organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o455-o456
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure of 2-cyano-N-(furan-2-ylmeth­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Vijaya College, Basavanagudi, Bangalore 560 004, India, bDepartment of Engineering Chemistry, Cauvery Institute of Technology, Sundhahalli, Mandya, India, cDepartment of Chemistry, Post-Graduate and Research Centre, St. Joseph's College (Autonomous), Bangalore 560 027, India, dDepartment of Pharmaceutical Chemistry, PES College of Pharmacy, Hanumanthnagar, Bangalore 560 050, India, and eCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: drdgayathri@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 May 2015; accepted 1 June 2015; online 10 June 2015)

In the title compound, C8H8N2O2, the acetamide unit is inclined to the furan ring by 76.7 (1)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, generating C(4) chains along [100]. The carbonyl O atom is a bifurcated acceptor and an R12(6) ring is formed.

1. Related literature

For examples of biological properties of furan derivatives, see: Anupam et al. (2011[Anupam, V., Pandeya, S. N. & Shweta, S. (2011). Int. J. Res. Ayurveda Pharm. 2, 1110-1116.]). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011[Fallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853-4858.]); Shams et al. (2011[Shams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52-73.]). For a related acetamide structure, see: Jasinski et al. (2013[Jasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461.]). For the crystal structure of similar compound, 2-cyano-N-furfuryl-3-(2-fur­yl)acryl­amide, see: Pomés Hernández et al. (1996[Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 203-205.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H8N2O2

  • Mr = 164.16

  • Monoclinic, P 21 /c

  • a = 4.8093 (4) Å

  • b = 14.9495 (16) Å

  • c = 11.4969 (11) Å

  • β = 93.482 (3)°

  • V = 825.06 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.986

  • 7302 measured reflections

  • 1455 independent reflections

  • 1175 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.09

  • 1455 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.99 2.846 (1) 175
C7—H7A⋯O2i 0.97 2.55 3.395 (2) 145
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014/7 and PLATON.

Supporting information


Structural commentary top

Furan derivatives are gaining importance for their wide pharmacological activities like anti­bacterial, anti­tumor, anti-inflammatory, anti­fungal, and analgesic (Anupam et al., 2011). Acetamide derivatives have been shown to possess various biological properties, and recently, the synthesis and biological activities of some heterocyclic derivatives containing the acetamide moiety have been reported (Fallah-Tafti et al., 2011; Shams et al., 2011). In continuation of our work on the synthesis of acetamide derivatives (Jasinski et al., 2013), we report herein on the synthesis and crystal structure of the title compound.

The title molecule, Fig. 1, is Z-shaped. The furan ring (O1/C1—C4) is nearly perpendicular with the mean plane of the acetamide group (O2/N1/C6/C7) with a dihedral angle of 76.7 (1)°. The aceto­nitrile moiety is inclined to the mean plane of the acetamide group by 54 (6) °. The bond lengths and angles are close to those reported for a very similar structure, 2-cyano-N-furfuryl-3-(2-furyl)acryl­amide (Pomés Hernández et al., 1996).

The crystal packing is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). Atoms N1 and C7 act as donors to a bifurcated acceptor O-atom, O2, generating C(4) chains along the a-axis and, as a consequence, an R21(6) ring is formed.

Synthesis and crystallization top

An equimolar mixture of furfuryl amine and ethyl cyano acetate were mixed in a conical flask and the mixture was heated under microwave irradiation at 700 W for 3 min with an inter­val of 20 seconds each time. The mixture was then poured to a beaker and cooled giving a solid whose size reduced, washed with ethanol. It was recrystallized from an acetone/water mixture (7:3), yielding colourless block-like crystals on slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were included in calculated positions and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq (N,C).

Related literature top

For examples of biological properties of furan derivatives, see: Anupam et al. (2011). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011); Shams et al. (2011). For a related acetamide structure, see: Jasinski et al. (2013). For the crystal structure of similar compound, 2-cyano-N-furfuryl-3-(2-furyl)acrylamide, see: Pomés Hernández et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-Cyano-N-(furan-2-ylmethyl)acetamide top
Crystal data top
C8H8N2O2F(000) = 344
Mr = 164.16Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8093 (4) ÅCell parameters from 1455 reflections
b = 14.9495 (16) Åθ = 2.2–25.0°
c = 11.4969 (11) ŵ = 0.10 mm1
β = 93.482 (3)°T = 293 K
V = 825.06 (14) Å3Block, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
1455 independent reflections
Radiation source: fine-focus sealed tube1175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0216 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scanh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.946, Tmax = 0.986l = 1213
7302 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1342P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1455 reflectionsΔρmax = 0.14 e Å3
109 parametersΔρmin = 0.13 e Å3
Crystal data top
C8H8N2O2V = 825.06 (14) Å3
Mr = 164.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8093 (4) ŵ = 0.10 mm1
b = 14.9495 (16) ÅT = 293 K
c = 11.4969 (11) Å0.3 × 0.2 × 0.2 mm
β = 93.482 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1455 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1175 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.986Rint = 0.027
7302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.14 e Å3
1455 reflectionsΔρmin = 0.13 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6009 (4)0.71318 (14)0.26789 (17)0.0705 (5)
H1A0.71230.76160.25020.085*
C20.6246 (4)0.65991 (17)0.37051 (16)0.0816 (6)
H20.75490.66670.43300.098*
C30.4271 (5)0.59926 (15)0.36003 (17)0.0777 (6)
H30.39420.55580.41540.093*
C40.3883 (3)0.68024 (10)0.20223 (13)0.0483 (4)
C50.2563 (3)0.70388 (11)0.08709 (13)0.0575 (4)
H5A0.05590.70570.09250.069*
H5B0.31700.76330.06600.069*
C60.1307 (3)0.59915 (10)0.07049 (12)0.0443 (4)
C70.2372 (3)0.54182 (11)0.16707 (12)0.0506 (4)
H7A0.43730.54890.16940.061*
H7B0.19830.47930.15220.061*
C80.1019 (4)0.56845 (11)0.27806 (15)0.0590 (4)
N10.3219 (2)0.64139 (9)0.00467 (10)0.0467 (3)
H10.49420.63160.01640.056*
N20.0079 (5)0.59089 (12)0.36283 (16)0.0947 (6)
O10.2779 (2)0.60909 (8)0.25698 (10)0.0649 (4)
O20.1197 (2)0.60352 (9)0.05760 (11)0.0713 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0617 (10)0.0790 (13)0.0714 (12)0.0144 (9)0.0087 (9)0.0277 (10)
C20.0772 (13)0.1118 (17)0.0535 (11)0.0191 (13)0.0147 (9)0.0260 (11)
C30.1019 (15)0.0806 (14)0.0500 (10)0.0116 (12)0.0012 (10)0.0002 (9)
C40.0465 (8)0.0503 (9)0.0491 (8)0.0010 (7)0.0112 (6)0.0087 (7)
C50.0624 (10)0.0576 (10)0.0535 (9)0.0132 (8)0.0110 (7)0.0042 (7)
C60.0312 (7)0.0565 (9)0.0455 (8)0.0070 (6)0.0038 (6)0.0080 (7)
C70.0404 (7)0.0614 (10)0.0497 (9)0.0038 (7)0.0004 (6)0.0016 (7)
C80.0713 (11)0.0528 (10)0.0526 (10)0.0083 (8)0.0015 (8)0.0013 (8)
N10.0339 (6)0.0611 (8)0.0458 (7)0.0072 (5)0.0079 (5)0.0030 (6)
N20.1407 (18)0.0789 (12)0.0611 (10)0.0056 (11)0.0226 (11)0.0125 (9)
O10.0713 (8)0.0667 (8)0.0568 (7)0.0098 (6)0.0037 (6)0.0023 (6)
O20.0304 (6)0.1024 (10)0.0816 (9)0.0076 (6)0.0088 (5)0.0081 (7)
Geometric parameters (Å, º) top
C1—C41.328 (2)C5—H5A0.9700
C1—C21.422 (3)C5—H5B0.9700
C1—H1A0.9300C6—O21.2238 (16)
C2—C31.314 (3)C6—N11.3162 (18)
C2—H20.9300C6—C71.516 (2)
C3—O11.355 (2)C7—C81.452 (2)
C3—H30.9300C7—H7A0.9700
C4—O11.3602 (19)C7—H7B0.9700
C4—C51.476 (2)C8—N21.131 (2)
C5—N11.4579 (19)N1—H10.8600
C4—C1—C2106.51 (18)C4—C5—H5B108.9
C4—C1—H1A126.7H5A—C5—H5B107.7
C2—C1—H1A126.7O2—C6—N1124.26 (14)
C3—C2—C1106.82 (17)O2—C6—C7119.83 (13)
C3—C2—H2126.6N1—C6—C7115.90 (12)
C1—C2—H2126.6C8—C7—C6109.59 (13)
C2—C3—O1110.29 (18)C8—C7—H7A109.8
C2—C3—H3124.9C6—C7—H7A109.8
O1—C3—H3124.9C8—C7—H7B109.8
C1—C4—O1109.60 (15)C6—C7—H7B109.8
C1—C4—C5134.05 (17)H7A—C7—H7B108.2
O1—C4—C5116.34 (13)N2—C8—C7178.0 (2)
N1—C5—C4113.30 (13)C6—N1—C5123.31 (12)
N1—C5—H5A108.9C6—N1—H1118.3
C4—C5—H5A108.9C5—N1—H1118.3
N1—C5—H5B108.9C3—O1—C4106.78 (14)
C4—C1—C2—C30.1 (2)N1—C6—C7—C8125.10 (14)
C1—C2—C3—O10.5 (2)O2—C6—N1—C54.5 (2)
C2—C1—C4—O10.39 (19)C7—C6—N1—C5175.82 (13)
C2—C1—C4—C5179.82 (17)C4—C5—N1—C6124.16 (16)
C1—C4—C5—N1105.9 (2)C2—C3—O1—C40.7 (2)
O1—C4—C5—N173.48 (17)C1—C4—O1—C30.70 (18)
O2—C6—C7—C855.19 (19)C5—C4—O1—C3179.76 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.846 (1)175
C7—H7A···O2i0.972.553.395 (2)145
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.846 (1)175
C7—H7A···O2i0.972.553.395 (2)145
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Dr Babu Varghese for the XRD data collection at the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Madras.

References

First citationAnupam, V., Pandeya, S. N. & Shweta, S. (2011). Int. J. Res. Ayurveda Pharm. 2, 1110–1116.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853–4858.  Web of Science CAS PubMed Google Scholar
First citationJasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461.  CSD CrossRef IUCr Journals Google Scholar
First citationPomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 203–205.  CSD CrossRef IUCr Journals Google Scholar
First citationShams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o455-o456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds