0028 (11) |
C239 | 0.065 (3) | 0.036 (2) | 0.045 (2) | 0.0049 (19) | −0.0081 (19) | 0.0128 (18) |
C261 | 0.061 (3) | 0.049 (3) | 0.048 (2) | −0.005 (2) | 0.001 (2) | 0.015 (2) |
N31 | 0.0335 (14) | 0.0237 (14) | 0.0274 (13) | −0.0006 (12) | −0.0016 (11) | 0.0024 (11) |
C32 | 0.0324 (16) | 0.0188 (15) | 0.0302 (16) | −0.0016 (13) | −0.0026 (14) | −0.0014 (13) |
Cl32 | 0.0723 (6) | 0.0187 (4) | 0.0299 (4) | −0.0005 (4) | −0.0027 (4) | −0.0015 (3) |
C33 | 0.0249 (14) | 0.0211 (15) | 0.0300 (16) | 0.0011 (12) | 0.0012 (13) | 0.0023 (13) |
C34 | 0.0304 (16) | 0.0203 (15) | 0.0308 (16) | 0.0017 (13) | 0.0005 (14) | 0.0026 (12) |
C34A | 0.0262 (16) | 0.0268 (17) | 0.0300 (17) | 0.0016 (13) | −0.0013 (13) | −0.0033 (13) |
C35 | 0.0377 (18) | 0.0281 (17) | 0.0377 (19) | 0.0022 (15) | −0.0022 (15) | −0.0068 (15) |
C36 | 0.0371 (19) | 0.043 (2) | 0.0364 (19) | 0.0025 (17) | −0.0052 (15) | −0.0114 (16) |
C37 | 0.042 (2) | 0.053 (2) | 0.0261 (17) | 0.0016 (18) | −0.0019 (16) | −0.0059 (16) |
C38 | 0.0412 (19) | 0.039 (2) | 0.0270 (17) | 0.0004 (17) | −0.0025 (15) | 0.0027 (15) |
C38A | 0.0277 (16) | 0.0291 (17) | 0.0268 (16) | −0.0011 (13) | −0.0015 (13) | 0.0023 (13) |
C337 | 0.0336 (16) | 0.0178 (14) | 0.0268 (16) | 0.0008 (13) | 0.0005 (13) | 0.0026 (12) |
O331 | 0.0517 (14) | 0.0184 (11) | 0.0251 (11) | −0.0017 (11) | 0.0010 (11) | 0.0016 (9) |
C331 | 0.0296 (15) | 0.0244 (16) | 0.0254 (15) | −0.0011 (13) | −0.0001 (13) | 0.0033 (12) |
C332 | 0.0324 (17) | 0.0255 (16) | 0.0319 (17) | 0.0009 (14) | −0.0019 (14) | 0.0021 (13) |
C333 | 0.045 (2) | 0.0304 (18) | 0.0345 (18) | 0.0046 (16) | −0.0043 (16) | 0.0113 (14) |
C334 | 0.055 (2) | 0.045 (2) | 0.0244 (16) | 0.007 (2) | −0.0042 (16) | 0.0058 (16) |
C335 | 0.045 (2) | 0.038 (2) | 0.0295 (17) | 0.0029 (17) | −0.0036 (16) | −0.0040 (15) |
C336 | 0.0418 (19) | 0.0226 (16) | 0.0304 (17) | −0.0010 (15) | 0.0016 (15) | 0.0016 (13) |
C338 | 0.0391 (19) | 0.0221 (16) | 0.0406 (18) | 0.0006 (15) | −0.0016 (15) | 0.0046 (14) |
O338 | 0.087 (2) | 0.0234 (14) | 0.0528 (17) | 0.0118 (14) | −0.0069 (16) | 0.0045 (12) |
O339 | 0.0746 (19) | 0.0206 (12) | 0.0338 (13) | 0.0021 (12) | −0.0089 (13) | −0.0035 (10) |
C339 | 0.100 (4) | 0.028 (2) | 0.047 (2) | 0.004 (2) | −0.007 (2) | −0.0121 (18) |
C361 | 0.057 (3) | 0.054 (3) | 0.045 (2) | 0.003 (2) | −0.003 (2) | −0.023 (2) |
N41 | 0.0366 (16) | 0.0262 (14) | 0.0308 (14) | −0.0005 (12) | −0.0009 (12) | −0.0026 (12) |
C42 | 0.0324 (17) | 0.0205 (15) | 0.0298 (16) | −0.0022 (13) | −0.0016 (13) | 0.0015 (13) |
Cl42 | 0.0676 (6) | 0.0203 (4) | 0.0306 (4) | −0.0046 (4) | −0.0026 (4) | 0.0015 (3) |
C43 | 0.0280 (16) | 0.0233 (16) | 0.0281 (16) | −0.0012 (13) | −0.0007 (13) | 0.0007 (13) |
C44 | 0.0307 (16) | 0.0229 (16) | 0.0313 (17) | 0.0003 (13) | −0.0012 (13) | −0.0051 (13) |
C44A | 0.0241 (16) | 0.0280 (17) | 0.0314 (17) | 0.0011 (13) | −0.0001 (13) | 0.0028 (14) |
C45 | 0.0330 (18) | 0.0291 (18) | 0.039 (2) | 0.0034 (15) | −0.0007 (15) | 0.0065 (15) |
C46 | 0.0259 (17) | 0.047 (2) | 0.039 (2) | 0.0050 (16) | −0.0011 (15) | 0.0125 (17) |
C47 | 0.040 (2) | 0.052 (2) | 0.0260 (17) | 0.0009 (17) | −0.0003 (15) | 0.0090 (16) |
C48 | 0.041 (2) | 0.039 (2) | 0.0312 (18) | 0.0008 (16) | −0.0028 (15) | −0.0050 (16) |
C48A | 0.0274 (16) | 0.0318 (17) | 0.0260 (16) | −0.0013 (13) | 0.0010 (12) | 0.0002 (14) |
C437 | 0.0382 (18) | 0.0207 (15) | 0.0270 (16) | 0.0016 (14) | 0.0001 (13) | −0.0025 (13) |
O431 | 0.0513 (15) | 0.0210 (12) | 0.0278 (12) | 0.0010 (11) | −0.0005 (11) | −0.0040 (9) |
C431 | 0.0322 (17) | 0.0278 (17) | 0.0282 (16) | 0.0004 (14) | 0.0012 (13) | −0.0039 (13) |
C432 | 0.0329 (18) | 0.0305 (18) | 0.0307 (17) | −0.0020 (14) | 0.0026 (13) | −0.0029 (14) |
C433 | 0.049 (2) | 0.0322 (18) | 0.0356 (19) | −0.0055 (16) | 0.0025 (16) | −0.0107 (16) |
C434 | 0.061 (3) | 0.048 (2) | 0.0262 (18) | −0.004 (2) | 0.0002 (17) | −0.0078 (16) |
C435 | 0.056 (2) | 0.041 (2) | 0.0294 (19) | 0.0004 (19) | 0.0032 (17) | 0.0040 (16) |
C436 | 0.043 (2) | 0.0286 (17) | 0.0338 (19) | −0.0036 (16) | 0.0031 (15) | −0.0020 (15) |
C438 | 0.0402 (19) | 0.0263 (18) | 0.0376 (19) | 0.0000 (15) | −0.0007 (14) | −0.0065 (14) |
O438 | 0.092 (2) | 0.0269 (14) | 0.0488 (17) | −0.0053 (15) | −0.0008 (15) | −0.0079 (13) |
O439 | 0.0629 (17) | 0.0251 (12) | 0.0332 (13) | −0.0066 (11) | −0.0010 (12) | 0.0014 (10) |
C439 | 0.078 (3) | 0.0304 (19) | 0.042 (2) | −0.007 (2) | −0.002 (2) | 0.0069 (17) |
C461 | 0.046 (2) | 0.059 (3) | 0.045 (2) | 0.007 (2) | −0.0015 (19) | 0.026 (2) |
N11—C12 | 1.292 (4) | N31—C32 | 1.287 (4) |
N11—C18A | 1.373 (4) | N31—C38A | 1.365 (4) |
C12—C13 | 1.412 (4) | C32—C33 | 1.420 (4) |
C12—Cl12 | 1.752 (3) | C32—Cl32 | 1.756 (3) |
C13—C14 | 1.375 (4) | C33—C34 | 1.369 (4) |
C13—C137 | 1.507 (4) | C33—C337 | 1.507 (4) |
C14—C14A | 1.408 (4) | C34—C34A | 1.409 (4) |
C14—H14 | 0.9500 | C34—H34 | 0.9500 |
C14A—C18A | 1.414 (5) | C34A—C38A | 1.415 (5) |
C14A—C15 | 1.421 (5) | C34A—C35 | 1.418 (5) |
C15—C16 | 1.369 (5) | C35—C36 | 1.379 (5) |
C15—H15 | 0.9500 | C35—H35 | 0.9500 |
C16—C17 | 1.421 (6) | C36—C37 | 1.415 (6) |
C16—C161 | 1.505 (5) | C36—C361 | 1.506 (5) |
C17—C18 | 1.370 (5) | C37—C38 | 1.360 (5) |
C17—H17 | 0.9500 | C37—H37 | 0.9500 |
C18—C18A | 1.411 (5) | C38—C38A | 1.422 (5) |
C18—H18 | 0.9500 | C38—H38 | 0.9500 |
C137—O131 | 1.419 (4) | C337—O331 | 1.417 (4) |
C137—H13A | 0.9900 | C337—H33A | 0.9900 |
C137—H13B | 0.9900 | C337—H33B | 0.9900 |
O131—C131 | 1.365 (4) | O331—C331 | 1.355 (4) |
C131—C136 | 1.391 (5) | C331—C336 | 1.393 (5) |
C131—C132 | 1.408 (5) | C331—C332 | 1.413 (4) |
C132—C133 | 1.395 (4) | C332—C333 | 1.392 (5) |
C132—C138 | 1.486 (5) | C332—C338 | 1.489 (5) |
C133—C134 | 1.378 (5) | C333—C334 | 1.380 (5) |
C133—H133 | 0.9500 | C333—H333 | 0.9500 |
C134—C135 | 1.386 (6) | C334—C335 | 1.380 (5) |
C134—H134 | 0.9500 | C334—H334 | 0.9500 |
C135—C136 | 1.379 (5) | C335—C336 | 1.383 (5) |
C135—H135 | 0.9500 | C335—H335 | 0.9500 |
C136—H136 | 0.9500 | C336—H336 | 0.9500 |
C138—O138 | 1.205 (4) | C338—O338 | 1.205 (5) |
C138—O139 | 1.331 (4) | C338—O339 | 1.325 (4) |
O139—C139 | 1.437 (4) | O339—C339 | 1.448 (4) |
C139—H19A | 0.9800 | C339—H39A | 0.9800 |
C139—H19B | 0.9800 | C339—H39B | 0.9800 |
C139—H19C | 0.9800 | C339—H39C | 0.9800 |
C161—H16A | 0.9800 | C361—H36A | 0.9800 |
C161—H16B | 0.9800 | C361—H36B | 0.9800 |
C161—H16C | 0.9800 | C361—H36C | 0.9800 |
N21—C22 | 1.284 (4) | N41—C42 | 1.289 (4) |
N21—C28A | 1.367 (5) | N41—C48A | 1.366 (4) |
C22—C23 | 1.417 (5) | C42—C43 | 1.419 (5) |
C22—Cl22 | 1.764 (4) | C42—Cl42 | 1.757 (3) |
C23—C24 | 1.369 (5) | C43—C44 | 1.362 (5) |
C23—C237 | 1.498 (5) | C43—C437 | 1.501 (4) |
C24—C24A | 1.420 (5) | C44—C44A | 1.410 (5) |
C24—H24 | 0.9500 | C44—H44 | 0.9500 |
C24A—C25 | 1.415 (5) | C44A—C45 | 1.417 (5) |
C24A—C28A | 1.418 (5) | C44A—C48A | 1.429 (5) |
C25—C26 | 1.366 (5) | C45—C46 | 1.368 (5) |
C25—H25 | 0.9500 | C45—H45 | 0.9500 |
C26—C27 | 1.413 (6) | C46—C47 | 1.413 (6) |
C26—C261 | 1.509 (5) | C46—C461 | 1.519 (5) |
C27—C28 | 1.357 (6) | C47—C48 | 1.365 (5) |
C27—H27 | 0.9500 | C47—H47 | 0.9500 |
C28—C28A | 1.419 (5) | C48—C48A | 1.413 (5) |
C28—H28 | 0.9500 | C48—H48 | 0.9500 |
C237—O231 | 1.416 (4) | C437—O431 | 1.421 (4) |
C237—H23A | 0.9900 | C437—H43A | 0.9900 |
C237—H23B | 0.9900 | C437—H43B | 0.9900 |
O231—C231 | 1.359 (4) | O431—C431 | 1.356 (4) |
C231—C236 | 1.395 (5) | C431—C436 | 1.400 (5) |
C231—C232 | 1.409 (5) | C431—C432 | 1.403 (5) |
C232—C233 | 1.394 (5) | C432—C433 | 1.404 (5) |
C232—C238 | 1.489 (5) | C432—C438 | 1.494 (5) |
C233—C234 | 1.368 (5) | C433—C434 | 1.375 (6) |
C233—H233 | 0.9500 | C433—H433 | 0.9500 |
C234—C235 | 1.386 (6) | C434—C435 | 1.384 (6) |
C234—H234 | 0.9500 | C434—H434 | 0.9500 |
C235—C236 | 1.384 (5) | C435—C436 | 1.380 (5) |
C235—H235 | 0.9500 | C435—H435 | 0.9500 |
C236—H236 | 0.9500 | C436—H436 | 0.9500 |
C238—O238 | 1.195 (4) | C438—O438 | 1.196 (5) |
C238—O239 | 1.331 (4) | C438—O439 | 1.340 (4) |
O239—C239 | 1.443 (4) | O439—C439 | 1.438 (4) |
C239—H29A | 0.9800 | C439—H49A | 0.9800 |
C239—H29B | 0.9800 | C439—H49B | 0.9800 |
C239—H29C | 0.9800 | C439—H49C | 0.9800 |
C261—H26A | 0.9800 | C461—H46A | 0.9800 |
C261—H26B | 0.9800 | C461—H46B | 0.9800 |
C261—H26C | 0.9800 | C461—H46C | 0.9800 |
C12—N11—C18A | 116.9 (3) | C32—N31—C38A | 116.9 (3) |
N11—C12—C13 | 127.0 (3) | N31—C32—C33 | 127.2 (3) |
N11—C12—Cl12 | 115.4 (3) | N31—C32—Cl32 | 115.7 (2) |
C13—C12—Cl12 | 117.6 (2) | C33—C32—Cl32 | 117.1 (2) |
C14—C13—C12 | 116.1 (3) | C34—C33—C32 | 115.8 (3) |
C14—C13—C137 | 123.2 (3) | C34—C33—C337 | 123.1 (3) |
C12—C13—C137 | 120.7 (3) | C32—C33—C337 | 121.1 (3) |
C13—C14—C14A | 120.0 (3) | C33—C34—C34A | 120.0 (3) |
C13—C14—H14 | 120.0 | C33—C34—H34 | 120.0 |
C14A—C14—H14 | 120.0 | C34A—C34—H34 | 120.0 |
C14—C14A—C18A | 118.2 (3) | C34—C34A—C38A | 118.3 (3) |
C14—C14A—C15 | 123.1 (3) | C34—C34A—C35 | 123.0 (3) |
C18A—C14A—C15 | 118.7 (3) | C38A—C34A—C35 | 118.8 (3) |
C16—C15—C14A | 121.4 (3) | C36—C35—C34A | 121.5 (3) |
C16—C15—H15 | 119.3 | C36—C35—H35 | 119.3 |
C14A—C15—H15 | 119.3 | C34A—C35—H35 | 119.3 |
C15—C16—C17 | 118.8 (3) | C35—C36—C37 | 118.4 (3) |
C15—C16—C161 | 121.8 (4) | C35—C36—C361 | 120.9 (4) |
C17—C16—C161 | 119.4 (3) | C37—C36—C361 | 120.6 (3) |
C18—C17—C16 | 121.4 (3) | C38—C37—C36 | 122.2 (3) |
C18—C17—H17 | 119.3 | C38—C37—H37 | 118.9 |
C16—C17—H17 | 119.3 | C36—C37—H37 | 118.9 |
C17—C18—C18A | 119.9 (3) | C37—C38—C38A | 119.7 (4) |
C17—C18—H18 | 120.0 | C37—C38—H38 | 120.1 |
C18A—C18—H18 | 120.0 | C38A—C38—H38 | 120.1 |
N11—C18A—C18 | 118.5 (3) | N31—C38A—C34A | 121.8 (3) |
N11—C18A—C14A | 121.8 (3) | N31—C38A—C38 | 118.8 (3) |
C18—C18A—C14A | 119.7 (3) | C34A—C38A—C38 | 119.4 (3) |
O131—C137—C13 | 107.4 (3) | O331—C337—C33 | 107.0 (3) |
O131—C137—H13A | 110.2 | O331—C337—H33A | 110.3 |
C13—C137—H13A | 110.2 | C33—C337—H33A | 110.3 |
O131—C137—H13B | 110.2 | O331—C337—H33B | 110.3 |
C13—C137—H13B | 110.2 | C33—C337—H33B | 110.3 |
H13A—C137—H13B | 108.5 | H33A—C337—H33B | 108.6 |
C131—O131—C137 | 117.9 (2) | C331—O331—C337 | 118.5 (2) |
O131—C131—C136 | 122.4 (3) | O331—C331—C336 | 122.9 (3) |
O131—C131—C132 | 117.6 (3) | O331—C331—C332 | 117.4 (3) |
C136—C131—C132 | 120.0 (3) | C336—C331—C332 | 119.7 (3) |
C133—C132—C131 | 117.8 (3) | C333—C332—C331 | 118.1 (3) |
C133—C132—C138 | 115.4 (3) | C333—C332—C338 | 115.9 (3) |
C131—C132—C138 | 126.8 (3) | C331—C332—C338 | 126.1 (3) |
C134—C133—C132 | 122.1 (3) | C334—C333—C332 | 122.0 (3) |
C134—C133—H133 | 119.0 | C334—C333—H333 | 119.0 |
C132—C133—H133 | 119.0 | C332—C333—H333 | 119.0 |
C133—C134—C135 | 119.2 (3) | C335—C334—C333 | 119.2 (3) |
C133—C134—H134 | 120.4 | C335—C334—H334 | 120.4 |
C135—C134—H134 | 120.4 | C333—C334—H334 | 120.4 |
C136—C135—C134 | 120.4 (3) | C334—C335—C336 | 120.6 (3) |
C136—C135—H135 | 119.8 | C334—C335—H335 | 119.7 |
C134—C135—H135 | 119.8 | C336—C335—H335 | 119.7 |
C135—C136—C131 | 120.5 (3) | C335—C336—C331 | 120.3 (3) |
C135—C136—H136 | 119.8 | C335—C336—H336 | 119.8 |
C131—C136—H136 | 119.8 | C331—C336—H336 | 119.8 |
O138—C138—O139 | 121.7 (3) | O338—C338—O339 | 122.7 (3) |
O138—C138—C132 | 122.6 (3) | O338—C338—C332 | 122.6 (3) |
O139—C138—C132 | 115.6 (3) | O339—C338—C332 | 114.6 (3) |
C138—O139—C139 | 115.4 (3) | C338—O339—C339 | 115.2 (3) |
O139—C139—H19A | 109.5 | O339—C339—H39A | 109.5 |
O139—C139—H19B | 109.5 | O339—C339—H39B | 109.5 |
H19A—C139—H19B | 109.5 | H39A—C339—H39B | 109.5 |
O139—C139—H19C | 109.5 | O339—C339—H39C | 109.5 |
H19A—C139—H19C | 109.5 | H39A—C339—H39C | 109.5 |
H19B—C139—H19C | 109.5 | H39B—C339—H39C | 109.5 |
C16—C161—H16A | 109.5 | C36—C361—H36A | 109.5 |
C16—C161—H16B | 109.5 | C36—C361—H36B | 109.5 |
H16A—C161—H16B | 109.5 | H36A—C361—H36B | 109.5 |
C16—C161—H16C | 109.5 | C36—C361—H36C | 109.5 |
H16A—C161—H16C | 109.5 | H36A—C361—H36C | 109.5 |
H16B—C161—H16C | 109.5 | H36B—C361—H36C | 109.5 |
C22—N21—C28A | 116.7 (3) | C42—N41—C48A | 117.0 (3) |
N21—C22—C23 | 127.9 (3) | N41—C42—C43 | 127.2 (3) |
N21—C22—Cl22 | 115.2 (3) | N41—C42—Cl42 | 115.6 (3) |
C23—C22—Cl22 | 116.9 (3) | C43—C42—Cl42 | 117.2 (2) |
C24—C23—C22 | 115.5 (3) | C44—C43—C42 | 115.9 (3) |
C24—C23—C237 | 123.2 (3) | C44—C43—C437 | 123.4 (3) |
C22—C23—C237 | 121.3 (3) | C42—C43—C437 | 120.7 (3) |
C23—C24—C24A | 120.3 (3) | C43—C44—C44A | 120.6 (3) |
C23—C24—H24 | 119.8 | C43—C44—H44 | 119.7 |
C24A—C24—H24 | 119.8 | C44A—C44—H44 | 119.7 |
C25—C24A—C28A | 119.0 (3) | C44—C44A—C45 | 123.8 (3) |
C25—C24A—C24 | 123.4 (3) | C44—C44A—C48A | 117.6 (3) |
C28A—C24A—C24 | 117.6 (3) | C45—C44A—C48A | 118.5 (3) |
C26—C25—C24A | 121.3 (4) | C46—C45—C44A | 121.5 (4) |
C26—C25—H25 | 119.4 | C46—C45—H45 | 119.3 |
C24A—C25—H25 | 119.4 | C44A—C45—H45 | 119.3 |
C25—C26—C27 | 118.8 (4) | C45—C46—C47 | 119.1 (3) |
C25—C26—C261 | 121.1 (4) | C45—C46—C461 | 121.4 (4) |
C27—C26—C261 | 120.0 (4) | C47—C46—C461 | 119.5 (4) |
C28—C27—C26 | 122.0 (4) | C48—C47—C46 | 121.6 (3) |
C28—C27—H27 | 119.0 | C48—C47—H47 | 119.2 |
C26—C27—H27 | 119.0 | C46—C47—H47 | 119.2 |
C27—C28—C28A | 119.8 (4) | C47—C48—C48A | 120.1 (4) |
C27—C28—H28 | 120.1 | C47—C48—H48 | 119.9 |
C28A—C28—H28 | 120.1 | C48A—C48—H48 | 119.9 |
N21—C28A—C24A | 122.0 (3) | N41—C48A—C48 | 119.2 (3) |
N21—C28A—C28 | 118.9 (3) | N41—C48A—C44A | 121.7 (3) |
C24A—C28A—C28 | 119.1 (3) | C48—C48A—C44A | 119.1 (3) |
O231—C237—C23 | 107.4 (3) | O431—C437—C43 | 106.8 (3) |
O231—C237—H23A | 110.2 | O431—C437—H43A | 110.4 |
C23—C237—H23A | 110.2 | C43—C437—H43A | 110.4 |
O231—C237—H23B | 110.2 | O431—C437—H43B | 110.4 |
C23—C237—H23B | 110.2 | C43—C437—H43B | 110.4 |
H23A—C237—H23B | 108.5 | H43A—C437—H43B | 108.6 |
C231—O231—C237 | 118.9 (3) | C431—O431—C437 | 118.5 (3) |
O231—C231—C236 | 122.7 (3) | O431—C431—C436 | 122.6 (3) |
O231—C231—C232 | 117.5 (3) | O431—C431—C432 | 118.1 (3) |
C236—C231—C232 | 119.8 (3) | C436—C431—C432 | 119.4 (3) |
C233—C232—C231 | 117.9 (3) | C431—C432—C433 | 118.2 (3) |
C233—C232—C238 | 115.7 (3) | C431—C432—C438 | 126.8 (3) |
C231—C232—C238 | 126.3 (3) | C433—C432—C438 | 115.0 (3) |
C234—C233—C232 | 122.2 (4) | C434—C433—C432 | 122.0 (3) |
C234—C233—H233 | 118.9 | C434—C433—H433 | 119.0 |
C232—C233—H233 | 118.9 | C432—C433—H433 | 119.0 |
C233—C234—C235 | 119.5 (3) | C433—C434—C435 | 119.2 (3) |
C233—C234—H234 | 120.3 | C433—C434—H434 | 120.4 |
C235—C234—H234 | 120.3 | C435—C434—H434 | 120.4 |
C236—C235—C234 | 120.2 (3) | C436—C435—C434 | 120.5 (4) |
C236—C235—H235 | 119.9 | C436—C435—H435 | 119.8 |
C234—C235—H235 | 119.9 | C434—C435—H435 | 119.8 |
C235—C236—C231 | 120.3 (3) | C435—C436—C431 | 120.7 (3) |
C235—C236—H236 | 119.8 | C435—C436—H436 | 119.6 |
C231—C236—H236 | 119.8 | C431—C436—H436 | 119.6 |
O238—C238—O239 | 123.2 (4) | O438—C438—O439 | 122.7 (4) |
O238—C238—C232 | 122.8 (3) | O438—C438—C432 | 122.8 (3) |
O239—C238—C232 | 114.0 (3) | O439—C438—C432 | 114.5 (3) |
C238—O239—C239 | 115.4 (3) | C438—O439—C439 | 114.6 (3) |
O239—C239—H29A | 109.5 | O439—C439—H49A | 109.5 |
O239—C239—H29B | 109.5 | O439—C439—H49B | 109.5 |
H29A—C239—H29B | 109.5 | H49A—C439—H49B | 109.5 |
O239—C239—H29C | 109.5 | O439—C439—H49C | 109.5 |
H29A—C239—H29C | 109.5 | H49A—C439—H49C | 109.5 |
H29B—C239—H29C | 109.5 | H49B—C439—H49C | 109.5 |
C26—C261—H26A | 109.5 | C46—C461—H46A | 109.5 |
C26—C261—H26B | 109.5 | C46—C461—H46B | 109.5 |
H26A—C261—H26B | 109.5 | H46A—C461—H46B | 109.5 |
C26—C261—H26C | 109.5 | C46—C461—H46C | 109.5 |
H26A—C261—H26C | 109.5 | H46A—C461—H46C | 109.5 |
H26B—C261—H26C | 109.5 | H46B—C461—H46C | 109.5 |
C18A—N11—C12—C13 | 1.6 (6) | C38A—N31—C32—C33 | −1.5 (5) |
C18A—N11—C12—Cl12 | −178.1 (2) | C38A—N31—C32—Cl32 | 177.6 (2) |
N11—C12—C13—C14 | −1.1 (5) | N31—C32—C33—C34 | 2.3 (5) |
Cl12—C12—C13—C14 | 178.6 (3) | Cl32—C32—C33—C34 | −176.7 (3) |
N11—C12—C13—C137 | 179.3 (3) | N31—C32—C33—C337 | −178.2 (3) |
Cl12—C12—C13—C137 | −1.1 (5) | Cl32—C32—C33—C337 | 2.8 (4) |
C12—C13—C14—C14A | −0.9 (5) | C32—C33—C34—C34A | −1.1 (5) |
C137—C13—C14—C14A | 178.8 (3) | C337—C33—C34—C34A | 179.4 (3) |
C13—C14—C14A—C18A | 2.1 (5) | C33—C34—C34A—C38A | −0.5 (5) |
C13—C14—C14A—C15 | −175.6 (3) | C33—C34—C34A—C35 | 179.8 (3) |
C14—C14A—C15—C16 | 176.9 (4) | C34—C34A—C35—C36 | 178.9 (3) |
C18A—C14A—C15—C16 | −0.7 (5) | C38A—C34A—C35—C36 | −0.8 (6) |
C14A—C15—C16—C17 | 1.9 (6) | C34A—C35—C36—C37 | 0.4 (6) |
C14A—C15—C16—C161 | −178.9 (3) | C34A—C35—C36—C361 | −179.9 (4) |
C15—C16—C17—C18 | −1.5 (6) | C35—C36—C37—C38 | −0.1 (6) |
C161—C16—C17—C18 | 179.3 (4) | C361—C36—C37—C38 | −179.8 (4) |
C16—C17—C18—C18A | −0.1 (6) | C36—C37—C38—C38A | 0.2 (6) |
C12—N11—C18A—C18 | 176.9 (3) | C32—N31—C38A—C34A | −0.4 (5) |
C12—N11—C18A—C14A | −0.2 (5) | C32—N31—C38A—C38 | 179.8 (3) |
C17—C18—C18A—N11 | −175.8 (3) | C34—C34A—C38A—N31 | 1.4 (5) |
C17—C18—C18A—C14A | 1.3 (5) | C35—C34A—C38A—N31 | −178.9 (3) |
C14—C14A—C18A—N11 | −1.6 (5) | C34—C34A—C38A—C38 | −178.9 (3) |
C15—C14A—C18A—N11 | 176.2 (3) | C35—C34A—C38A—C38 | 0.9 (5) |
C14—C14A—C18A—C18 | −178.6 (3) | C37—C38—C38A—N31 | 179.2 (3) |
C15—C14A—C18A—C18 | −0.9 (5) | C37—C38—C38A—C34A | −0.6 (6) |
C14—C13—C137—O131 | 0.9 (5) | C34—C33—C337—O331 | −2.1 (4) |
C12—C13—C137—O131 | −179.4 (3) | C32—C33—C337—O331 | 178.4 (3) |
C13—C137—O131—C131 | 177.2 (3) | C33—C337—O331—C331 | −178.9 (3) |
C137—O131—C131—C136 | 3.5 (5) | C337—O331—C331—C336 | −1.8 (5) |
C137—O131—C131—C132 | −176.5 (3) | C337—O331—C331—C332 | 177.7 (3) |
O131—C131—C132—C133 | 179.1 (3) | O331—C331—C332—C333 | 178.2 (3) |
C136—C131—C132—C133 | −0.9 (5) | C336—C331—C332—C333 | −2.3 (5) |
O131—C131—C132—C138 | −1.9 (5) | O331—C331—C332—C338 | −1.8 (5) |
C136—C131—C132—C138 | 178.1 (3) | C336—C331—C332—C338 | 177.7 (3) |
C131—C132—C133—C134 | 0.6 (6) | C331—C332—C333—C334 | 1.1 (6) |
C138—C132—C133—C134 | −178.6 (3) | C338—C332—C333—C334 | −178.9 (4) |
C132—C133—C134—C135 | 0.3 (6) | C332—C333—C334—C335 | 0.8 (6) |
C133—C134—C135—C136 | −0.9 (6) | C333—C334—C335—C336 | −1.5 (6) |
C134—C135—C136—C131 | 0.5 (6) | C334—C335—C336—C331 | 0.2 (6) |
O131—C131—C136—C135 | −179.6 (3) | O331—C331—C336—C335 | −178.9 (3) |
C132—C131—C136—C135 | 0.4 (6) | C332—C331—C336—C335 | 1.7 (5) |
C133—C132—C138—O138 | 1.6 (6) | C333—C332—C338—O338 | 11.3 (6) |
C131—C132—C138—O138 | −177.5 (4) | C331—C332—C338—O338 | −168.7 (4) |
C133—C132—C138—O139 | −178.1 (3) | C333—C332—C338—O339 | −167.4 (3) |
C131—C132—C138—O139 | 2.8 (6) | C331—C332—C338—O339 | 12.7 (5) |
O138—C138—O139—C139 | −0.5 (6) | O338—C338—O339—C339 | −0.3 (6) |
C132—C138—O139—C139 | 179.2 (3) | C332—C338—O339—C339 | 178.3 (4) |
C28A—N21—C22—C23 | 1.2 (6) | C48A—N41—C42—C43 | −0.9 (5) |
C28A—N21—C22—Cl22 | −177.2 (3) | C48A—N41—C42—Cl42 | 179.4 (2) |
N21—C22—C23—C24 | −2.1 (5) | N41—C42—C43—C44 | 0.0 (5) |
Cl22—C22—C23—C24 | 176.4 (3) | Cl42—C42—C43—C44 | 179.8 (3) |
N21—C22—C23—C237 | 177.4 (3) | N41—C42—C43—C437 | −179.7 (3) |
Cl22—C22—C23—C237 | −4.2 (4) | Cl42—C42—C43—C437 | 0.1 (4) |
C22—C23—C24—C24A | 0.7 (5) | C42—C43—C44—C44A | 1.3 (5) |
C237—C23—C24—C24A | −178.7 (3) | C437—C43—C44—C44A | −179.0 (3) |
C23—C24—C24A—C25 | 179.7 (3) | C43—C44—C44A—C45 | 177.5 (3) |
C23—C24—C24A—C28A | 1.1 (5) | C43—C44—C44A—C48A | −1.7 (5) |
C28A—C24A—C25—C26 | 1.0 (5) | C44—C44A—C45—C46 | −180.0 (3) |
C24—C24A—C25—C26 | −177.5 (4) | C48A—C44A—C45—C46 | −0.8 (5) |
C24A—C25—C26—C27 | −1.1 (6) | C44A—C45—C46—C47 | −0.1 (6) |
C24A—C25—C26—C261 | 178.6 (4) | C44A—C45—C46—C461 | 178.5 (3) |
C25—C26—C27—C28 | 0.1 (6) | C45—C46—C47—C48 | 0.1 (6) |
C261—C26—C27—C28 | −179.6 (4) | C461—C46—C47—C48 | −178.5 (4) |
C26—C27—C28—C28A | 0.9 (6) | C46—C47—C48—C48A | 0.8 (6) |
C22—N21—C28A—C24A | 1.0 (5) | C42—N41—C48A—C48 | −179.6 (3) |
C22—N21—C28A—C28 | −179.7 (3) | C42—N41—C48A—C44A | 0.4 (5) |
C25—C24A—C28A—N21 | 179.3 (3) | C47—C48—C48A—N41 | 178.4 (3) |
C24—C24A—C28A—N21 | −2.1 (5) | C47—C48—C48A—C44A | −1.6 (5) |
C25—C24A—C28A—C28 | 0.0 (5) | C44—C44A—C48A—N41 | 0.8 (5) |
C24—C24A—C28A—C28 | 178.6 (3) | C45—C44A—C48A—N41 | −178.4 (3) |
C27—C28—C28A—N21 | 179.7 (4) | C44—C44A—C48A—C48 | −179.2 (3) |
C27—C28—C28A—C24A | −1.0 (6) | C45—C44A—C48A—C48 | 1.6 (5) |
C24—C23—C237—O231 | −0.8 (5) | C44—C43—C437—O431 | 2.7 (5) |
C22—C23—C237—O231 | 179.8 (3) | C42—C43—C437—O431 | −177.6 (3) |
C23—C237—O231—C231 | −175.9 (3) | C43—C437—O431—C431 | 176.4 (3) |
C237—O231—C231—C236 | −5.8 (5) | C437—O431—C431—C436 | 4.8 (5) |
C237—O231—C231—C232 | 174.5 (3) | C437—O431—C431—C432 | −174.4 (3) |
O231—C231—C232—C233 | 179.3 (3) | O431—C431—C432—C433 | −178.1 (3) |
C236—C231—C232—C233 | −0.3 (5) | C436—C431—C432—C433 | 2.7 (5) |
O231—C231—C232—C238 | −1.2 (5) | O431—C431—C432—C438 | 1.1 (5) |
C236—C231—C232—C238 | 179.2 (3) | C436—C431—C432—C438 | −178.1 (3) |
C231—C232—C233—C234 | 0.3 (6) | C431—C432—C433—C434 | −1.9 (6) |
C238—C232—C233—C234 | −179.2 (3) | C438—C432—C433—C434 | 178.8 (4) |
C232—C233—C234—C235 | −0.5 (6) | C432—C433—C434—C435 | 0.6 (6) |
C233—C234—C235—C236 | 0.6 (6) | C433—C434—C435—C436 | −0.1 (7) |
C234—C235—C236—C231 | −0.5 (6) | C434—C435—C436—C431 | 0.9 (6) |
O231—C231—C236—C235 | −179.2 (3) | O431—C431—C436—C435 | 178.5 (4) |
C232—C231—C236—C235 | 0.4 (5) | C432—C431—C436—C435 | −2.3 (6) |
C233—C232—C238—O238 | −14.2 (5) | C431—C432—C438—O438 | 178.9 (4) |
C231—C232—C238—O238 | 166.4 (4) | C433—C432—C438—O438 | −1.9 (6) |
C233—C232—C238—O239 | 164.7 (3) | C431—C432—C438—O439 | −0.7 (5) |
C231—C232—C238—O239 | −14.8 (5) | C433—C432—C438—O439 | 178.5 (3) |
O238—C238—O239—C239 | 2.5 (6) | O438—C438—O439—C439 | 0.4 (6) |
C232—C238—O239—C239 | −176.4 (3) | C432—C438—O439—C439 | −180.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C28—H28···N41i | 0.95 | 2.63 | 3.565 (5) | 169 |
C136—H136···O138ii | 0.95 | 2.50 | 3.261 (4) | 137 |
C236—H236···O438iii | 0.95 | 2.43 | 3.223 (4) | 141 |
C336—H336···O338iv | 0.95 | 2.46 | 3.238 (4) | 139 |
C436—H436···O238iii | 0.95 | 2.51 | 3.254 (4) | 136 |
C337—H33B···Cg1 | 0.99 | 2.64 | 3.441 (4) | 138 |
C437—H43A···Cg2 | 0.99 | 2.64 | 3.446 (4) | 138 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
C20H14ClNO | F(000) = 332 |
Mr = 319.77 | Dx = 1.411 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 5.3165 (3) Å | Cell parameters from 2014 reflections |
b = 10.5098 (4) Å | θ = 3.3–72.6° |
c = 13.6201 (7) Å | µ = 2.27 mm−1 |
β = 98.527 (5)° | T = 173 K |
V = 752.62 (6) Å3 | Needle, colourless |
Z = 2 | 0.34 × 0.10 × 0.08 mm |
Agilent Eos Gemini diffractometer | 1938 reflections with I > 2σ(I) |
Radiation source: Enhance (Cu) X-ray Source | Rint = 0.029 |
ω scans | θmax = 72.6°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→6 |
Tmin = 0.551, Tmax = 0.834 | k = −8→12 |
4606 measured reflections | l = −16→16 |
2014 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.22 e Å−3 |
2014 reflections | Δρmin = −0.19 e Å−3 |
208 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
1 restraint | Absolute structure parameter: −0.007 (18) |
C20H14ClNO | V = 752.62 (6) Å3 |
Mr = 319.77 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.3165 (3) Å | µ = 2.27 mm−1 |
b = 10.5098 (4) Å | T = 173 K |
c = 13.6201 (7) Å | 0.34 × 0.10 × 0.08 mm |
β = 98.527 (5)° |
Agilent Eos Gemini diffractometer | 2014 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1938 reflections with I > 2σ(I) |
Tmin = 0.551, Tmax = 0.834 | Rint = 0.029 |
4606 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.22 e Å−3 |
S = 1.08 | Δρmin = −0.19 e Å−3 |
2014 reflections | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
208 parameters | Absolute structure parameter: −0.007 (18) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1678 (4) | 0.8551 (2) | 0.36307 (18) | 0.0324 (5) | |
C2 | 0.3087 (5) | 0.8457 (3) | 0.29394 (19) | 0.0300 (5) | |
Cl2 | 0.25067 (12) | 0.95854 (7) | 0.19826 (5) | 0.04033 (19) | |
C3 | 0.5025 (5) | 0.7539 (2) | 0.28753 (19) | 0.0291 (5) | |
C4 | 0.5420 (5) | 0.6680 (3) | 0.3636 (2) | 0.0311 (5) | |
H4 | 0.6701 | 0.6049 | 0.3641 | 0.037* | |
C4A | 0.3943 (5) | 0.6721 (3) | 0.4417 (2) | 0.0301 (5) | |
C5 | 0.4220 (6) | 0.5842 (3) | 0.5210 (2) | 0.0373 (6) | |
H5 | 0.5494 | 0.5202 | 0.5244 | 0.045* | |
C6 | 0.2686 (6) | 0.5897 (3) | 0.5927 (2) | 0.0392 (6) | |
H6 | 0.2863 | 0.5284 | 0.6446 | 0.047* | |
C7 | 0.0835 (5) | 0.6863 (3) | 0.5899 (2) | 0.0394 (6) | |
H7 | −0.0216 | 0.6903 | 0.6404 | 0.047* | |
C8 | 0.0539 (5) | 0.7742 (3) | 0.5151 (2) | 0.0375 (6) | |
H8 | −0.0698 | 0.8396 | 0.5145 | 0.045* | |
C8A | 0.2063 (5) | 0.7682 (2) | 0.4390 (2) | 0.0301 (5) | |
C37A | 0.6440 (5) | 0.7514 (3) | 0.20041 (19) | 0.0309 (5) | |
H37A | 0.5238 | 0.7395 | 0.1383 | 0.037* | |
H37B | 0.7351 | 0.8329 | 0.1958 | 0.037* | |
O31 | 0.8208 (4) | 0.64868 (19) | 0.21392 (13) | 0.0335 (4) | |
C31 | 0.9563 (5) | 0.6249 (3) | 0.13811 (19) | 0.0300 (5) | |
C32 | 0.9293 (5) | 0.6908 (3) | 0.0506 (2) | 0.0338 (6) | |
H32 | 0.8081 | 0.7576 | 0.0391 | 0.041* | |
C33 | 1.0815 (5) | 0.6599 (3) | −0.0230 (2) | 0.0359 (6) | |
H33 | 1.0579 | 0.7047 | −0.0842 | 0.043* | |
C34 | 1.2606 (5) | 0.5671 (3) | −0.0073 (2) | 0.0372 (6) | |
H34 | 1.3650 | 0.5496 | −0.0566 | 0.045* | |
C34A | 1.2927 (5) | 0.4962 (2) | 0.0824 (2) | 0.0323 (6) | |
C35 | 1.4795 (5) | 0.3997 (3) | 0.1028 (2) | 0.0375 (6) | |
H35 | 1.5873 | 0.3812 | 0.0550 | 0.045* | |
C36 | 1.5078 (5) | 0.3334 (3) | 0.1892 (2) | 0.0417 (7) | |
H36 | 1.6336 | 0.2687 | 0.2007 | 0.050* | |
C37 | 1.3522 (5) | 0.3594 (3) | 0.2622 (2) | 0.0386 (6) | |
H37 | 1.3739 | 0.3127 | 0.3226 | 0.046* | |
C38 | 1.1692 (5) | 0.4525 (3) | 0.24564 (19) | 0.0329 (5) | |
H38 | 1.0628 | 0.4690 | 0.2944 | 0.040* | |
C38A | 1.1379 (5) | 0.5238 (2) | 0.1565 (2) | 0.0288 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0306 (11) | 0.0295 (11) | 0.0363 (11) | 0.0035 (9) | 0.0022 (9) | −0.0015 (9) |
C2 | 0.0298 (12) | 0.0270 (12) | 0.0313 (13) | −0.0002 (10) | −0.0016 (10) | 0.0006 (10) |
Cl2 | 0.0429 (3) | 0.0359 (3) | 0.0417 (3) | 0.0079 (3) | 0.0048 (2) | 0.0091 (3) |
C3 | 0.0259 (12) | 0.0279 (12) | 0.0319 (12) | −0.0018 (10) | −0.0011 (10) | −0.0042 (10) |
C4 | 0.0276 (12) | 0.0281 (12) | 0.0365 (13) | 0.0036 (10) | 0.0016 (10) | −0.0036 (11) |
C4A | 0.0268 (11) | 0.0267 (12) | 0.0355 (13) | −0.0020 (10) | 0.0007 (10) | −0.0045 (10) |
C5 | 0.0376 (13) | 0.0330 (14) | 0.0403 (14) | 0.0040 (11) | 0.0029 (11) | 0.0025 (11) |
C6 | 0.0407 (15) | 0.0389 (16) | 0.0369 (14) | −0.0042 (13) | 0.0023 (12) | 0.0053 (12) |
C7 | 0.0346 (14) | 0.0493 (17) | 0.0356 (14) | −0.0025 (13) | 0.0090 (11) | −0.0027 (12) |
C8 | 0.0321 (14) | 0.0393 (15) | 0.0410 (15) | 0.0034 (12) | 0.0050 (11) | −0.0038 (12) |
C8A | 0.0265 (11) | 0.0286 (12) | 0.0339 (13) | −0.0017 (10) | 0.0006 (10) | −0.0046 (10) |
C37A | 0.0287 (12) | 0.0285 (12) | 0.0348 (13) | 0.0013 (10) | 0.0024 (10) | 0.0010 (10) |
O31 | 0.0363 (9) | 0.0332 (10) | 0.0320 (9) | 0.0074 (8) | 0.0078 (7) | 0.0022 (7) |
C31 | 0.0281 (12) | 0.0308 (12) | 0.0313 (12) | −0.0043 (10) | 0.0053 (10) | −0.0024 (10) |
C32 | 0.0327 (13) | 0.0349 (14) | 0.0331 (13) | 0.0000 (11) | 0.0027 (10) | −0.0005 (11) |
C33 | 0.0386 (14) | 0.0397 (15) | 0.0287 (13) | −0.0083 (12) | 0.0031 (11) | 0.0006 (11) |
C34 | 0.0365 (14) | 0.0416 (15) | 0.0348 (14) | −0.0083 (12) | 0.0095 (11) | −0.0087 (12) |
C34A | 0.0290 (12) | 0.0316 (14) | 0.0355 (13) | −0.0061 (10) | 0.0024 (10) | −0.0088 (10) |
C35 | 0.0298 (13) | 0.0373 (14) | 0.0466 (15) | −0.0011 (11) | 0.0095 (11) | −0.0108 (12) |
C36 | 0.0313 (14) | 0.0358 (15) | 0.0571 (18) | 0.0044 (12) | 0.0033 (13) | −0.0027 (13) |
C37 | 0.0358 (14) | 0.0366 (14) | 0.0423 (15) | 0.0008 (12) | 0.0023 (12) | 0.0058 (13) |
C38 | 0.0301 (11) | 0.0324 (13) | 0.0367 (12) | −0.0015 (12) | 0.0063 (10) | −0.0015 (13) |
C38A | 0.0259 (11) | 0.0270 (12) | 0.0327 (12) | −0.0043 (9) | 0.0013 (10) | −0.0039 (10) |
N1—C2 | 1.291 (3) | C37A—H37B | 0.9900 |
N1—C8A | 1.372 (3) | O31—C31 | 1.367 (3) |
C2—C3 | 1.424 (4) | C31—C32 | 1.368 (4) |
C2—Cl2 | 1.755 (3) | C31—C38A | 1.432 (4) |
C3—C4 | 1.367 (4) | C32—C33 | 1.416 (4) |
C3—C37A | 1.497 (3) | C32—H32 | 0.9500 |
C4—C4A | 1.413 (3) | C33—C34 | 1.357 (5) |
C4—H4 | 0.9500 | C33—H33 | 0.9500 |
C4A—C5 | 1.413 (4) | C34—C34A | 1.420 (4) |
C4A—C8A | 1.418 (4) | C34—H34 | 0.9500 |
C5—C6 | 1.364 (4) | C34A—C35 | 1.417 (4) |
C5—H5 | 0.9500 | C34A—C38A | 1.423 (4) |
C6—C7 | 1.410 (4) | C35—C36 | 1.357 (4) |
C6—H6 | 0.9500 | C35—H35 | 0.9500 |
C7—C8 | 1.366 (4) | C36—C37 | 1.411 (4) |
C7—H7 | 0.9500 | C36—H36 | 0.9500 |
C8—C8A | 1.409 (4) | C37—C38 | 1.375 (4) |
C8—H8 | 0.9500 | C37—H37 | 0.9500 |
C37A—O31 | 1.426 (3) | C38—C38A | 1.416 (4) |
C37A—H37A | 0.9900 | C38—H38 | 0.9500 |
C2—N1—C8A | 117.4 (2) | H37A—C37A—H37B | 108.4 |
N1—C2—C3 | 126.9 (2) | C31—O31—C37A | 116.9 (2) |
N1—C2—Cl2 | 115.61 (19) | O31—C31—C32 | 124.5 (2) |
C3—C2—Cl2 | 117.5 (2) | O31—C31—C38A | 114.9 (2) |
C4—C3—C2 | 115.6 (2) | C32—C31—C38A | 120.6 (2) |
C4—C3—C37A | 123.4 (2) | C31—C32—C33 | 120.2 (3) |
C2—C3—C37A | 120.9 (2) | C31—C32—H32 | 119.9 |
C3—C4—C4A | 120.7 (2) | C33—C32—H32 | 119.9 |
C3—C4—H4 | 119.7 | C34—C33—C32 | 121.0 (3) |
C4A—C4—H4 | 119.7 | C34—C33—H33 | 119.5 |
C4—C4A—C5 | 123.3 (2) | C32—C33—H33 | 119.5 |
C4—C4A—C8A | 118.1 (2) | C33—C34—C34A | 120.3 (2) |
C5—C4A—C8A | 118.6 (2) | C33—C34—H34 | 119.9 |
C6—C5—C4A | 120.9 (3) | C34A—C34—H34 | 119.9 |
C6—C5—H5 | 119.5 | C35—C34A—C34 | 122.4 (3) |
C4A—C5—H5 | 119.5 | C35—C34A—C38A | 118.0 (3) |
C5—C6—C7 | 120.0 (3) | C34—C34A—C38A | 119.6 (3) |
C5—C6—H6 | 120.0 | C36—C35—C34A | 121.5 (3) |
C7—C6—H6 | 120.0 | C36—C35—H35 | 119.3 |
C8—C7—C6 | 120.7 (3) | C34A—C35—H35 | 119.3 |
C8—C7—H7 | 119.7 | C35—C36—C37 | 120.7 (3) |
C6—C7—H7 | 119.7 | C35—C36—H36 | 119.7 |
C7—C8—C8A | 120.2 (3) | C37—C36—H36 | 119.7 |
C7—C8—H8 | 119.9 | C38—C37—C36 | 119.8 (3) |
C8A—C8—H8 | 119.9 | C38—C37—H37 | 120.1 |
N1—C8A—C8 | 119.2 (2) | C36—C37—H37 | 120.1 |
N1—C8A—C4A | 121.3 (2) | C37—C38—C38A | 120.5 (2) |
C8—C8A—C4A | 119.5 (2) | C37—C38—H38 | 119.7 |
O31—C37A—C3 | 108.1 (2) | C38A—C38—H38 | 119.7 |
O31—C37A—H37A | 110.1 | C38—C38A—C34A | 119.5 (2) |
C3—C37A—H37A | 110.1 | C38—C38A—C31 | 122.2 (2) |
O31—C37A—H37B | 110.1 | C34A—C38A—C31 | 118.2 (2) |
C3—C37A—H37B | 110.1 | ||
C8A—N1—C2—C3 | 0.0 (4) | C3—C37A—O31—C31 | 175.4 (2) |
C8A—N1—C2—Cl2 | 179.65 (19) | C37A—O31—C31—C32 | −1.4 (4) |
N1—C2—C3—C4 | −0.5 (4) | C37A—O31—C31—C38A | 177.9 (2) |
Cl2—C2—C3—C4 | 179.83 (19) | O31—C31—C32—C33 | 179.2 (3) |
N1—C2—C3—C37A | 177.5 (2) | C38A—C31—C32—C33 | −0.1 (4) |
Cl2—C2—C3—C37A | −2.1 (3) | C31—C32—C33—C34 | −1.7 (4) |
C2—C3—C4—C4A | 0.7 (4) | C32—C33—C34—C34A | 2.1 (4) |
C37A—C3—C4—C4A | −177.3 (2) | C33—C34—C34A—C35 | −179.0 (2) |
C3—C4—C4A—C5 | 178.4 (3) | C33—C34—C34A—C38A | −0.7 (4) |
C3—C4—C4A—C8A | −0.5 (4) | C34—C34A—C35—C36 | 179.7 (3) |
C4—C4A—C5—C6 | −177.7 (3) | C38A—C34A—C35—C36 | 1.4 (4) |
C8A—C4A—C5—C6 | 1.2 (4) | C34A—C35—C36—C37 | −0.6 (4) |
C4A—C5—C6—C7 | −1.7 (4) | C35—C36—C37—C38 | 0.3 (4) |
C5—C6—C7—C8 | 0.7 (5) | C36—C37—C38—C38A | −0.9 (4) |
C6—C7—C8—C8A | 0.9 (4) | C37—C38—C38A—C34A | 1.8 (4) |
C2—N1—C8A—C8 | −179.1 (2) | C37—C38—C38A—C31 | −177.5 (2) |
C2—N1—C8A—C4A | 0.3 (4) | C35—C34A—C38A—C38 | −2.0 (4) |
C7—C8—C8A—N1 | 178.0 (3) | C34—C34A—C38A—C38 | 179.6 (2) |
C7—C8—C8A—C4A | −1.4 (4) | C35—C34A—C38A—C31 | 177.3 (2) |
C4—C4A—C8A—N1 | −0.1 (4) | C34—C34A—C38A—C31 | −1.0 (3) |
C5—C4A—C8A—N1 | −179.0 (2) | O31—C31—C38A—C38 | 1.4 (3) |
C4—C4A—C8A—C8 | 179.3 (2) | C32—C31—C38A—C38 | −179.2 (2) |
C5—C4A—C8A—C8 | 0.4 (4) | O31—C31—C38A—C34A | −177.9 (2) |
C4—C3—C37A—O31 | −1.1 (3) | C32—C31—C38A—C34A | 1.4 (3) |
C2—C3—C37A—O31 | −179.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C37A—H37A···Cg3i | 0.99 | 2.74 | 3.552 (3) | 139 |
Symmetry code: (i) x−1, y, z. |
C18H17ClN2O3 | F(000) = 720 |
Mr = 344.79 | Dx = 1.433 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 9.7866 (3) Å | Cell parameters from 3112 reflections |
b = 15.3336 (4) Å | θ = 5.1–72.5° |
c = 10.6570 (3) Å | µ = 2.29 mm−1 |
β = 92.381 (3)° | T = 173 K |
V = 1597.85 (8) Å3 | Block, colourless |
Z = 4 | 0.42 × 0.38 × 0.32 mm |
Agilent Eos Gemini diffractometer | 2764 reflections with I > 2σ(I) |
Radiation source: Enhance (Cu) X-ray Source | Rint = 0.043 |
ω scans | θmax = 72.5°, θmin = 5.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −11→9 |
Tmin = 0.375, Tmax = 0.481 | k = −17→18 |
9423 measured reflections | l = −13→12 |
3112 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0793P)2 + 0.2783P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.127 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.32 e Å−3 |
3112 reflections | Δρmin = −0.25 e Å−3 |
219 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0022 (4) |
C18H17ClN2O3 | V = 1597.85 (8) Å3 |
Mr = 344.79 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.7866 (3) Å | µ = 2.29 mm−1 |
b = 15.3336 (4) Å | T = 173 K |
c = 10.6570 (3) Å | 0.42 × 0.38 × 0.32 mm |
β = 92.381 (3)° |
Agilent Eos Gemini diffractometer | 3112 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2764 reflections with I > 2σ(I) |
Tmin = 0.375, Tmax = 0.481 | Rint = 0.043 |
9423 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.32 e Å−3 |
3112 reflections | Δρmin = −0.25 e Å−3 |
219 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.14131 (14) | 0.33261 (9) | 0.62337 (13) | 0.0316 (3) | |
C2 | 0.16152 (16) | 0.41138 (10) | 0.58407 (15) | 0.0285 (3) | |
Cl2 | 0.10286 (4) | 0.49427 (3) | 0.68208 (4) | 0.03973 (18) | |
C3 | 0.22557 (16) | 0.43634 (10) | 0.47234 (16) | 0.0289 (3) | |
C4 | 0.27768 (17) | 0.36931 (11) | 0.40445 (15) | 0.0317 (4) | |
H4 | 0.3241 | 0.3818 | 0.3300 | 0.038* | |
C4A | 0.26375 (17) | 0.28188 (11) | 0.44305 (16) | 0.0310 (4) | |
C5 | 0.3168 (2) | 0.21043 (12) | 0.37582 (18) | 0.0389 (4) | |
H5 | 0.3677 | 0.2203 | 0.3031 | 0.047* | |
C6 | 0.2941 (2) | 0.12723 (12) | 0.41650 (19) | 0.0429 (5) | |
H6 | 0.3305 | 0.0795 | 0.3720 | 0.052* | |
C7 | 0.2183 (2) | 0.11136 (12) | 0.52249 (19) | 0.0463 (5) | |
H7 | 0.2022 | 0.0530 | 0.5479 | 0.056* | |
C8 | 0.1668 (2) | 0.17907 (12) | 0.59013 (17) | 0.0408 (4) | |
H8 | 0.1155 | 0.1677 | 0.6621 | 0.049* | |
C8A | 0.19062 (18) | 0.26579 (10) | 0.55190 (16) | 0.0313 (4) | |
C37 | 0.23683 (17) | 0.52862 (11) | 0.42748 (17) | 0.0329 (4) | |
H37A | 0.2336 | 0.5302 | 0.3345 | 0.039* | |
H37B | 0.1596 | 0.5636 | 0.4573 | 0.039* | |
O31 | 0.36442 (11) | 0.56428 (7) | 0.47603 (10) | 0.0276 (3) | |
N31 | 0.51999 (13) | 0.70720 (9) | 0.25268 (13) | 0.0297 (3) | |
C32 | 0.47930 (15) | 0.63485 (10) | 0.30994 (15) | 0.0259 (3) | |
C33 | 0.39991 (15) | 0.64051 (10) | 0.41634 (14) | 0.0236 (3) | |
C34 | 0.36223 (15) | 0.72095 (10) | 0.46347 (14) | 0.0258 (3) | |
C35 | 0.40670 (16) | 0.79604 (10) | 0.40161 (15) | 0.0284 (3) | |
C36 | 0.48433 (17) | 0.78469 (10) | 0.29806 (16) | 0.0311 (4) | |
H36 | 0.5145 | 0.8354 | 0.2561 | 0.037* | |
C321 | 0.52007 (17) | 0.54887 (11) | 0.25592 (17) | 0.0329 (4) | |
H32A | 0.5987 | 0.5572 | 0.2032 | 0.039* | |
H32B | 0.4434 | 0.5249 | 0.2049 | 0.039* | |
H32C | 0.5447 | 0.5084 | 0.3243 | 0.039* | |
C341 | 0.27452 (17) | 0.72795 (11) | 0.57607 (15) | 0.0316 (4) | |
H41A | 0.2588 | 0.6694 | 0.6119 | 0.038* | |
H41B | 0.3204 | 0.7647 | 0.6416 | 0.038* | |
O341 | 0.14772 (13) | 0.76632 (10) | 0.53514 (12) | 0.0437 (3) | |
H341 | 0.1027 | 0.7791 | 0.6056 | 0.066* | |
C351 | 0.36913 (19) | 0.88673 (11) | 0.44319 (18) | 0.0371 (4) | |
H51A | 0.3812 | 0.8906 | 0.5357 | 0.045* | |
H51B | 0.4321 | 0.9293 | 0.4063 | 0.045* | |
O351 | 0.23190 (14) | 0.90946 (8) | 0.40706 (13) | 0.0434 (3) | |
H351 | 0.1838 | 0.8642 | 0.4382 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0401 (7) | 0.0246 (7) | 0.0303 (7) | −0.0041 (5) | 0.0016 (6) | 0.0012 (5) |
C2 | 0.0320 (7) | 0.0220 (7) | 0.0314 (8) | −0.0007 (6) | 0.0000 (6) | −0.0026 (6) |
Cl2 | 0.0436 (3) | 0.0287 (2) | 0.0476 (3) | 0.00182 (15) | 0.0100 (2) | −0.00770 (16) |
C3 | 0.0312 (8) | 0.0235 (8) | 0.0318 (8) | −0.0028 (6) | −0.0022 (6) | 0.0030 (6) |
C4 | 0.0380 (8) | 0.0295 (9) | 0.0274 (8) | −0.0038 (6) | 0.0000 (6) | 0.0017 (6) |
C4A | 0.0377 (8) | 0.0258 (8) | 0.0290 (8) | −0.0007 (6) | −0.0044 (7) | −0.0014 (6) |
C5 | 0.0460 (10) | 0.0349 (9) | 0.0353 (9) | 0.0023 (7) | −0.0043 (8) | −0.0076 (7) |
C6 | 0.0575 (11) | 0.0270 (9) | 0.0430 (10) | 0.0059 (8) | −0.0132 (9) | −0.0105 (7) |
C7 | 0.0708 (13) | 0.0214 (8) | 0.0453 (11) | −0.0039 (8) | −0.0149 (10) | −0.0006 (7) |
C8 | 0.0602 (11) | 0.0266 (9) | 0.0350 (9) | −0.0081 (8) | −0.0051 (8) | 0.0024 (7) |
C8A | 0.0413 (9) | 0.0233 (8) | 0.0285 (8) | −0.0029 (6) | −0.0068 (7) | 0.0009 (6) |
C37 | 0.0346 (8) | 0.0255 (8) | 0.0381 (9) | −0.0030 (6) | −0.0039 (7) | 0.0081 (7) |
O31 | 0.0319 (6) | 0.0216 (5) | 0.0292 (6) | −0.0012 (4) | 0.0000 (4) | 0.0060 (4) |
N31 | 0.0299 (7) | 0.0274 (7) | 0.0324 (7) | −0.0012 (5) | 0.0082 (5) | 0.0014 (5) |
C32 | 0.0255 (7) | 0.0240 (8) | 0.0280 (8) | 0.0017 (6) | 0.0018 (6) | −0.0011 (6) |
C33 | 0.0254 (7) | 0.0204 (7) | 0.0251 (7) | −0.0004 (5) | 0.0005 (6) | 0.0025 (5) |
C34 | 0.0284 (7) | 0.0250 (8) | 0.0240 (7) | 0.0007 (5) | 0.0012 (6) | −0.0002 (6) |
C35 | 0.0333 (8) | 0.0201 (7) | 0.0318 (8) | −0.0005 (6) | 0.0025 (6) | −0.0011 (6) |
C36 | 0.0331 (8) | 0.0256 (8) | 0.0351 (9) | −0.0033 (6) | 0.0064 (6) | 0.0038 (6) |
C321 | 0.0363 (8) | 0.0274 (8) | 0.0354 (9) | 0.0056 (6) | 0.0058 (7) | −0.0048 (7) |
C341 | 0.0407 (9) | 0.0304 (8) | 0.0244 (8) | 0.0032 (6) | 0.0084 (6) | −0.0011 (6) |
O341 | 0.0404 (7) | 0.0575 (8) | 0.0343 (7) | 0.0124 (6) | 0.0145 (5) | 0.0018 (6) |
C351 | 0.0481 (10) | 0.0220 (8) | 0.0415 (10) | 0.0018 (7) | 0.0067 (8) | −0.0035 (7) |
O351 | 0.0531 (8) | 0.0307 (7) | 0.0467 (8) | 0.0135 (6) | 0.0046 (6) | −0.0013 (5) |
N1—C2 | 1.296 (2) | N31—C36 | 1.335 (2) |
N1—C8A | 1.376 (2) | N31—C32 | 1.335 (2) |
C2—C3 | 1.421 (2) | C32—C33 | 1.404 (2) |
C2—Cl2 | 1.7566 (16) | C32—C321 | 1.499 (2) |
C3—C4 | 1.368 (2) | C33—C34 | 1.388 (2) |
C3—C37 | 1.499 (2) | C34—C35 | 1.405 (2) |
C4—C4A | 1.411 (2) | C34—C341 | 1.508 (2) |
C4—H4 | 0.9500 | C35—C36 | 1.377 (2) |
C4A—C8A | 1.410 (2) | C35—C351 | 1.510 (2) |
C4A—C5 | 1.419 (2) | C36—H36 | 0.9500 |
C5—C6 | 1.368 (3) | C321—H32A | 0.9800 |
C5—H5 | 0.9500 | C321—H32B | 0.9800 |
C6—C7 | 1.398 (3) | C321—H32C | 0.9800 |
C6—H6 | 0.9500 | C341—O341 | 1.425 (2) |
C7—C8 | 1.372 (3) | C341—H41A | 0.9900 |
C7—H7 | 0.9500 | C341—H41B | 0.9900 |
C8—C8A | 1.413 (2) | O341—H341 | 0.9077 |
C8—H8 | 0.9500 | C351—O351 | 1.425 (2) |
C37—O31 | 1.4394 (19) | C351—H51A | 0.9900 |
C37—H37A | 0.9900 | C351—H51B | 0.9900 |
C37—H37B | 0.9900 | O351—H351 | 0.9093 |
O31—C33 | 1.3819 (18) | ||
C2—N1—C8A | 116.95 (14) | N31—C32—C33 | 120.23 (14) |
N1—C2—C3 | 126.88 (15) | N31—C32—C321 | 117.78 (14) |
N1—C2—Cl2 | 115.09 (12) | C33—C32—C321 | 121.98 (14) |
C3—C2—Cl2 | 118.02 (12) | O31—C33—C34 | 120.64 (14) |
C4—C3—C2 | 115.34 (14) | O31—C33—C32 | 118.54 (13) |
C4—C3—C37 | 120.45 (15) | C34—C33—C32 | 120.78 (13) |
C2—C3—C37 | 124.21 (15) | C33—C34—C35 | 117.81 (14) |
C3—C4—C4A | 121.15 (15) | C33—C34—C341 | 121.33 (14) |
C3—C4—H4 | 119.4 | C35—C34—C341 | 120.85 (14) |
C4A—C4—H4 | 119.4 | C36—C35—C34 | 117.68 (14) |
C8A—C4A—C4 | 117.69 (15) | C36—C35—C351 | 120.08 (15) |
C8A—C4A—C5 | 119.29 (15) | C34—C35—C351 | 122.22 (15) |
C4—C4A—C5 | 123.00 (16) | N31—C36—C35 | 124.36 (14) |
C6—C5—C4A | 119.48 (18) | N31—C36—H36 | 117.8 |
C6—C5—H5 | 120.3 | C35—C36—H36 | 117.8 |
C4A—C5—H5 | 120.3 | C32—C321—H32A | 109.5 |
C5—C6—C7 | 121.11 (17) | C32—C321—H32B | 109.5 |
C5—C6—H6 | 119.4 | H32A—C321—H32B | 109.5 |
C7—C6—H6 | 119.4 | C32—C321—H32C | 109.5 |
C8—C7—C6 | 120.77 (17) | H32A—C321—H32C | 109.5 |
C8—C7—H7 | 119.6 | H32B—C321—H32C | 109.5 |
C6—C7—H7 | 119.6 | O341—C341—C34 | 107.64 (13) |
C7—C8—C8A | 119.49 (18) | O341—C341—H41A | 110.2 |
C7—C8—H8 | 120.3 | C34—C341—H41A | 110.2 |
C8A—C8—H8 | 120.3 | O341—C341—H41B | 110.2 |
N1—C8A—C4A | 121.79 (15) | C34—C341—H41B | 110.2 |
N1—C8A—C8 | 118.38 (16) | H41A—C341—H41B | 108.5 |
C4A—C8A—C8 | 119.83 (16) | C341—O341—H341 | 106.4 |
O31—C37—C3 | 108.55 (12) | O351—C351—C35 | 112.61 (14) |
O31—C37—H37A | 110.0 | O351—C351—H51A | 109.1 |
C3—C37—H37A | 110.0 | C35—C351—H51A | 109.1 |
O31—C37—H37B | 110.0 | O351—C351—H51B | 109.1 |
C3—C37—H37B | 110.0 | C35—C351—H51B | 109.1 |
H37A—C37—H37B | 108.4 | H51A—C351—H51B | 107.8 |
C33—O31—C37 | 112.75 (11) | C351—O351—H351 | 102.2 |
C36—N31—C32 | 119.13 (14) | ||
C8A—N1—C2—C3 | 2.2 (2) | C3—C37—O31—C33 | 165.21 (13) |
C8A—N1—C2—Cl2 | −177.48 (11) | C36—N31—C32—C33 | 0.1 (2) |
N1—C2—C3—C4 | −4.1 (2) | C36—N31—C32—C321 | 179.48 (14) |
Cl2—C2—C3—C4 | 175.57 (12) | C37—O31—C33—C34 | 92.25 (17) |
N1—C2—C3—C37 | 175.40 (15) | C37—O31—C33—C32 | −90.17 (17) |
Cl2—C2—C3—C37 | −4.9 (2) | N31—C32—C33—O31 | −177.42 (13) |
C2—C3—C4—C4A | 1.8 (2) | C321—C32—C33—O31 | 3.2 (2) |
C37—C3—C4—C4A | −177.78 (14) | N31—C32—C33—C34 | 0.2 (2) |
C3—C4—C4A—C8A | 1.9 (2) | C321—C32—C33—C34 | −179.21 (14) |
C3—C4—C4A—C5 | −179.68 (15) | O31—C33—C34—C35 | 177.22 (13) |
C8A—C4A—C5—C6 | 1.1 (3) | C32—C33—C34—C35 | −0.3 (2) |
C4—C4A—C5—C6 | −177.29 (16) | O31—C33—C34—C341 | −3.8 (2) |
C4A—C5—C6—C7 | 0.7 (3) | C32—C33—C34—C341 | 178.71 (14) |
C5—C6—C7—C8 | −1.3 (3) | C33—C34—C35—C36 | 0.2 (2) |
C6—C7—C8—C8A | 0.1 (3) | C341—C34—C35—C36 | −178.80 (14) |
C2—N1—C8A—C4A | 2.0 (2) | C33—C34—C35—C351 | 178.66 (14) |
C2—N1—C8A—C8 | −178.19 (15) | C341—C34—C35—C351 | −0.4 (2) |
C4—C4A—C8A—N1 | −4.0 (2) | C32—N31—C36—C35 | −0.2 (3) |
C5—C4A—C8A—N1 | 177.53 (15) | C34—C35—C36—N31 | 0.0 (3) |
C4—C4A—C8A—C8 | 176.21 (15) | C351—C35—C36—N31 | −178.46 (15) |
C5—C4A—C8A—C8 | −2.3 (2) | C33—C34—C341—O341 | −114.67 (16) |
C7—C8—C8A—N1 | −178.14 (16) | C35—C34—C341—O341 | 64.32 (19) |
C7—C8—C8A—C4A | 1.7 (3) | C36—C35—C351—O351 | 102.07 (19) |
C4—C3—C37—O31 | −88.42 (18) | C34—C35—C351—O351 | −76.3 (2) |
C2—C3—C37—O31 | 92.08 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O341—H341···N31i | 0.91 | 1.81 | 2.7098 (19) | 174 |
O351—H351···O341 | 0.91 | 1.86 | 2.7299 (19) | 158 |
C4—H4···O351ii | 0.95 | 2.60 | 3.374 (2) | 139 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
`Dihedral 1' represents the dihedral angle between the mean planes of the quinoline and phenyl rings. `Dihedral 2' represents the dihedral angle between the mean planes of the phenyl ring and the carboxyl unit. |
Parameter | (I) | (II) | (III) | |||
x | nil | nil | 1 | 2 | 3 | 4 |
Cx2—Cx3—Cx37—Ox31 | ||||||
-174.63 (17) | -176.93 (18) | -179.4 (3) | 179.8 (3) | 178.4 (3) | -177.6 (3) | |
Cx3—Cx37—Ox31—Cx31 | ||||||
-175.71 (16) | -179.57 (17) | 177.2 (3) | -175.9 (3) | -178.9 (3) | 176.4 (3) | |
Cx37—Ox31—Cx31—Cx32 | ||||||
173.73 (17) | -172.62 (18) | -176.8 (3) | 174.5 (3) | 177.7 (3) | -174.4 (3) | |
Cx31—Cx32—Cx38—Ox38 | ||||||
4.1 (3) | 159.5 (3) | -177.5 (4) | 166.4 (4) | -168.7 (4) | 178.9 (4) | |
Cx31—Cx32—Cx38—Ox39 | ||||||
-177.01 (17) | -20.7 (3) | 2.8 (6) | -14.8 (5) | 12.7 (5) | -0.7 (5) | |
Cx32—Cx38—Ox39—Cx39 | ||||||
-175.77 (17) | -176.4 (2) | 179.2 (3) | -176.4 (3) | 178.3 (4) | 180.0 (3) | |
Dihedral 1 | 0.66 (6) | 10.72 (8) | 5.44 (2) | 4.18 (2) | 3.825 (13) | 5.55 (3) |
Dihedral 2 | 4.27 (8) | 19.25 (15) | 2.52 (3) | 14.66 (7) | 12.29 (8) | 1.78 (6) |
Cg1, Cg2 and Cg3 are the centroids of rings C231–C236, C331–C336 and C31–C34,C34A,C38A, respectively. |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(II) | C36-H36···O38i | 0.95 | 2.53 | 3.277 (3) | 136 |
(III) | C28-H28···N41ii | 0.95 | 2.63 | 3.565 (5) | 169 |
C136-H136···O138iii | 0.95 | 2.50 | 3.261 (4) | 137 | |
C236-H236···O438iv | 0.95 | 2.43 | 3.223 (4) | 141 | |
C336-H336···O338v | 0.95 | 2.46 | 3.238 (4) | 139 | |
C436-H436···O238iv | 0.95 | 2.51 | 3.254 (4) | 136 | |
C337-H33B···Cg1 | 0.99 | 2.64 | 3.441 (4) | 138 | |
C437-H43A···Cg2 | 0.99 | 2.64 | 3.446 (4) | 138 | |
(IV) | C37-H37A···Cg3vi | 0.99 | 2.74 | 3.552 (3) | 139 |
(V) | O341-H341···N31vii | 0.91 | 1.81 | 2.7098 (19) | 174 |
O351-H351···O341 | 0.91 | 1.86 | 2.7209 (19) | 158 | |
C4-H4···O351viii | 0.95 | 2.60 | 3.374 (2) | 139 |
Symmetry codes: (i) x + 1/2, y, -z + 1/2; (ii) x - 1/2, -y + 3/2, -z + 1; (iii) -x, y - 1/2, -z + 1/2; (iv) -x + 1, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) x - 1, y, z; (vii) x - 1/2, -y + 3/2, z + 1/2; (viii) -x + 1/2, y - 1/2, -z + 1/2. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C18H13BrClNO3 | C19H15BrClNO3 | C19H16ClNO3 |
Mr | 406.64 | 420.67 | 341.78 |
Crystal system, space group | Monoclinic, P21/n | Orthorhombic, Pbca | Orthorhombic, P212121 |
Temperature (K) | 173 | 173 | 173 |
a, b, c (Å) | 7.3185 (4), 18.4177 (7), 11.7870 (5) | 15.1920 (3), 11.98641 (19), 19.0307 (3) | 13.5860 (3), 15.5857 (2), 30.9389 (5) |
α, β, γ (°) | 90, 93.609 (4), 90 | 90, 90, 90 | 90, 90, 90 |
V (Å3) | 1585.62 (13) | 3465.44 (10) | 6551.2 (2) |
Z | 4 | 8 | 16 |
Radiation type | Mo Kα | Cu Kα | Cu Kα |
µ (mm−1) | 2.78 | 4.81 | 2.21 |
Crystal size (mm) | 0.44 × 0.23 × 0.12 | 0.24 × 0.16 × 0.08 | 0.48 × 0.26 × 0.14 |
Data collection | |||
Diffractometer | Agilent Eos Gemini diffractometer | Agilent Eos Gemini diffractometer | Agilent Eos Gemini diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.335, 0.717 | 0.399, 0.680 | 0.472, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17735, 4612, 3682 | 21861, 3421, 3062 | 45901, 12840, 11257 |
Rint | 0.036 | 0.055 | 0.048 |
(sin θ/λ)max (Å−1) | 0.703 | 0.618 | 0.619 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.071, 1.06 | 0.034, 0.093, 1.06 | 0.046, 0.129, 1.04 |
No. of reflections | 4612 | 3421 | 12840 |
No. of parameters | 218 | 229 | 874 |
No. of restraints | 0 | 0 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.41 | 0.52, −0.49 | 0.42, −0.31 |
Absolute structure | ? | ? | Refined as an inversion twin. |
Absolute structure parameter | ? | ? | 0.152 (16) |
(IV) | (V) | |
Crystal data | ||
Chemical formula | C20H14ClNO | C18H17ClN2O3 |
Mr | 319.77 | 344.79 |
Crystal system, space group | Monoclinic, P21 | Monoclinic, P21/n |
Temperature (K) | 173 | 173 |
a, b, c (Å) | 5.3165 (3), 10.5098 (4), 13.6201 (7) | 9.7866 (3), 15.3336 (4), 10.6570 (3) |
α, β, γ (°) | 90, 98.527 (5), 90 | 90, 92.381 (3), 90 |
V (Å3) | 752.62 (6) | 1597.85 (8) |
Z | 2 | 4 |
Radiation type | Cu Kα | Cu Kα |
µ (mm−1) | 2.27 | 2.29 |
Crystal size (mm) | 0.34 × 0.10 × 0.08 | 0.42 × 0.38 × 0.32 |
Data collection | ||
Diffractometer | Agilent Eos Gemini diffractometer | Agilent Eos Gemini diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.551, 0.834 | 0.375, 0.481 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4606, 2014, 1938 | 9423, 3112, 2764 |
Rint | 0.029 | 0.043 |
(sin θ/λ)max (Å−1) | 0.619 | 0.618 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.090, 1.08 | 0.045, 0.127, 1.05 |
No. of reflections | 2014 | 3112 |
No. of parameters | 208 | 219 |
No. of restraints | 1 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.19 | 0.32, −0.25 |
Absolute structure | Classical Flack method preferred over Parsons because s.u. lower. | ? |
Absolute structure parameter | −0.007 (18) | ? |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).
Acknowledgements
HBVS and THS thank the authorities of Jain University for their support and encouragement. HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.
References
Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, (i), 211–276. Google Scholar
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013a). Acta Cryst. E69, o779. CSD CrossRef IUCr Journals Google Scholar
Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013b). Acta Cryst. E69, o990. CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Chandrika, N., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S. & Glidewell, C. (2015). Acta Cryst. E71, o364–o365. CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Soc. (Bangalore), 122, 677–685. CAS Google Scholar
Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Kumar, S. (2010). Acta Cryst. E66, o2548–o2549. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12. Web of Science CrossRef PubMed Google Scholar
Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060. CrossRef CAS Web of Science Google Scholar
Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504. CrossRef Web of Science Google Scholar
Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256. CrossRef Web of Science Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabassum, S., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S., Sujan Ganapathy, P. S., Sowmya, H. V., More, S. S., Nagendrappa, G., Kaur, M. & Jose, G. (2014). J. Mol. Struct. 1070, 10–20. Web of Science CSD CrossRef CAS Google Scholar
Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47. CrossRef CAS Web of Science Google Scholar
Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119. CrossRef Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.