research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 748-751

Crystal structure of tetra­methyl­tetra­thia­fulvalenium (1S)-camphor-10-sulfonate dihydrate

CROSSMARK_Color_square_no_text.svg

aUniversité d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers, France
*Correspondence e-mail: magali.allain@univ-angers.fr,

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 7 May 2015; accepted 28 May 2015; online 3 June 2015)

Electro-oxidation of tetra­methyl­tetra­thia­fulvalene (TMTTF) in the presence of the chiral anion (1S)-camphor-10-sulfonate (S-camphSO3) in tetra­hydro­furan/water medium afforded a 1/1 salt formulated as TMTTF·S-camphSO3·2H2O or 2-(4,5-dimethyl-1,3-di­thiol-2-yl­idene)-4,5-dimethyl-1,3-di­thiole radical ion (1+) [(1S)-7,7-dimethyl-2-oxobi­cyclo­[2.2.1]heptan-1-yl]methane­sulfonate dihydrate, C10H12S4+·C10H15O4S·2H2O. In this salt, two independent TMTTF units are present but, in both cases, the observed bond lengths and especially the central C=C distance [1.392 (6) and 1.378 (6) Å] are in agreement with a complete oxidation of TMTTF which is thus present as TMTTF.+ radical cations. These cations form one-dimensional stacks in which they are associated two by two, forming dimers with short [3.472 (1) to 3.554 (2) Å] S⋯S contacts. The two S-camphSO3 anions present also form stacks and are connected with each other via the water mol­ecules with many O—H⋯O hydrogen bonds ranging from 1.86 (3) to 2.15 (4) Å; the O—H⋯O hydrogen-bonding network can be described as being constituted of C22(6) chains bearing R33(11) lateral rings. On the other hand, the columns of cations and anions are connected through C—H⋯O hydrogen bonds, forming a system expanding in three directions; finally, the result is a three-dimensional network of O—H⋯O and C—H⋯O hydrogen bonds.

1. Chemical context

Chiral mol­ecular conductors may display inter­esting properties such as the magneto-chiral anisotropy effect; the different strategies of access to these materials have been recently reviewed (Avarvari & Wallis, 2009[Avarvari, N. & Wallis, J. D. (2009). J. Mater. Chem. 19, 4061-4076.]; Pop et al., 2014[Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. (2014). Nat. Commun. 5, 3757.]). Among these possible strategies, a straightforward a priori approach consists of combining, through electrocrystallization experiments, chiral counter-anions, existing in enanti­opure form, to TTF-based radical-cations; in this context, due to the commercial availability of the parent acid S-camphSO3H, the anion S-camphSO3 appears to be a ready choice and, in fact, it has already been used to obtain the salt (EDT-TTFI2)2·S-camphSO3·H2O, where EDT-TTFI2 is di­iodo­ethyl­enedi­thiotetra­thia­fulvalene (Brezgunova et al., 2010[Brezgunova, M., Shin, K. S., Auban-Senzier, P., Jeannin, O. & Fourmigué, M. (2010). Chem. Commun. 46, 3926-3928.]). In addition, it is worth mentioning a more general review relating to conducting radical cation salts with organic anions, especially anions derived from carb­oxy­lic and sulfonic organic acids (Geiser & Schlueter, 2004[Geiser, U. & Schlueter, J. A. (2004). Chem. Rev. 104, 5203-5242.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two independent TMTTF cations, two independent S-camphSO3 anions and four water mol­ecules (Fig. 1[link]) in the asymmetric unit. The geometries of the two types (A and B) of TMTTF units (Fig. 1[link]), are rather similar despite the fact that A and B are crystallographically independent; in both case, the observed bond lengths (see e.g. Penicaud et al., 1990[Penicaud, A., Batail, P., Coulon, C., Canadell, E. & Perrin, C. (1990). Chem. Mater. 2, 123-132.]; Shibaeva, 1984[Shibaeva, R. P. (1984). Sov. Phys. Crystallogr. 29, 288-289.]) and especially the central C=C distance [1.392 (6) Å in A and 1.378 (6) Å in B] are in agreement with a complete oxidation of TMTTF which is thus present as TMTTF.+ radical-cations, in agreement also with the 1/1 cation/anion balance of this salt.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

3. Packing of the donors

The cations form columns along the a axis in which the two types, A and B, of TMTTF units alternate (Fig. 2[link]). The overall arrangement of the donors can be described as mono-dimensional since these stacks are isolated. Starting from one particular column, a set of equivalent columns may be deduced by translation along b, thus generating a cationic layer lying in the ab plane; however, there is no vicinity relation between two successive donors belonging to two different stacks of the same layer, except for proximity of the external methyl groups. When looking in the c-axis direction, successive layers are completely separated by slabs of anions; moreover, the orientation of the donors is different in two consecutive cationic layers since they adopt a herringbone arrangement.

[Figure 2]
Figure 2
Overall view, along the a axis, of the crystal packing.

The packing of the donors within one stack is shown more precisely in Fig. 3[link]. The two alternating mol­ecules (A and B) are nearly parallel, the dihedral angle between their mean planes being only 0.24°. Within a stack, two independent inter­molecular inter­vals alternate with mean inter-plane distances of 3.40 and 3.71 Å. One can conclude in favour of the presence of dimers since the four inter­molecular S⋯S contacts corresponding to the smaller inter­val range from 3.472 (1) to 3.554 (2) Å (Fig. 3[link]) and thus are shorter than twice the van der Waals radius of sulfur (3.6–3.7 Å: Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., ch. 7. Ithaca: Cornell University Press.]); within a dimer the A and B units adopt a bond-over-ring (Williams et al., 1992[Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors, pp. 277-280. Englewood Cliffs: Prentice Hall.]) relative arrangement. On the other hand, all S⋯S distances across the larger inter­val exceed the van der Waals distance, ranging from 4.026 (2) to 4.050 (2) Å.

[Figure 3]
Figure 3
Packing of the donors: S⋯S contact distances within a stack, in the case of the two different inter-donor inter­vals.

4. Supra­molecular features

The S-camphSO3 anions stack along the a axis and are connected with each other via the water mol­ecules with many O—H⋯O hydrogen bonds ranging from 1.86 (3) Å to 2.15 (4) Å (Table 1[link]). The oxygen from one sulfonate is linked to the oxygen of the neighbouring sulfonate through a bridg­ing water mol­ecule, while the oxygen of this latter is linked to the H atom of another water mol­ecule, which is also connected to the oxygen of the ketone group, through O—H⋯O inter­actions (Fig. 4[link]). Thus, in Etter's classification (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]), the O—H⋯O hydrogen-bonding network can be described as being constituted of C22(6) chains bearing R33(11) lateral rings. On the other hand, the columns of cations and anions are connected through C—H⋯O hydrogen bonds, forming a system expanding in all three directions (Fig. 5[link] and Table 1[link]); finally, the result is a three-dimensional network of O—H⋯O and C—H⋯O hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O5 0.96 2.37 3.263 (7) 155
C6—H6C⋯O2 0.96 2.57 3.472 (5) 156
C6—H6A⋯O5 0.96 2.49 3.450 (6) 173
C6—H6B⋯O1i 0.96 2.49 3.409 (5) 161
C19—H19A⋯O3ii 0.96 2.48 3.420 (6) 167
C19—H19B⋯O6ii 0.96 2.44 3.387 (5) 169
C20—H20A⋯O3ii 0.96 2.34 3.287 (7) 171
C26—H26A⋯O12iii 0.97 2.5 3.435 (7) 162
C34—H34A⋯O9iv 0.97 2.52 3.476 (6) 169
O9—H91⋯O10 0.89 (2) 1.86 (3) 2.729 (7) 166 (8)
O9—H92⋯O8 0.88 (2) 2.13 (3) 2.976 (6) 160 (6)
O10—H101⋯O6 0.85 (2) 1.95 (2) 2.795 (5) 177 (6)
O10—H102⋯O7v 0.84 (2) 2.04 (4) 2.815 (5) 154 (7)
O11—H111⋯O1i 0.86 (2) 2.01 (3) 2.821 (5) 158 (7)
O11—H112⋯O2 0.83 (2) 2.06 (3) 2.863 (5) 162 (7)
O12—H121⋯O11 0.87 (2) 1.92 (3) 2.732 (7) 156 (7)
O12—H122⋯O4i 0.88 (2) 2.15 (4) 2.965 (6) 154 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+2]; (v) x-1, y, z.
[Figure 4]
Figure 4
O—H⋯O hydrogen bonds (green dashed lines) between sulfonate anions and water mol­ecules (the TMTTF.+ cations have been omitted for clarity).
[Figure 5]
Figure 5
Partial view of the crystal packing, showing both O—H⋯O bonds (green dashed lines) and the C—H⋯O contacts (blue dashed lines).

5. Synthesis and crystallization

Synthesis of the supporting electrolyte (1S)-camphor-10-sulfonic acid (Aldrich) (2.32 g, 10 mmol) was dissolved in water (50 ml), then 10 ml of a 1.0 mol l-1 methano­lic solution of tetra­butyl ammonium hydroxide (Aldrich) were added dropwise. This aqueous solution was stirred for one hour then extracted twice with di­chloro­methane (2 × 100 ml). After drying over MgSO4, evaporation of di­chloro­methane afforded tetra­butyl­ammonium S-camphorsulfonate (Bu4N+·S-camphSO3) (4.50 g, yield 95%), m.p. 410–412 K. Elemental analysis: calculated for C26H51NO4S: C 65.92, H 10.85, N 2.96, S 6.77%; found: C 65.77, H 11.25, N 2.91, S 6.76%.1H NMR (300 MHz, CDCl3): δ 0.82 (3H, s), 1.00 (12H, t, J = 7.3 Hz), 1.15 (3H, s), 1.32 (1H, m), 1.45 (8H, pseudo sextuplet), 1.66 (8H, m), 1.83 (3H, pseudo t), 1.99 (2H, m), 2.29 (1H, m), 2.83 (2H, m), 3.31 (8H, pseudo q).

Electrocrystallization of TMTTF·S-camphSO3·2H2O A conventional H-shaped cell was charged with 142 mg (0.3 mmol) of Bu4N+·S-camphSO3 dissolved in 20 ml of a 98/2 (v/v) tetra­hydro­furan–water mixture, degassed with argon. TMTTF (7.8 mg, 0.03 mmol) was introduced in the anodic arm and was then electro-oxidized under galvanostatic conditions with stepwise increases of the applied current (Anzai et al., 1995[Anzai, H., Delrieu, J. M., Takasaki, S., Nakatsuji, S. & Yamada, J. (1995). J. Cryst. Growth, 154, 145-150.]): 0.5 µA for 3 days, then 1 µA for 4 days, 2 µA for 3 days and finally 5 µA for 8 days; afterwards, the black needles of TMTTF·S-camphSO3·2H2O, deposited at the platinum wire anode, were collected. The electrocrystallization was conducted at room temperature except during the 6 last days during which the cell was cooled to 283 K.

Unsuccessful electrocrystallization experiments Electrocrystallizations, using Bu4N+·S-camphSO3 (or other camphSO3 salts) as supporting electrolyte, were attempted, in various solvent conditions, with the following donors: TTF itself, BEDT-TTF, ethyl­enedi­thio­tetra­thia­fulvalene (EDT-TTF) and tetra­methyl­tetra­selena­fulvalene (TMTSF), without affording usable crystals. Thus, TMTTF·S-camphSO3·2H2O and (EDT-TTFI2)2·S-camphSO3·H2O (Brezgunova et al., 2010[Brezgunova, M., Shin, K. S., Auban-Senzier, P., Jeannin, O. & Fourmigué, M. (2010). Chem. Commun. 46, 3926-3928.]), are presently the only known salts associating the camphorsulfonate anion to TTF donors.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (idealized methyl group, torsion angle from electron density), 0.97 Å (methyl­ene) or 0.98 Å (methine), with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(meth­yl). The H atoms of the water mol­ecule were located in a difference electron density map and then refined as riding on their parent O atoms with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C10H12S4+·C10H15O4S·2H2O
Mr 527.75
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 7.1612 (6), 12.537 (2), 26.906 (4)
β (°) 91.331 (8)
V3) 2415.0 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.32 × 0.07 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.818, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 27748, 9990, 7458
Rint 0.045
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.09
No. of reflections 9990
No. of parameters 596
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.33
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4218 Friedel pairs
Absolute structure parameter 0.15 (6)
Computer programs: COLLECT (Hooft, 2008[Hooft, R. W. W. (2008). COLLECT. Bruker AXS Inc., Delft, The Netherlands.]), DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]), EVALCCD (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Chiral molecular conductors may display inter­esting properties such as the magneto-chiral anisotropy effect; the different strategies of access to these materials have been recently reviewed (Avarvari & Wallis, 2009; Pop et al., 2014). Among these possible strategies, a straightforward a priori approach consists of combining, through electrocrystallization experiments, chiral counter-anions, existing in enanti­opure form, to TTF-based radical-cations; in this context, due to the commercial availability of the parent acid S-camphSO3H, the anion S-camphSO3- appears to be a ready choice and, in fact, it has already been used to obtain the salt (EDT-TTFI2)2·S-camphSO3·H2O, where EDT-TTFI2 is di­iodo-ethyl­enedi­thio-tetra­thia­fulvalene (Brezgunova et al., 2010). In addition, it is worth mentioning a more general review relating to conducting radical cation salts with organic anions, especially anions derived from carb­oxy­lic and sulfonic organic acids (Geiser & Schlueter, 2004).

Structural commentary top

The title compound crystallizes in the chiral space group P21. The asymmetric unit consists of two crystallographically independent TMTTF cations, two S-camphSO3 anions and four water molecules (Fig.1); thus, owing to the presence of the twofold symmetry axis inherent in the P21 group, the unit cell contains, in fact, four anions, four cations and eight water molecules.

The geometries of the two types (A and B) of TMTTF units (Fig. 1), are rather similar despite the fact that A and B are crystallographically independent; in both case, the observed bond lengths (see e.g. Penicaud et al., 1990; Shibaeva, 1984) and especially the central C=C distance [1.392 (6) Å in A and 1.378 (6) Å in B] are in agreement with a complete oxidation of TMTTF which is thus present as TMTTF.+ radical-cations, in agreement also with the 1/1 cation/anion balance of this salt.

Packing of the donors top

The cations form columns along the a axis in which the two types, A and B, of TMTTF units alternate (Fig. 2). The overall arrangement of the donors can be described as mono-dimensional since these stacks are isolated. Starting from one particular column, a set of equivalent columns may be deduced by translation along b, thus generating a cationic layer lying in the ab plane; however, there is no vicinity relation between two successive donors belonging to two different stacks of the same layer, except for proximity of the external methyl groups. When looking in the c-axis direction, successive layers are completely separated by slabs of anions; moreover, the orientation of the donors is different in two consecutive cationic layers since they adopt a herringbone relative disposition.

The packing of the donors within one stack is shown more precisely in Fig. 3. The two alternating molecules (A and B) are nearly parallel, the dihedral angle between their mean planes being only 0.24°. Within a stack, two independent inter­molecular inter­vals alternate with mean inter-plane distances of 3.40 and 3.71 Å. One can conclude in favour of the presence of dimers since the four inter­molecular S···S contacts corresponding to the smaller inter­val range from 3.472 (1) to 3.554 (2) Å (Fig. 3) and thus are shorter than twice the van der Waals radius of sulfur (3.6–3.7 Å: Bondi, 1964; Pauling, 1960); within a dimer the A and B units adopt a bond-over-ring (Williams et al., 1992) relative arrangement. On the other hand, all S···S distances across the larger inter­val exceed the van der Waals distance, ranging from 4.026 (2) to 4.050 (2) Å.

Supra­molecular features top

The S-camphSO3 anions stack along the a axis and are connected with each other via the water molecules with many O—H···O hydrogen bonds ranging from 1.86 (3) Å to 2.15 (4) Å (Table 1). The oxygen from one sulfonate is linked to the oxygen of the neighbouring sulfonate through a bridging water molecule, while the oxygen of this latter is linked to the H atom of another water molecule, which is also connected to the oxygen of the ketone group, through O—H···O inter­actions (Fig. 4). Thus, in Etter's classification (Etter, 1990), the O—H···O hydrogen-bonding network can be described as being constituted of C22(6) chains bearing R33(11) lateral rings. On the other hand, the columns of cations and anions are connected through C—H···O hydrogen bonds, forming a system expanding in all three directions (Fig. 5 and Table 1); finally, the result is a three-dimensional network of O—H···O and C—H···O hydrogen bonds.

Synthesis and crystallization top

Synthesis of the supporting electrolyte (1S)-camphor-10-sulfonic acid (Aldrich) (2.32 g, 10 mmol) was dissolved in water (50 ml), then 10 ml of a 1.0 mol l-1 methano­lic solution of tetra­butyl ammonium hydroxide (Aldrich) were added dropwise. This aqueous solution was stirred for one hour then extracted twice with di­chloro­methane (2 × 100 ml). After drying over MgSO4, evaporation of di­chloro­methane afforded tetra­butyl­ammonium S-camphorsulfonate (Bu4N+·S-camphSO3-) (4.50 g, yield 95%), m.p. 410–412 K. Elemental analysis: calculated for C26H51NO4S: C 65.92, H 10.85, N 2.96, S 6.77%; found: C 65.77, H 11.25, N 2.91, S 6.76%.1H NMR (300 MHz, CDCl3): δ 0.82 (3H, s), 1.00 (12H, t, J = 7.3 Hz), 1.15 (3H, s), 1.32 (1H, m), 1.45 (8H, pseudo sextuplet), 1.66 (8H, m), 1.83 (3H, pseudo t), 1.99 (2H, m), 2.29 (1H, m), 2.83 (2H, m), 3.31 (8H, pseudo q).

Electrocrystallization of TMTTF·S-camphSO3·2H2O A conventional H-shaped cell was charged with 142 mg (0.3 mmol) of Bu4N+·S-camphSO3- dissolved in 20 ml of a 98/2 (v/v) tetra­hydro­furan–water mixture, degassed with argon. TMTTF (7.8 mg, 0.03 mmol) was introduced in the anodic arm and was then electro-oxidized under galvanostatic conditions with stepwise increases of the applied current (Anzai et al., 1995): 0.5 µA for 3 days, then 1µA for 4 days, 2 µA for 3 days and finally 5 µA for 8 days; afterwards, the black needles of TMTTF·S-camphSO3·2H2O, deposited at the platinum wire anode, were collected. The electrocrystallization was conducted at room temperature except during the 6 last days during which the cell was cooled to 263 K.

Unsuccessful electrocrystallization experiments Electrocrystallizations, using Bu4N+·S-camphSO3- (or other camphSO3- salts) as supporting electrolyte, were attempted, in various solvent conditions, with the following donors: TTF itself, BEDT-TTF, ethyl­enedi­thio­tetra­thia­fulvalene (EDT-TTF) and tetra­methyl­tetra­selena­fulvalene (TMTSF), without affording usable crystals. Thus, TMTTF·S-camphSO3·2H2O and (EDT-TTFI2)2·S-camphSO3·H2O (Brezgunova et al., 2010), are presently the only known salts associating the camphorsulfonate anion to TTF donors.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (idealized methyl group, torsion angle from electron density), 0.97 Å (methyl­ene) or 0.98 Å (methine), with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl). The H atoms of the water molecule were located in a difference electron density map and then refined on their parent O atoms with Uiso(H) = 1.5Ueq(O).

Related literature top

For information on chiral molecular conductors, see: Avarvari & Wallis (2009); Pop et al. (2014); Brezgunova et al. (2010). For a more general review relating to conducting radical cation salts with organic anions, especially anions derived from carboxylic and sulfonic organic acids, see: Geiser & Schlueter (2004). For comparative structural data, see: Penicaud et al. (1990); Shibaeva (1984); Bondi (1964); Pauling (1960); Anzai et al. (1995); Etter (1990); Williams et al. (1992).

Computing details top

Data collection: COLLECT (Hooft, 2008); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Overall view, along the a axis, of the crystal packing.
[Figure 3] Fig. 3. Packing of the donors: S···S contact distances within a stack, in the case of the two different inter-donor intervals.
[Figure 4] Fig. 4. O—H···O hydrogen bonds (green dashed lines) between sulfonate anions and water molecules (the TMTTF.+ cations have been omitted for clarity).
[Figure 5] Fig. 5. Partial view of the packing diagram showing both O—H···O bonds (green dashed lines) and the C—H···O contacts (blue dashed lines).
Tetramethyltetrathiafulvalenium (S)-(7,7-dimethyl-2-methylidenebicyclo[2.2.1]heptan-1-yl)methanesulfonate dihydrate top
Crystal data top
C10H12S4+·C10H15O4S·2H2OF(000) = 1116
Mr = 527.75Dx = 1.452 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 14430 reflections
a = 7.1612 (6) Åθ = 2.3–28.0°
b = 12.537 (2) ŵ = 0.51 mm1
c = 26.906 (4) ÅT = 293 K
β = 91.331 (8)°Needle, black
V = 2415.0 (6) Å30.32 × 0.07 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9990 independent reflections
Graphite monochromator7458 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.045
CCD scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.818, Tmax = 0.975k = 1616
27748 measured reflectionsl = 3435
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.7423P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
9990 reflectionsΔρmax = 0.31 e Å3
596 parametersΔρmin = 0.33 e Å3
14 restraintsAbsolute structure: Flack (1983), 4218 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (6)
Crystal data top
C10H12S4+·C10H15O4S·2H2OV = 2415.0 (6) Å3
Mr = 527.75Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.1612 (6) ŵ = 0.51 mm1
b = 12.537 (2) ÅT = 293 K
c = 26.906 (4) Å0.32 × 0.07 × 0.05 mm
β = 91.331 (8)°
Data collection top
Nonius KappaCCD
diffractometer
9990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7458 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.975Rint = 0.045
27748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.31 e Å3
S = 1.09Δρmin = 0.33 e Å3
9990 reflectionsAbsolute structure: Flack (1983), 4218 Friedel pairs
596 parametersAbsolute structure parameter: 0.15 (6)
14 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms on the water molecules were added by Fourier difference map and then restrained with 13 DFIX commands between O and H and H and H on the 4 water molecules.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0039 (5)0.7691 (4)0.74395 (15)0.0315 (10)
C21.0143 (5)0.8691 (4)0.72164 (15)0.0305 (10)
C30.9649 (5)0.6176 (4)0.80764 (14)0.0321 (10)
C40.9783 (5)0.5681 (4)0.76277 (16)0.0339 (10)
C50.9429 (6)0.5649 (4)0.85764 (16)0.0434 (12)
H5A0.93540.4890.85340.065*
H5B0.83080.59020.87260.065*
H5C1.04850.5820.87880.065*
C60.9712 (6)0.4506 (4)0.75210 (17)0.0441 (12)
H6A0.97870.41170.78280.066*
H6B1.07440.43130.73180.066*
H6C0.85610.43380.73490.066*
C71.0197 (5)1.0716 (4)0.70563 (15)0.0352 (11)
C81.0332 (5)1.0260 (4)0.66036 (15)0.0349 (11)
C91.0103 (6)1.1901 (4)0.71473 (17)0.0463 (12)
H9A1.08951.22640.69190.069*
H9B1.05151.20530.74820.069*
H9C0.88391.21420.70990.069*
C101.0429 (7)1.0846 (4)0.61183 (16)0.0506 (13)
H10A1.16881.10790.60680.076*
H10B0.96151.14540.61240.076*
H10C1.00471.0380.58520.076*
C110.4647 (5)0.7052 (4)0.77718 (14)0.0290 (10)
C120.4751 (5)0.8039 (4)0.75490 (15)0.0295 (9)
C130.4408 (5)0.5506 (4)0.83837 (15)0.0346 (10)
C140.4550 (5)0.5035 (4)0.79301 (15)0.0312 (10)
C150.4332 (6)0.4884 (5)0.88686 (15)0.0450 (12)
H15A0.55340.45770.89430.067*
H15B0.34170.43270.88360.067*
H15C0.39950.53560.91330.067*
C160.4630 (7)0.3864 (4)0.78380 (17)0.0477 (13)
H16A0.35030.35370.79490.072*
H16B0.56820.35660.80170.072*
H16C0.47580.37350.74890.072*
C170.4983 (5)1.0066 (4)0.73563 (15)0.0313 (10)
C180.5138 (5)0.9570 (4)0.69180 (13)0.0302 (10)
C190.5022 (6)1.1239 (4)0.74642 (16)0.0432 (12)
H19A0.51421.16270.71590.065*
H19B0.60641.13980.76820.065*
H19C0.38831.14420.7620.065*
C200.5357 (6)1.0069 (4)0.64138 (15)0.0429 (12)
H20A0.52251.08290.6440.064*
H20B0.44150.97950.61890.064*
H20C0.6570.99020.62910.064*
C210.4508 (6)0.4156 (3)0.57341 (14)0.0368 (10)
H21A0.56310.3870.5590.044*
H21B0.34650.37690.55850.044*
C220.4333 (5)0.5309 (3)0.55588 (12)0.0312 (8)
C230.3084 (6)0.6086 (4)0.58581 (15)0.0450 (11)
H23A0.1770.59280.58020.054*
H23B0.33730.60410.62110.054*
C240.3572 (6)0.7193 (3)0.56544 (15)0.0518 (11)
H24A0.24710.75410.55140.062*
H24B0.41070.76420.59140.062*
C250.4994 (6)0.6970 (4)0.52537 (15)0.0442 (11)
H250.57590.75830.5160.053*
C260.3896 (7)0.6448 (3)0.48247 (13)0.0508 (11)
H26A0.27560.68370.47470.061*
H26B0.4640.640.45290.061*
C270.3477 (5)0.5348 (4)0.50338 (13)0.0400 (9)
C280.6108 (5)0.6007 (3)0.54804 (12)0.0356 (9)
C290.7228 (6)0.6330 (4)0.59547 (15)0.0498 (12)
H29A0.8040.69150.5880.075*
H29B0.7960.57340.6070.075*
H29C0.63810.65410.62080.075*
C300.7494 (6)0.5486 (4)0.51178 (15)0.0585 (13)
H30A0.68070.5130.48560.088*
H30B0.8260.49790.52950.088*
H30C0.82710.60280.49780.088*
C310.9937 (5)0.1623 (3)0.92505 (13)0.0320 (9)
H31A1.1080.1870.94130.038*
H31B0.89270.20410.93850.038*
C320.9641 (5)0.0474 (3)0.94173 (11)0.0289 (8)
C330.8680 (5)0.0448 (3)0.99285 (13)0.0391 (9)
C340.8975 (6)0.0648 (3)1.01455 (14)0.0459 (10)
H34A0.77970.10121.01930.055*
H34B0.96660.06181.04590.055*
C351.0107 (6)0.1182 (4)0.97438 (15)0.0432 (11)
H351.08120.1810.98570.052*
C360.8726 (6)0.1400 (3)0.93109 (14)0.0493 (11)
H36A0.75880.17240.94280.059*
H36B0.92740.18620.90650.059*
C370.8346 (6)0.0278 (4)0.90965 (15)0.0455 (10)
H37A0.70430.00830.91290.055*
H37B0.86630.02440.87480.055*
C381.1338 (5)0.0259 (3)0.95488 (13)0.0371 (8)
C391.2680 (6)0.0219 (4)0.99411 (17)0.0598 (13)
H39A1.33890.07820.97940.09*
H39B1.35150.03261.00630.09*
H39C1.19790.04991.02110.09*
C401.2493 (6)0.0604 (4)0.91036 (17)0.0550 (13)
H40A1.32610.12020.91960.082*
H40B1.32720.00230.90030.082*
H40C1.1670.08020.88330.082*
O10.2874 (4)0.4218 (3)0.66027 (11)0.0628 (10)
O20.6222 (4)0.4306 (3)0.66083 (10)0.0534 (9)
O30.4668 (6)0.2661 (4)0.63816 (14)0.0813 (13)
O40.2623 (4)0.4644 (3)0.48213 (10)0.0586 (8)
O51.0396 (5)0.3107 (3)0.86141 (12)0.0650 (10)
O60.8332 (4)0.1656 (3)0.83627 (11)0.0575 (9)
O71.1630 (4)0.1376 (3)0.84020 (10)0.0476 (8)
O80.7881 (4)0.1182 (2)1.01231 (10)0.0581 (8)
O90.5021 (7)0.2784 (4)0.9811 (2)0.1014 (17)
H910.522 (11)0.258 (6)0.9499 (10)0.152*
H920.570 (10)0.230 (5)0.997 (2)0.152*
O100.5008 (5)0.2052 (5)0.88554 (15)0.0837 (13)
H1010.599 (5)0.191 (6)0.870 (2)0.126*
H1020.410 (5)0.200 (6)0.8652 (17)0.126*
O110.9508 (5)0.3613 (4)0.61152 (16)0.0889 (15)
H1111.053 (4)0.393 (5)0.6200 (16)0.133*
H1120.865 (5)0.395 (5)0.625 (2)0.133*
O121.0154 (7)0.2917 (5)0.5172 (2)0.1124 (19)
H1211.014 (12)0.329 (6)0.5444 (17)0.169*
H1221.085 (10)0.331 (6)0.498 (2)0.169*
S10.97592 (14)0.75623 (9)0.80709 (4)0.0348 (3)
S21.01099 (15)0.65135 (9)0.71188 (4)0.0375 (3)
S31.00760 (14)0.98512 (9)0.75585 (4)0.0337 (3)
S41.03468 (15)0.88716 (10)0.65885 (4)0.0380 (3)
S50.44108 (14)0.68713 (9)0.84015 (4)0.0350 (3)
S60.47203 (15)0.58999 (9)0.74292 (4)0.0345 (3)
S70.46796 (15)0.92346 (9)0.78738 (4)0.0349 (3)
S80.50273 (15)0.81870 (10)0.69212 (4)0.0360 (3)
S90.45931 (16)0.38087 (11)0.63808 (4)0.0435 (3)
S101.00831 (14)0.19673 (10)0.86075 (4)0.0361 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.032 (3)0.023 (2)0.0003 (19)0.0012 (15)0.0016 (19)
C20.035 (2)0.027 (3)0.029 (2)0.0003 (18)0.0003 (15)0.005 (2)
C30.035 (2)0.027 (3)0.034 (2)0.0007 (18)0.0001 (16)0.005 (2)
C40.037 (2)0.031 (3)0.034 (2)0.0006 (19)0.0010 (16)0.002 (2)
C50.050 (3)0.043 (3)0.038 (3)0.008 (2)0.0076 (19)0.007 (2)
C60.055 (3)0.032 (3)0.044 (3)0.000 (2)0.0025 (19)0.001 (2)
C70.040 (2)0.035 (3)0.031 (2)0.0008 (19)0.0015 (16)0.007 (2)
C80.034 (2)0.036 (3)0.035 (2)0.0006 (18)0.0031 (16)0.008 (2)
C90.062 (3)0.032 (3)0.044 (3)0.000 (2)0.007 (2)0.002 (2)
C100.071 (3)0.048 (4)0.034 (3)0.014 (3)0.000 (2)0.012 (2)
C110.0312 (19)0.033 (3)0.023 (2)0.0032 (19)0.0019 (14)0.002 (2)
C120.035 (2)0.024 (3)0.030 (2)0.0026 (18)0.0024 (15)0.0009 (19)
C130.035 (2)0.038 (3)0.032 (2)0.0039 (19)0.0056 (16)0.002 (2)
C140.033 (2)0.028 (3)0.033 (2)0.0019 (17)0.0026 (16)0.0068 (19)
C150.050 (2)0.050 (3)0.034 (2)0.003 (2)0.0046 (18)0.011 (2)
C160.072 (3)0.030 (3)0.042 (3)0.011 (2)0.007 (2)0.006 (2)
C170.039 (2)0.026 (3)0.028 (2)0.0015 (18)0.0031 (16)0.0059 (19)
C180.0316 (19)0.033 (3)0.026 (2)0.0023 (17)0.0012 (15)0.0036 (19)
C190.059 (3)0.028 (3)0.042 (3)0.006 (2)0.003 (2)0.001 (2)
C200.060 (3)0.041 (3)0.029 (2)0.000 (2)0.0070 (18)0.011 (2)
C210.051 (2)0.030 (3)0.029 (2)0.000 (2)0.0015 (16)0.0003 (18)
C220.038 (2)0.034 (2)0.0219 (16)0.0023 (18)0.0015 (14)0.0006 (15)
C230.048 (2)0.051 (3)0.037 (2)0.016 (2)0.0088 (17)0.0042 (19)
C240.072 (3)0.042 (3)0.042 (2)0.018 (2)0.008 (2)0.0084 (19)
C250.069 (3)0.029 (3)0.035 (2)0.005 (2)0.001 (2)0.003 (2)
C260.081 (3)0.042 (3)0.0291 (18)0.008 (2)0.0063 (19)0.0053 (17)
C270.046 (2)0.041 (3)0.0330 (18)0.003 (2)0.0017 (16)0.0019 (18)
C280.041 (2)0.036 (2)0.0290 (17)0.0021 (18)0.0007 (15)0.0029 (16)
C290.053 (3)0.049 (3)0.046 (2)0.005 (2)0.0122 (19)0.002 (2)
C300.058 (3)0.073 (4)0.045 (2)0.002 (3)0.019 (2)0.001 (2)
C310.040 (2)0.035 (3)0.0213 (17)0.0033 (17)0.0035 (14)0.0031 (16)
C320.0349 (19)0.031 (2)0.0204 (15)0.0019 (17)0.0016 (14)0.0006 (14)
C330.048 (2)0.037 (2)0.0333 (18)0.001 (2)0.0107 (17)0.0007 (17)
C340.068 (3)0.037 (3)0.0335 (19)0.001 (2)0.0188 (18)0.0046 (17)
C350.067 (3)0.033 (3)0.030 (2)0.007 (2)0.0087 (19)0.005 (2)
C360.073 (3)0.031 (2)0.044 (2)0.018 (2)0.012 (2)0.0080 (18)
C370.056 (2)0.043 (3)0.037 (2)0.019 (2)0.0051 (18)0.0048 (19)
C380.046 (2)0.030 (2)0.0348 (18)0.0075 (18)0.0007 (16)0.0054 (16)
C390.059 (3)0.061 (4)0.059 (3)0.007 (3)0.020 (2)0.005 (2)
C400.054 (3)0.048 (3)0.064 (3)0.017 (2)0.026 (2)0.011 (2)
O10.0554 (18)0.086 (3)0.0478 (18)0.0072 (17)0.0242 (14)0.0106 (17)
O20.0572 (18)0.069 (2)0.0338 (15)0.0003 (16)0.0061 (13)0.0089 (15)
O30.153 (4)0.035 (3)0.057 (3)0.004 (2)0.006 (2)0.017 (2)
O40.083 (2)0.052 (2)0.0404 (15)0.0110 (17)0.0206 (15)0.0034 (14)
O50.114 (3)0.035 (2)0.046 (2)0.006 (2)0.0016 (19)0.0137 (18)
O60.0423 (16)0.085 (3)0.0447 (16)0.0022 (16)0.0117 (13)0.0147 (17)
O70.0464 (16)0.061 (2)0.0358 (15)0.0008 (15)0.0150 (12)0.0057 (15)
O80.081 (2)0.0403 (18)0.0541 (17)0.0092 (16)0.0368 (15)0.0004 (14)
O90.092 (3)0.075 (4)0.137 (5)0.021 (2)0.002 (3)0.035 (3)
O100.0447 (18)0.126 (4)0.080 (3)0.003 (3)0.0029 (17)0.007 (3)
O110.060 (2)0.124 (4)0.083 (3)0.028 (3)0.003 (2)0.001 (3)
O120.100 (3)0.095 (5)0.143 (5)0.034 (3)0.020 (3)0.035 (4)
S10.0475 (6)0.0306 (7)0.0266 (5)0.0005 (5)0.0046 (4)0.0000 (5)
S20.0555 (6)0.0308 (8)0.0260 (5)0.0030 (5)0.0029 (4)0.0021 (5)
S30.0473 (6)0.0258 (7)0.0281 (6)0.0005 (5)0.0048 (4)0.0010 (5)
S40.0536 (6)0.0345 (8)0.0257 (5)0.0040 (5)0.0010 (4)0.0006 (5)
S50.0475 (6)0.0333 (8)0.0240 (5)0.0009 (5)0.0015 (4)0.0001 (5)
S60.0491 (6)0.0283 (7)0.0263 (5)0.0035 (5)0.0060 (4)0.0008 (5)
S70.0533 (6)0.0274 (7)0.0239 (5)0.0028 (5)0.0011 (4)0.0010 (5)
S80.0535 (6)0.0315 (7)0.0233 (5)0.0049 (5)0.0064 (4)0.0003 (5)
S90.0629 (7)0.0408 (8)0.0269 (5)0.0014 (6)0.0041 (5)0.0078 (5)
S100.0428 (5)0.0381 (8)0.0274 (5)0.0013 (5)0.0010 (4)0.0085 (5)
Geometric parameters (Å, º) top
C1—C21.392 (6)C23—H23A0.97
C1—S21.711 (5)C23—H23B0.97
C1—S11.723 (4)C24—C251.526 (6)
C2—S41.714 (4)C24—H24A0.97
C2—S31.723 (5)C24—H24B0.97
C3—C41.363 (6)C25—C261.528 (6)
C3—C51.510 (6)C25—C281.562 (6)
C3—S11.740 (5)C25—H250.98
C4—C61.501 (7)C26—C271.522 (6)
C4—S21.742 (4)C26—H26A0.97
C5—H5A0.96C26—H26B0.97
C5—H5B0.96C27—O41.210 (5)
C5—H5C0.96C28—C291.546 (5)
C6—H6A0.96C28—C301.552 (5)
C6—H6B0.96C29—H29A0.96
C6—H6C0.96C29—H29B0.96
C7—C81.351 (6)C29—H29C0.96
C7—C91.507 (7)C30—H30A0.96
C7—S31.736 (4)C30—H30B0.96
C8—C101.502 (6)C30—H30C0.96
C8—S41.741 (5)C31—C321.526 (6)
C9—H9A0.96C31—S101.789 (4)
C9—H9B0.96C31—H31A0.97
C9—H9C0.96C31—H31B0.97
C10—H10A0.96C32—C331.553 (4)
C10—H10B0.96C32—C381.557 (5)
C10—H10C0.96C32—C371.567 (5)
C11—C121.378 (6)C33—O81.209 (5)
C11—S61.714 (5)C33—C341.506 (6)
C11—S51.722 (4)C34—C351.522 (5)
C12—S81.715 (4)C34—H34A0.97
C12—S71.736 (5)C34—H34B0.97
C13—C141.361 (6)C35—C361.535 (6)
C13—C151.522 (6)C35—C381.554 (6)
C13—S51.713 (5)C35—H350.98
C14—C161.490 (7)C36—C371.542 (6)
C14—S61.736 (4)C36—H36A0.97
C15—H15A0.96C36—H36B0.97
C15—H15B0.96C37—H37A0.97
C15—H15C0.96C37—H37B0.97
C16—H16A0.96C38—C391.533 (6)
C16—H16B0.96C38—C401.534 (5)
C16—H16C0.96C39—H39A0.96
C17—C181.340 (6)C39—H39B0.96
C17—C191.499 (6)C39—H39C0.96
C17—S71.757 (4)C40—H40A0.96
C18—C201.505 (5)C40—H40B0.96
C18—S81.736 (5)C40—H40C0.96
C19—H19A0.96O1—S91.473 (3)
C19—H19B0.96O2—S91.446 (3)
C19—H19C0.96O3—S91.440 (5)
C20—H20A0.96O5—S101.446 (4)
C20—H20B0.96O6—S101.456 (3)
C20—H20C0.96O7—S101.453 (3)
C21—C221.524 (6)O9—H910.89 (2)
C21—S91.793 (4)O9—H920.88 (2)
C21—H21A0.97O10—H1010.846 (19)
C21—H21B0.97O10—H1020.841 (19)
C22—C271.527 (5)O11—H1110.857 (19)
C22—C231.560 (5)O11—H1120.83 (2)
C22—C281.562 (5)O12—H1210.867 (19)
C23—C241.535 (6)O12—H1220.88 (2)
C2—C1—S2123.8 (3)C24—C25—H25115
C2—C1—S1121.2 (3)C26—C25—H25115
S2—C1—S1115.0 (3)C28—C25—H25115
C1—C2—S4123.4 (3)C27—C26—C25102.2 (3)
C1—C2—S3121.8 (3)C27—C26—H26A111.3
S4—C2—S3114.8 (3)C25—C26—H26A111.3
C4—C3—C5126.9 (4)C27—C26—H26B111.3
C4—C3—S1116.3 (3)C25—C26—H26B111.3
C5—C3—S1116.8 (3)H26A—C26—H26B109.2
C3—C4—C6127.9 (4)O4—C27—C26126.0 (4)
C3—C4—S2115.9 (4)O4—C27—C22126.9 (4)
C6—C4—S2116.2 (3)C26—C27—C22107.1 (3)
C3—C5—H5A109.5C29—C28—C30107.6 (3)
C3—C5—H5B109.5C29—C28—C25111.8 (3)
H5A—C5—H5B109.5C30—C28—C25114.1 (3)
C3—C5—H5C109.5C29—C28—C22116.3 (3)
H5A—C5—H5C109.5C30—C28—C22112.5 (3)
H5B—C5—H5C109.5C25—C28—C2294.4 (3)
C4—C6—H6A109.5C28—C29—H29A109.5
C4—C6—H6B109.5C28—C29—H29B109.5
H6A—C6—H6B109.5H29A—C29—H29B109.5
C4—C6—H6C109.5C28—C29—H29C109.5
H6A—C6—H6C109.5H29A—C29—H29C109.5
H6B—C6—H6C109.5H29B—C29—H29C109.5
C8—C7—C9124.6 (4)C28—C30—H30A109.5
C8—C7—S3116.3 (4)C28—C30—H30B109.5
C9—C7—S3119.1 (3)H30A—C30—H30B109.5
C7—C8—C10125.6 (5)C28—C30—H30C109.5
C7—C8—S4116.4 (3)H30A—C30—H30C109.5
C10—C8—S4117.9 (4)H30B—C30—H30C109.5
C7—C9—H9A109.5C32—C31—S10121.6 (3)
C7—C9—H9B109.5C32—C31—H31A106.9
H9A—C9—H9B109.5S10—C31—H31A106.9
C7—C9—H9C109.5C32—C31—H31B106.9
H9A—C9—H9C109.5S10—C31—H31B106.9
H9B—C9—H9C109.5H31A—C31—H31B106.7
C8—C10—H10A109.5C31—C32—C33110.3 (3)
C8—C10—H10B109.5C31—C32—C38120.7 (3)
H10A—C10—H10B109.5C33—C32—C3898.4 (3)
C8—C10—H10C109.5C31—C32—C37119.4 (3)
H10A—C10—H10C109.5C33—C32—C37101.9 (3)
H10B—C10—H10C109.5C38—C32—C37102.7 (3)
C12—C11—S6121.3 (3)O8—C33—C34126.1 (3)
C12—C11—S5123.6 (3)O8—C33—C32126.3 (4)
S6—C11—S5115.1 (3)C34—C33—C32107.5 (3)
C11—C12—S8122.3 (3)C33—C34—C35101.5 (3)
C11—C12—S7123.6 (3)C33—C34—H34A111.5
S8—C12—S7114.1 (3)C35—C34—H34A111.5
C14—C13—C15123.5 (4)C33—C34—H34B111.5
C14—C13—S5117.3 (3)C35—C34—H34B111.5
C15—C13—S5119.2 (3)H34A—C34—H34B109.3
C13—C14—C16125.5 (4)C34—C35—C36105.8 (4)
C13—C14—S6115.7 (3)C34—C35—C38103.2 (4)
C16—C14—S6118.8 (3)C36—C35—C38103.7 (3)
C13—C15—H15A109.5C34—C35—H35114.3
C13—C15—H15B109.5C36—C35—H35114.3
H15A—C15—H15B109.5C38—C35—H35114.3
C13—C15—H15C109.5C35—C36—C37103.1 (3)
H15A—C15—H15C109.5C35—C36—H36A111.1
H15B—C15—H15C109.5C37—C36—H36A111.1
C14—C16—H16A109.5C35—C36—H36B111.1
C14—C16—H16B109.5C37—C36—H36B111.1
H16A—C16—H16B109.5H36A—C36—H36B109.1
C14—C16—H16C109.5C36—C37—C32104.2 (3)
H16A—C16—H16C109.5C36—C37—H37A110.9
H16B—C16—H16C109.5C32—C37—H37A110.9
C18—C17—C19128.6 (4)C36—C37—H37B110.9
C18—C17—S7115.9 (3)C32—C37—H37B110.9
C19—C17—S7115.5 (3)H37A—C37—H37B108.9
C17—C18—C20127.8 (4)C39—C38—C40107.9 (4)
C17—C18—S8117.0 (3)C39—C38—C35114.2 (3)
C20—C18—S8115.2 (3)C40—C38—C35112.0 (4)
C17—C19—H19A109.5C39—C38—C32113.6 (3)
C17—C19—H19B109.5C40—C38—C32114.9 (3)
H19A—C19—H19B109.5C35—C38—C3294.0 (3)
C17—C19—H19C109.5C38—C39—H39A109.5
H19A—C19—H19C109.5C38—C39—H39B109.5
H19B—C19—H19C109.5H39A—C39—H39B109.5
C18—C20—H20A109.5C38—C39—H39C109.5
C18—C20—H20B109.5H39A—C39—H39C109.5
H20A—C20—H20B109.5H39B—C39—H39C109.5
C18—C20—H20C109.5C38—C40—H40A109.5
H20A—C20—H20C109.5C38—C40—H40B109.5
H20B—C20—H20C109.5H40A—C40—H40B109.5
C22—C21—S9122.1 (3)C38—C40—H40C109.5
C22—C21—H21A106.8H40A—C40—H40C109.5
S9—C21—H21A106.8H40B—C40—H40C109.5
C22—C21—H21B106.8H91—O9—H9299 (3)
S9—C21—H21B106.8H101—O10—H102107 (3)
H21A—C21—H21B106.7H111—O11—H112107 (3)
C21—C22—C27110.2 (3)H121—O12—H122102 (3)
C21—C22—C23118.5 (3)C1—S1—C396.2 (2)
C27—C22—C23103.6 (3)C1—S2—C496.6 (2)
C21—C22—C28120.8 (3)C2—S3—C796.3 (2)
C27—C22—C2899.6 (3)C2—S4—C896.2 (2)
C23—C22—C28101.4 (3)C13—S5—C1196.0 (2)
C24—C23—C22104.0 (3)C11—S6—C1496.0 (2)
C24—C23—H23A111C12—S7—C1796.2 (2)
C22—C23—H23A110.9C12—S8—C1896.8 (2)
C24—C23—H23B110.9O3—S9—O2113.6 (3)
C22—C23—H23B111O3—S9—O1112.2 (3)
H23A—C23—H23B109O2—S9—O1110.6 (2)
C25—C24—C23104.3 (3)O3—S9—C21104.2 (2)
C25—C24—H24A110.9O2—S9—C21108.35 (19)
C23—C24—H24A110.9O1—S9—C21107.39 (19)
C25—C24—H24B110.9O5—S10—O7112.9 (2)
C23—C24—H24B110.9O5—S10—O6113.7 (2)
H24A—C24—H24B108.9O7—S10—O6110.3 (2)
C24—C25—C26105.8 (4)O5—S10—C31103.8 (2)
C24—C25—C28102.1 (3)O7—S10—C31107.88 (18)
C26—C25—C28102.3 (4)O6—S10—C31107.68 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O50.962.373.263 (7)155
C6—H6C···O20.962.573.472 (5)156
C6—H6A···O50.962.493.450 (6)173
C6—H6B···O1i0.962.493.409 (5)161
C19—H19A···O3ii0.962.483.420 (6)167
C19—H19B···O6ii0.962.443.387 (5)169
C20—H20A···O3ii0.962.343.287 (7)171
C26—H26A···O12iii0.972.53.435 (7)162
C34—H34A···O9iv0.972.523.476 (6)169
O9—H91···O100.89 (2)1.86 (3)2.729 (7)166 (8)
O9—H92···O80.88 (2)2.13 (3)2.976 (6)160 (6)
O10—H101···O60.85 (2)1.95 (2)2.795 (5)177 (6)
O10—H102···O7v0.84 (2)2.04 (4)2.815 (5)154 (7)
O11—H111···O1i0.86 (2)2.01 (3)2.821 (5)158 (7)
O11—H112···O20.83 (2)2.06 (3)2.863 (5)162 (7)
O12—H121···O110.87 (2)1.92 (3)2.732 (7)156 (7)
O12—H122···O4i0.88 (2)2.15 (4)2.965 (6)154 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12S4+·C10H15O4S·2H2O
Mr527.75
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.1612 (6), 12.537 (2), 26.906 (4)
β (°) 91.331 (8)
V3)2415.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.32 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.818, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
27748, 9990, 7458
Rint0.045
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.09
No. of reflections9990
No. of parameters596
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.33
Absolute structureFlack (1983), 4218 Friedel pairs
Absolute structure parameter0.15 (6)

Computer programs: COLLECT (Hooft, 2008), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2014), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O50.962.373.263 (7)155.4
C6—H6C···O20.962.573.472 (5)156
C6—H6A···O50.962.493.450 (6)173.1
C6—H6B···O1i0.962.493.409 (5)161.2
C19—H19A···O3ii0.962.483.420 (6)166.9
C19—H19B···O6ii0.962.443.387 (5)168.8
C20—H20A···O3ii0.962.343.287 (7)171
C26—H26A···O12iii0.972.53.435 (7)162.4
C34—H34A···O9iv0.972.523.476 (6)168.5
O9—H91···O100.89 (2)1.86 (3)2.729 (7)166 (8)
O9—H92···O80.88 (2)2.13 (3)2.976 (6)160 (6)
O10—H101···O60.846 (19)1.951 (19)2.795 (5)177 (6)
O10—H102···O7v0.841 (19)2.04 (4)2.815 (5)154 (7)
O11—H111···O1i0.857 (19)2.01 (3)2.821 (5)158 (7)
O11—H112···O20.83 (2)2.06 (3)2.863 (5)162 (7)
O12—H121···O110.867 (19)1.92 (3)2.732 (7)156 (7)
O12—H122···O4i0.88 (2)2.15 (4)2.965 (6)154 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+2; (v) x1, y, z.
 

Acknowledgements

The authors acknowledge Mrs Valerie Bonnin for the elemental analysis.

References

First citationAnzai, H., Delrieu, J. M., Takasaki, S., Nakatsuji, S. & Yamada, J. (1995). J. Cryst. Growth, 154, 145–150.  CrossRef CAS Web of Science Google Scholar
First citationAvarvari, N. & Wallis, J. D. (2009). J. Mater. Chem. 19, 4061–4076.  Web of Science CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrezgunova, M., Shin, K. S., Auban-Senzier, P., Jeannin, O. & Fourmigué, M. (2010). Chem. Commun. 46, 3926–3928.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeiser, U. & Schlueter, J. A. (2004). Chem. Rev. 104, 5203–5242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (2008). COLLECT. Bruker AXS Inc., Delft, The Netherlands.  Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., ch. 7. Ithaca: Cornell University Press.  Google Scholar
First citationPenicaud, A., Batail, P., Coulon, C., Canadell, E. & Perrin, C. (1990). Chem. Mater. 2, 123–132.  CrossRef CAS Web of Science Google Scholar
First citationPop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. (2014). Nat. Commun. 5, 3757.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibaeva, R. P. (1984). Sov. Phys. Crystallogr. 29, 288–289.  Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors, pp. 277–280. Englewood Cliffs: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 748-751
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds