organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cystal structure of N-[2-(benzo[d][1,3]dioxol-5-yl)eth­yl]-4-methyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Chemical Engineering, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guangxi Normal University, Guilin 541004, People's Republic of China, and bCollege of Pharmacy, Guilin Medical College, Guilin 541004, People's Republic of China
*Correspondence e-mail: zhangguijie001@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 May 2015; accepted 1 June 2015; online 6 June 2015)

In the title compound, C16H17NO4S, the heterocyclic ring is almost planar (r.m.s. deviation = 0.007Å) and the dihedral angle between the benzene rings is 28.18 (10)°. The N—C—C—C torsion angle for the central chain is 62.4 (3)°: overall, the mol­ecule has a Z-shape. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

1. Related literature

For background to methyl­benzene­sulfonamide derivatives, see: Barn et al. (2001[Barn, D. R., Caulfield, W. L., Cottney, J., McGurk, K., Morphy, J. R., Rankovic, Z. & Roberts, B. (2001). Bioorg. Med. Chem. 9, 2609-2624.]); Ghorai et al. (2010[Ghorai, M. K., Kumar, A. & Tiwari, D. P. (2010). J. Org. Chem. 75, 137-151.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17NO4S

  • Mr = 319.37

  • Monoclinic, P 21 /n

  • a = 12.3265 (2) Å

  • b = 9.96026 (16) Å

  • c = 12.7021 (3) Å

  • β = 100.5980 (18)°

  • V = 1532.90 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

2.2. Data collection

  • Agilent SuperNova (single source at offset), Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.868, Tmax = 1.000

  • 12219 measured reflections

  • 3136 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.05

  • 3136 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.84 (2) 2.19 (2) 3.026 (2) 172 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX.

Supporting information


Related literature top

For background to methylbenzenesulfonamide derivatives, see: Barn et al. (2001); Ghorai et al. (2010).

Experimental top

A solution of sulfonylchloride (10 mmol) in dichloromethane (15 mL) was slowly added to a cooled solution of methylenedioxyphenethylamine (15 mmol) in dichloromethane (10 ml) and triethylamine (15 mmol). Yellow blocks of the title compound were obtained by slow evaporation of a solution in methanol.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2009); software used to prepare material for publication: OLEX (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
N-[2-(Benzo[d][1,3]dioxol-5-yl)ethyl]-4-methylbenzenesulfonamide top
Crystal data top
C16H17NO4SF(000) = 672
Mr = 319.37Dx = 1.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 12.3265 (2) ÅCell parameters from 5283 reflections
b = 9.96026 (16) Åθ = 2.9–28.7°
c = 12.7021 (3) ŵ = 0.23 mm1
β = 100.5980 (18)°T = 293 K
V = 1532.90 (5) Å3Block, yellow
Z = 40.40 × 0.20 × 0.12 mm
Data collection top
Agilent SuperNova (single source at offset), Eos
diffractometer
3136 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2587 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 16.1623 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.868, Tmax = 1.000l = 1515
12219 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.4898P]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H17NO4SV = 1532.90 (5) Å3
Mr = 319.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3265 (2) ŵ = 0.23 mm1
b = 9.96026 (16) ÅT = 293 K
c = 12.7021 (3) Å0.40 × 0.20 × 0.12 mm
β = 100.5980 (18)°
Data collection top
Agilent SuperNova (single source at offset), Eos
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2587 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.029
12219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
3136 reflectionsΔρmin = 0.39 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01040 (4)0.17100 (5)0.62290 (4)0.04836 (17)
O10.10241 (14)0.39697 (19)0.99233 (14)0.0834 (5)
O20.07337 (17)0.43875 (18)0.81134 (15)0.0899 (6)
O30.04945 (13)0.23231 (16)0.72422 (12)0.0689 (4)
O40.08943 (10)0.12122 (14)0.56207 (12)0.0602 (4)
N10.06387 (14)0.04327 (17)0.64128 (15)0.0521 (4)
H10.0777 (17)0.003 (2)0.5849 (18)0.058 (7)*
C10.1333 (2)0.4786 (3)0.9109 (2)0.0844 (8)
H1A0.21170.46920.91150.101*
H1B0.11810.57210.92390.101*
C20.02598 (17)0.3080 (2)0.93953 (17)0.0564 (5)
C30.0287 (2)0.2082 (3)0.98013 (18)0.0725 (7)
H30.01760.19101.05330.087*
C40.10220 (19)0.1330 (2)0.90745 (18)0.0657 (6)
H40.14040.06330.93310.079*
C50.12075 (16)0.1574 (2)0.79891 (16)0.0515 (5)
C60.06264 (17)0.2603 (2)0.76031 (16)0.0556 (5)
H60.07250.27860.68740.067*
C70.00883 (17)0.3334 (2)0.83196 (17)0.0538 (5)
C80.20189 (18)0.0740 (2)0.7228 (2)0.0676 (6)
H8A0.26710.05970.75410.081*
H8B0.22440.12420.65690.081*
C90.15798 (18)0.0611 (2)0.6958 (2)0.0654 (6)
H9A0.21590.11080.64990.078*
H9B0.13510.11240.76100.078*
C100.07539 (13)0.28694 (17)0.54277 (14)0.0397 (4)
C110.08585 (15)0.41631 (18)0.57810 (15)0.0462 (4)
H110.04860.44340.64510.055*
C120.15261 (15)0.50503 (18)0.51218 (16)0.0491 (4)
H120.15920.59270.53540.059*
C130.20962 (14)0.46749 (17)0.41312 (15)0.0437 (4)
C140.28241 (19)0.5655 (2)0.34252 (19)0.0665 (6)
H14A0.26510.56360.27190.100*
H14B0.27020.65430.37170.100*
H14C0.35830.54110.33890.100*
C150.19811 (16)0.33719 (18)0.37970 (15)0.0505 (5)
H150.23650.30990.31320.061*
C160.13115 (16)0.24717 (18)0.44277 (15)0.0490 (5)
H160.12330.16020.41860.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (3)0.0496 (3)0.0495 (3)0.00838 (19)0.0009 (2)0.0022 (2)
O10.0771 (11)0.0969 (13)0.0694 (11)0.0077 (10)0.0045 (9)0.0205 (10)
O20.1130 (14)0.0765 (11)0.0788 (12)0.0330 (10)0.0134 (11)0.0013 (10)
O30.0695 (9)0.0724 (10)0.0540 (9)0.0114 (8)0.0171 (7)0.0045 (8)
O40.0426 (7)0.0613 (8)0.0773 (10)0.0105 (6)0.0124 (7)0.0019 (7)
N10.0576 (10)0.0477 (9)0.0524 (10)0.0109 (7)0.0135 (8)0.0075 (8)
C10.0721 (16)0.0828 (18)0.100 (2)0.0123 (14)0.0206 (15)0.0238 (16)
C20.0544 (11)0.0642 (13)0.0483 (11)0.0089 (10)0.0031 (9)0.0088 (10)
C30.0907 (18)0.0882 (17)0.0389 (11)0.0001 (14)0.0124 (11)0.0021 (12)
C40.0749 (14)0.0733 (14)0.0537 (13)0.0090 (12)0.0244 (11)0.0001 (11)
C50.0477 (10)0.0564 (11)0.0514 (11)0.0090 (8)0.0115 (9)0.0062 (9)
C60.0674 (13)0.0554 (12)0.0416 (11)0.0091 (10)0.0037 (9)0.0052 (9)
C70.0590 (12)0.0484 (11)0.0537 (12)0.0069 (9)0.0100 (9)0.0037 (9)
C80.0518 (12)0.0843 (16)0.0671 (14)0.0040 (11)0.0118 (10)0.0182 (12)
C90.0657 (13)0.0674 (14)0.0676 (14)0.0216 (11)0.0244 (11)0.0168 (11)
C100.0367 (8)0.0398 (9)0.0414 (9)0.0008 (7)0.0039 (7)0.0008 (7)
C110.0465 (10)0.0457 (10)0.0441 (10)0.0004 (8)0.0020 (8)0.0077 (8)
C120.0532 (10)0.0364 (9)0.0562 (12)0.0027 (8)0.0059 (9)0.0071 (8)
C130.0414 (9)0.0421 (9)0.0475 (10)0.0016 (7)0.0079 (8)0.0052 (8)
C140.0713 (14)0.0559 (12)0.0669 (14)0.0134 (10)0.0019 (11)0.0107 (11)
C150.0574 (11)0.0472 (10)0.0417 (10)0.0022 (8)0.0043 (8)0.0042 (8)
C160.0574 (11)0.0382 (9)0.0476 (11)0.0040 (8)0.0005 (9)0.0057 (8)
Geometric parameters (Å, º) top
S1—O31.4259 (15)C6—C71.356 (3)
S1—O41.4383 (14)C8—H8A0.9700
S1—N11.6092 (18)C8—H8B0.9700
S1—C101.7584 (17)C8—C91.513 (3)
O1—C11.421 (3)C9—H9A0.9700
O1—C21.375 (3)C9—H9B0.9700
O2—C11.400 (3)C10—C111.378 (2)
O2—C71.371 (3)C10—C161.386 (2)
N1—H10.84 (2)C11—H110.9300
N1—C91.467 (3)C11—C121.380 (3)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C12—C131.375 (3)
C2—C31.355 (3)C13—C141.505 (3)
C2—C71.367 (3)C13—C151.381 (3)
C3—H30.9300C14—H14A0.9600
C3—C41.388 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C4—C51.377 (3)C15—H150.9300
C5—C61.390 (3)C15—C161.372 (3)
C5—C81.507 (3)C16—H160.9300
C6—H60.9300
O3—S1—O4118.88 (9)C5—C8—H8B108.7
O3—S1—N1108.32 (10)C5—C8—C9114.39 (18)
O3—S1—C10107.96 (9)H8A—C8—H8B107.6
O4—S1—N1105.37 (9)C9—C8—H8A108.7
O4—S1—C10108.07 (9)C9—C8—H8B108.7
N1—S1—C10107.79 (8)N1—C9—C8110.25 (17)
C2—O1—C1105.37 (18)N1—C9—H9A109.6
C7—O2—C1105.8 (2)N1—C9—H9B109.6
S1—N1—H1109.7 (15)C8—C9—H9A109.6
C9—N1—S1119.55 (15)C8—C9—H9B109.6
C9—N1—H1114.4 (15)H9A—C9—H9B108.1
O1—C1—H1A109.8C11—C10—S1120.52 (13)
O1—C1—H1B109.8C11—C10—C16120.34 (16)
O2—C1—O1109.2 (2)C16—C10—S1119.13 (13)
O2—C1—H1A109.8C10—C11—H11120.6
O2—C1—H1B109.8C10—C11—C12118.82 (17)
H1A—C1—H1B108.3C12—C11—H11120.6
C3—C2—O1129.2 (2)C11—C12—H12119.1
C3—C2—C7121.3 (2)C13—C12—C11121.88 (17)
C7—C2—O1109.5 (2)C13—C12—H12119.1
C2—C3—H3121.5C12—C13—C14121.13 (17)
C2—C3—C4116.9 (2)C12—C13—C15118.21 (16)
C4—C3—H3121.5C15—C13—C14120.67 (18)
C3—C4—H4118.7C13—C14—H14A109.5
C5—C4—C3122.5 (2)C13—C14—H14B109.5
C5—C4—H4118.7C13—C14—H14C109.5
C4—C5—C6118.8 (2)H14A—C14—H14B109.5
C4—C5—C8120.9 (2)H14A—C14—H14C109.5
C6—C5—C8120.3 (2)H14B—C14—H14C109.5
C5—C6—H6120.9C13—C15—H15119.4
C7—C6—C5118.18 (19)C16—C15—C13121.29 (17)
C7—C6—H6120.9C16—C15—H15119.4
C2—C7—O2110.14 (19)C10—C16—H16120.3
C6—C7—O2127.6 (2)C15—C16—C10119.46 (16)
C6—C7—C2122.2 (2)C15—C16—H16120.3
C5—C8—H8A108.7
S1—N1—C9—C8169.30 (16)C3—C2—C7—C60.5 (3)
S1—C10—C11—C12178.98 (14)C3—C4—C5—C60.9 (3)
S1—C10—C16—C15179.88 (15)C3—C4—C5—C8179.5 (2)
O1—C2—C3—C4179.9 (2)C4—C5—C6—C70.9 (3)
O1—C2—C7—O20.2 (2)C4—C5—C8—C979.5 (3)
O1—C2—C7—C6179.87 (19)C5—C6—C7—O2179.6 (2)
O3—S1—N1—C955.48 (18)C5—C6—C7—C20.8 (3)
O3—S1—C10—C116.21 (18)C5—C8—C9—N162.4 (3)
O3—S1—C10—C16174.78 (15)C6—C5—C8—C9100.1 (2)
O4—S1—N1—C9176.30 (16)C7—O2—C1—O11.0 (3)
O4—S1—C10—C11123.57 (16)C7—C2—C3—C40.4 (3)
O4—S1—C10—C1655.44 (17)C8—C5—C6—C7179.48 (18)
N1—S1—C10—C11123.02 (16)C10—S1—N1—C961.09 (18)
N1—S1—C10—C1657.97 (17)C10—C11—C12—C130.7 (3)
C1—O1—C2—C3179.6 (2)C11—C10—C16—C150.9 (3)
C1—O1—C2—C70.8 (2)C11—C12—C13—C14179.75 (19)
C1—O2—C7—C20.5 (3)C11—C12—C13—C150.5 (3)
C1—O2—C7—C6179.1 (2)C12—C13—C15—C160.5 (3)
C2—O1—C1—O21.1 (3)C13—C15—C16—C101.1 (3)
C2—C3—C4—C50.6 (4)C14—C13—C15—C16179.33 (19)
C3—C2—C7—O2179.8 (2)C16—C10—C11—C120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.84 (2)2.19 (2)3.026 (2)172 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.84 (2)2.19 (2)3.026 (2)172 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (21401031), the Natural Science Foundation of Guangxi Province (2014GXNSFBA118035) as well as the Key Laboratory Open Fund of the Ministry of Education for financial support (CMEMR2013-A14).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarn, D. R., Caulfield, W. L., Cottney, J., McGurk, K., Morphy, J. R., Rankovic, Z. & Roberts, B. (2001). Bioorg. Med. Chem. 9, 2609–2624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorai, M. K., Kumar, A. & Tiwari, D. P. (2010). J. Org. Chem. 75, 137–151.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds