organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4α-hy­dr­oxy-5α,8β(H)-eudesm-7(11)-en-8,12-olide monohydrate

aXi'an Botanical Garden, Institute of Botany of Shaanxi Province, Xi'an 710061, People's Republic of China, and bShaanxi Province Academy of Sciences, Xi'an 710061, People's Republic of China
*Correspondence e-mail: sxw@ms.xab.ac.cn

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 30 May 2015; accepted 9 June 2015; online 27 June 2015)

The title compound, C15H22O3·H2O, is a natural producr isolated from Chloranthus japonicus, which is a eudesmane sesquiterpenoid. The two trans-fused six-membered rings have chair confomations. In the crystal, O—H⋯O hydrogen bonds link the components into corrugated layers parallel to the bc plane. There are C—H⋯O inter­actions present within and between the layers.

1. Related literature

For the products isolated from the genus Chloranthus, see: Xiao et al. (2010[Xiao, Z.-Y., Wang, X.-C., Zhang, G.-P., Huang, Z.-L. & Hu, L.-H. (2010). Helv. Chim. Acta, 93, 803-810. ]); Sun et al. (2012[Sun, C.-L., Yan, H., Li, X.-H., Zheng, X.-F. & Liu, H.-Y. (2012). Nat. Prod. Bioprospect. 2, 156-159.]). For the crystal structure of the related compound 6β-hy­droxy­eremophil-7(11)-en-8β,12-olide, see: Su et al. (2011[Su, R.-N., Shi, S., Wu, H.-B. & Wang, W.-S. (2011). Acta Cryst. E67, o1361.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22O3·H2O

  • Mr = 268.34

  • Monoclinic, P 21

  • a = 10.2495 (2) Å

  • b = 7.1061 (1) Å

  • c = 10.5275 (2) Å

  • β = 100.026 (1)°

  • V = 755.05 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.30 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 0.821

  • 3081 measured reflections

  • 1339 independent reflections

  • 1303 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.130

  • S = 1.14

  • 1339 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.98 2.63 3.407 (3) 136
C8—H8⋯O3ii 0.98 2.64 3.308 (4) 126
O1—H1⋯O4i 0.82 1.91 2.718 (3) 169
O4—H4WA⋯O3ii 0.83 2.05 2.850 (3) 162
O4—H4WB⋯O1iii 0.86 1.94 2.764 (3) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: ORTEP (Johnson & Burnett, 1996[Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

Chloranthus japonicus (Chloranthaceae,"yin-xian-cao"in chinese) is mainly distributed in the east of Asia and traditionally used as Chinese herbal medicine in the treatment of fractures, carbuncles, trauma, and rheumatism. In our current phytochemical investigation, the title compound - an eudesmane sesquiterpenoid, was isolated from the whole plant of C. japonicus for the first time.The compound was identified by NMR spectroscopic data, which were also elucidated by comparing with the literature data (Xiao et al., 2010). Herein, we report its crystal structure.

The main molecule of the title compound consists of a fused three-ring system (Fig.1). The two methyl groups attached to C4 and C10 and the H atom at C8 are all in the axial position and assigned β-configuration, whereas, the hy­droxy group at C4 site has α-orientation.

In the crystal, inter­molecular O—H···O hydrogen bonds (Table 1, Fig. 2) link all moeties into corrugated layers parallel to bc plane, and weak C—H···O inter­actions (Table 1) consolidate further the crystal packing.

Experimental top

The title compound was isolated from the whole plant of C. japonicus following the known procedure (Xiao et al., 2010).

Refinement top

The hydrogen atoms were placed in calculated positions and refined as riding with Uiso(H) =1.2 Ueq (C) or 1.5 Ueq(C, O). The positions of methyl and hy­droxy hydrogens were rotationally optimized.

Related literature top

For the products isolated from the genus Chloranthus, see: Xiao et al. (2010); Sun et al. (2012). For the crystal structure of the related compound 6β-hydroxyeremophil-7(11)-en-8β,12-olide, see: Su et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: ORTEP (Johnson & Burnett, 1996).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing O—H···O hydrogen bonds as dashed lines.
4α-Hydroxy-5α,8β(H)-eudesm-7(11)-en-8,12-olide monohydrate top
Crystal data top
C15H22O3·H2OF(000) = 292
Mr = 268.34Dx = 1.180 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 2390 reflections
a = 10.2495 (2) Åθ = 4.3–66.9°
b = 7.1061 (1) ŵ = 0.68 mm1
c = 10.5275 (2) ÅT = 298 K
β = 100.026 (1)°Block, colourless
V = 755.05 (2) Å30.40 × 0.40 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1339 independent reflections
Radiation source: fine-focus sealed tube1303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 64.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.772, Tmax = 0.821k = 68
3081 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.092P)2 + 0.043P]
where P = (Fo2 + 2Fc2)/3
1339 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C15H22O3·H2OV = 755.05 (2) Å3
Mr = 268.34Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.2495 (2) ŵ = 0.68 mm1
b = 7.1061 (1) ÅT = 298 K
c = 10.5275 (2) Å0.40 × 0.40 × 0.30 mm
β = 100.026 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1303 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.821Rint = 0.018
3081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.18Δρmax = 0.22 e Å3
1339 reflectionsΔρmin = 0.34 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0506 (3)0.0853 (6)0.6719 (3)0.0694 (9)
H1A0.02820.05100.61110.083*
H1B0.08850.19590.63840.083*
C20.0108 (3)0.1346 (10)0.7998 (3)0.0938 (16)
H2A0.05110.23910.78810.113*
H2B0.03310.02770.83130.113*
C30.1333 (3)0.1883 (7)0.8991 (3)0.0795 (12)
H3A0.10610.21730.98070.095*
H3B0.17320.30050.87000.095*
C40.2366 (3)0.0303 (5)0.9198 (2)0.0545 (7)
C50.2709 (2)0.0271 (3)0.7882 (2)0.0400 (5)
H50.30930.08630.75670.048*
C60.3814 (2)0.1752 (4)0.7989 (2)0.0482 (6)
H6A0.35010.29430.82720.058*
H6B0.45710.13520.86160.058*
C70.4201 (2)0.1974 (3)0.6697 (2)0.0438 (5)
C80.3125 (3)0.2269 (4)0.5558 (2)0.0493 (6)
H80.27540.35360.55900.059*
C90.2037 (2)0.0820 (4)0.5517 (2)0.0468 (6)
H9A0.23770.04110.53470.056*
H9B0.13170.11200.48200.056*
C100.1512 (2)0.0772 (4)0.6805 (2)0.0480 (6)
C110.5357 (2)0.1772 (4)0.6310 (2)0.0469 (6)
C120.5101 (3)0.1860 (4)0.4896 (3)0.0507 (6)
C130.6713 (3)0.1422 (6)0.7066 (3)0.0659 (8)
H13A0.66950.15630.79700.099*
H13B0.73240.23120.68120.099*
H13C0.69900.01690.69010.099*
C140.0832 (4)0.2651 (6)0.7002 (4)0.0763 (10)
H14A0.02100.29560.62370.114*
H14B0.14870.36270.71710.114*
H14C0.03730.25450.77200.114*
C150.1959 (3)0.1322 (8)0.9998 (3)0.0838 (13)
H15A0.19390.08931.08590.126*
H15B0.10960.17640.96130.126*
H15C0.25880.23291.00250.126*
O10.35464 (17)0.1021 (3)0.99853 (14)0.0547 (5)
H10.38290.19110.96190.082*
O20.37912 (19)0.2109 (3)0.44542 (16)0.0572 (5)
O30.5884 (2)0.1702 (4)0.41479 (17)0.0635 (6)
O40.4640 (3)0.6381 (4)0.85924 (19)0.0861 (8)
H4WA0.46120.62840.78030.103*
H4WB0.51740.54670.88530.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (13)0.106 (3)0.0599 (16)0.0191 (17)0.0010 (11)0.0081 (18)
C20.0463 (14)0.165 (5)0.0689 (19)0.033 (2)0.0068 (13)0.020 (3)
C30.0572 (17)0.123 (3)0.0595 (16)0.025 (2)0.0128 (13)0.025 (2)
C40.0433 (13)0.0820 (19)0.0394 (12)0.0026 (13)0.0106 (9)0.0026 (14)
C50.0330 (11)0.0499 (13)0.0371 (11)0.0018 (9)0.0065 (8)0.0020 (9)
C60.0447 (12)0.0580 (14)0.0414 (11)0.0076 (12)0.0057 (9)0.0093 (12)
C70.0467 (12)0.0426 (12)0.0412 (11)0.0065 (10)0.0054 (9)0.0028 (10)
C80.0525 (13)0.0519 (13)0.0432 (12)0.0018 (11)0.0072 (10)0.0079 (11)
C90.0416 (12)0.0578 (14)0.0384 (11)0.0031 (11)0.0006 (9)0.0050 (11)
C100.0352 (11)0.0638 (15)0.0433 (12)0.0049 (12)0.0022 (9)0.0014 (12)
C110.0474 (12)0.0495 (13)0.0441 (12)0.0106 (11)0.0090 (9)0.0033 (11)
C120.0594 (14)0.0468 (13)0.0481 (12)0.0101 (12)0.0152 (10)0.0021 (12)
C130.0443 (13)0.094 (2)0.0591 (15)0.0076 (16)0.0085 (11)0.0161 (17)
C140.0619 (18)0.095 (3)0.0706 (19)0.0369 (19)0.0087 (14)0.0012 (18)
C150.0711 (19)0.135 (4)0.0500 (15)0.036 (2)0.0229 (13)0.010 (2)
O10.0528 (10)0.0745 (13)0.0355 (8)0.0038 (9)0.0039 (7)0.0017 (8)
O20.0614 (11)0.0679 (12)0.0431 (9)0.0022 (10)0.0112 (7)0.0131 (9)
O30.0697 (12)0.0720 (13)0.0536 (10)0.0126 (11)0.0248 (9)0.0002 (11)
O40.1200 (19)0.0856 (18)0.0479 (10)0.0426 (17)0.0013 (11)0.0041 (11)
Geometric parameters (Å, º) top
C1—C21.515 (4)C8—C91.512 (4)
C1—C101.541 (4)C8—H80.9800
C1—H1A0.9700C9—C101.545 (3)
C1—H1B0.9700C9—H9A0.9700
C2—C31.536 (5)C9—H9B0.9700
C2—H2A0.9700C10—C141.537 (4)
C2—H2B0.9700C11—C121.468 (4)
C3—C41.532 (5)C11—C131.497 (4)
C3—H3A0.9700C12—O31.223 (3)
C3—H3B0.9700C12—O21.354 (4)
C4—O11.436 (3)C13—H13A0.9600
C4—C151.530 (5)C13—H13B0.9600
C4—C51.542 (3)C13—H13C0.9600
C5—C61.536 (3)C14—H14A0.9600
C5—C101.559 (3)C14—H14B0.9600
C5—H50.9800C14—H14C0.9600
C6—C71.490 (3)C15—H15A0.9600
C6—H6A0.9700C15—H15B0.9600
C6—H6B0.9700C15—H15C0.9600
C7—C111.325 (3)O1—H10.8200
C7—C81.496 (3)O4—H4WA0.8291
C8—O21.451 (3)O4—H4WB0.8628
C2—C1—C10113.7 (3)O2—C8—H8109.8
C2—C1—H1A108.8C7—C8—H8109.8
C10—C1—H1A108.8C9—C8—H8109.8
C2—C1—H1B108.8C8—C9—C10110.9 (2)
C10—C1—H1B108.8C8—C9—H9A109.5
H1A—C1—H1B107.7C10—C9—H9A109.5
C1—C2—C3110.4 (2)C8—C9—H9B109.5
C1—C2—H2A109.6C10—C9—H9B109.5
C3—C2—H2A109.6H9A—C9—H9B108.0
C1—C2—H2B109.6C14—C10—C1110.2 (2)
C3—C2—H2B109.6C14—C10—C9109.5 (2)
H2A—C2—H2B108.1C1—C10—C9107.3 (2)
C4—C3—C2112.2 (4)C14—C10—C5114.7 (2)
C4—C3—H3A109.2C1—C10—C5107.8 (2)
C2—C3—H3A109.2C9—C10—C5107.04 (18)
C4—C3—H3B109.2C7—C11—C12107.2 (2)
C2—C3—H3B109.2C7—C11—C13130.6 (2)
H3A—C3—H3B107.9C12—C11—C13122.1 (2)
O1—C4—C15103.5 (2)O3—C12—O2120.9 (3)
O1—C4—C3108.3 (3)O3—C12—C11128.9 (3)
C15—C4—C3112.5 (3)O2—C12—C11110.2 (2)
O1—C4—C5108.18 (19)C11—C13—H13A109.4
C15—C4—C5114.9 (3)C11—C13—H13B109.4
C3—C4—C5109.1 (2)H13A—C13—H13B109.5
C6—C5—C4113.3 (2)C11—C13—H13C109.5
C6—C5—C10112.0 (2)H13A—C13—H13C109.5
C4—C5—C10116.10 (19)H13B—C13—H13C109.5
C6—C5—H5104.7C10—C14—H14A109.5
C4—C5—H5104.7C10—C14—H14B109.5
C10—C5—H5104.7H14A—C14—H14B109.5
C7—C6—C5108.42 (18)C10—C14—H14C109.5
C7—C6—H6A110.0H14A—C14—H14C109.5
C5—C6—H6A110.0H14B—C14—H14C109.5
C7—C6—H6B110.0C4—C15—H15A109.5
C5—C6—H6B110.0C4—C15—H15B109.5
H6A—C6—H6B108.4H15A—C15—H15B109.5
C11—C7—C6131.6 (2)C4—C15—H15C109.5
C11—C7—C8110.0 (2)H15A—C15—H15C109.5
C6—C7—C8118.0 (2)H15B—C15—H15C109.5
O2—C8—C7104.3 (2)C4—O1—H1109.5
O2—C8—C9111.8 (2)C12—O2—C8108.18 (19)
C7—C8—C9111.4 (2)H4WA—O4—H4WB99.5
C10—C1—C2—C358.1 (6)C2—C1—C10—C553.2 (4)
C1—C2—C3—C457.9 (5)C8—C9—C10—C1465.4 (3)
C2—C3—C4—O1171.6 (3)C8—C9—C10—C1175.0 (2)
C2—C3—C4—C1574.7 (3)C8—C9—C10—C559.5 (3)
C2—C3—C4—C554.1 (4)C6—C5—C10—C1460.4 (3)
O1—C4—C5—C658.2 (3)C4—C5—C10—C1471.8 (3)
C15—C4—C5—C656.8 (3)C6—C5—C10—C1176.4 (2)
C3—C4—C5—C6175.8 (2)C4—C5—C10—C151.3 (3)
O1—C4—C5—C10170.1 (2)C6—C5—C10—C961.3 (3)
C15—C4—C5—C1074.9 (3)C4—C5—C10—C9166.4 (2)
C3—C4—C5—C1052.6 (3)C6—C7—C11—C12170.7 (3)
C4—C5—C6—C7171.3 (2)C8—C7—C11—C121.8 (3)
C10—C5—C6—C755.0 (3)C6—C7—C11—C136.6 (5)
C5—C6—C7—C11122.4 (3)C8—C7—C11—C13179.0 (3)
C5—C6—C7—C849.6 (3)C7—C11—C12—O3178.5 (3)
C11—C7—C8—O23.0 (3)C13—C11—C12—O31.0 (5)
C6—C7—C8—O2170.6 (2)C7—C11—C12—O20.1 (3)
C11—C7—C8—C9123.7 (2)C13—C11—C12—O2177.4 (3)
C6—C7—C8—C949.9 (3)O3—C12—O2—C8179.4 (3)
O2—C8—C9—C10169.80 (19)C11—C12—O2—C82.1 (3)
C7—C8—C9—C1053.6 (3)C7—C8—O2—C123.0 (3)
C2—C1—C10—C1472.7 (4)C9—C8—O2—C12123.5 (2)
C2—C1—C10—C9168.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.982.633.407 (3)136
C8—H8···O3ii0.982.643.308 (4)126
O1—H1···O4i0.821.912.718 (3)169
O4—H4WA···O3ii0.832.052.850 (3)162
O4—H4WB···O1iii0.861.942.764 (3)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.982.633.407 (3)136.3
C8—H8···O3ii0.982.643.308 (4)125.9
O1—H1···O4i0.821.912.718 (3)169.0
O4—H4WA···O3ii0.832.052.850 (3)162.0
O4—H4WB···O1iii0.861.942.764 (3)158.7
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 31200257), The Overall Science and Technology Innovation program of Shaanxi Province (grant No. 2012 KTCL02–07) and the West Light Foundation of The Chinese Academy of Sciences (grant No. 2012DF05).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, R.-N., Shi, S., Wu, H.-B. & Wang, W.-S. (2011). Acta Cryst. E67, o1361.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, C.-L., Yan, H., Li, X.-H., Zheng, X.-F. & Liu, H.-Y. (2012). Nat. Prod. Bioprospect. 2, 156–159.  CrossRef CAS Google Scholar
First citationXiao, Z.-Y., Wang, X.-C., Zhang, G.-P., Huang, Z.-L. & Hu, L.-H. (2010). Helv. Chim. Acta, 93, 803–810.   CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds