organic compounds
A correction has been published for this article. To view the correction, click here.
N-(furan-2-ylmethyl)acetamide
of 2-cyano-aDepartment of Physics, Vijaya College, Basavanagudi, Bangalore 560 004, India, bDepartment of Engineering Chemistry, Cauvery Institute of Technology, Sundhahalli, Mandya, India, cDepartment of Chemistry, Post-Graduate and Research Centre, St. Joseph's College (Autonomous), Bangalore 560 027, India, dDepartment of Pharmaceutical Chemistry, PES College of Pharmacy, Hanumanthnagar, Bangalore 560 050, India, and eCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: drdgayathri@gmail.com
In the title compound, C8H8N2O2, the acetamide unit is inclined to the furan ring by 76.7 (1)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, generating C(4) chains along [100]. The carbonyl O atom is a bifurcated acceptor and an R12(6) ring is formed.
Keywords: crystal structure; furan; acetamide; cyano; bifurcated hydrogen bonding..
CCDC reference: 1404031
1. Related literature
For examples of biological properties of furan derivatives, see: Anupam et al. (2011). For the biological activities of some heterocyclic derivatives containing the acetamide moiety, see: Fallah-Tafti et al. (2011); Shams et al. (2011). For a related acetamide structure, see: Jasinski et al. (2013). For the of similar compound, 2-cyano-N-furfuryl-3-(2-furyl)acrylamide, see: Pomés Hernández et al. (1996).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 and PLATON.
Supporting information
CCDC reference: 1404031
10.1107/S2056989015010488/su5145sup1.cif
contains datablocks I, globa. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015010488/su5145Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015010488/su5145Isup3.cml
Furan derivatives are gaining importance for their wide pharmacological activities like antibacterial, antitumor, anti-inflammatory, antifungal, and analgesic (Anupam et al., 2011). Acetamide derivatives have been shown to possess various biological properties, and recently, the synthesis and biological activities of some heterocyclic derivatives containing the acetamide moiety have been reported (Fallah-Tafti et al., 2011; Shams et al., 2011). In continuation of our work on the synthesis of acetamide derivatives (Jasinski et al., 2013), we report herein on the synthesis and
of the title compound.The title molecule, Fig. 1, is Z-shaped. The furan ring (O1/C1—C4) is nearly perpendicular with the mean plane of the acetamide group (O2/N1/C6/C7) with a dihedral angle of 76.7 (1)°. The acetonitrile moiety is inclined to the mean plane of the acetamide group by 54 (6) °. The bond lengths and angles are close to those reported for a very similar structure, 2-cyano-N-furfuryl-3-(2-furyl)acrylamide (Pomés Hernández et al., 1996).
The crystal packing is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). Atoms N1 and C7 act as donors to a bifurcated acceptor O-atom, O2, generating C(4) chains along the a-axis and, as a consequence, an R21(6) ring is formed.
An equimolar mixture of furfuryl amine and ethyl cyano acetate were mixed in a conical flask and the mixture was heated under microwave irradiation at 700 W for 3 min with an interval of 20 seconds each time. The mixture was then poured to a beaker and cooled giving a solid whose size reduced, washed with ethanol. It was recrystallized from an acetone/water mixture (7:3), yielding colourless block-like crystals on slow evaporation of the solvent.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).C8H8N2O2 | F(000) = 344 |
Mr = 164.16 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8093 (4) Å | Cell parameters from 1455 reflections |
b = 14.9495 (16) Å | θ = 2.2–25.0° |
c = 11.4969 (11) Å | µ = 0.10 mm−1 |
β = 93.482 (3)° | T = 293 K |
V = 825.06 (14) Å3 | Block, colourless |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Bruker APEXII CCD diffractometer | 1455 independent reflections |
Radiation source: fine-focus sealed tube | 1175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.0216 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ω and ϕ scan | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −17→17 |
Tmin = 0.946, Tmax = 0.986 | l = −12→13 |
7302 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1342P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1455 reflections | Δρmax = 0.14 e Å−3 |
109 parameters | Δρmin = −0.13 e Å−3 |
C8H8N2O2 | V = 825.06 (14) Å3 |
Mr = 164.16 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.8093 (4) Å | µ = 0.10 mm−1 |
b = 14.9495 (16) Å | T = 293 K |
c = 11.4969 (11) Å | 0.3 × 0.2 × 0.2 mm |
β = 93.482 (3)° |
Bruker APEXII CCD diffractometer | 1455 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1175 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.986 | Rint = 0.027 |
7302 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.14 e Å−3 |
1455 reflections | Δρmin = −0.13 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6009 (4) | 0.71318 (14) | 0.26789 (17) | 0.0705 (5) | |
H1A | 0.7123 | 0.7616 | 0.2502 | 0.085* | |
C2 | 0.6246 (4) | 0.65991 (17) | 0.37051 (16) | 0.0816 (6) | |
H2 | 0.7549 | 0.6667 | 0.4330 | 0.098* | |
C3 | 0.4271 (5) | 0.59926 (15) | 0.36003 (17) | 0.0777 (6) | |
H3 | 0.3942 | 0.5558 | 0.4154 | 0.093* | |
C4 | 0.3883 (3) | 0.68024 (10) | 0.20223 (13) | 0.0483 (4) | |
C5 | 0.2563 (3) | 0.70388 (11) | 0.08709 (13) | 0.0575 (4) | |
H5A | 0.0559 | 0.7057 | 0.0925 | 0.069* | |
H5B | 0.3170 | 0.7633 | 0.0660 | 0.069* | |
C6 | 0.1307 (3) | 0.59915 (10) | −0.07049 (12) | 0.0443 (4) | |
C7 | 0.2372 (3) | 0.54182 (11) | −0.16707 (12) | 0.0506 (4) | |
H7A | 0.4373 | 0.5489 | −0.1694 | 0.061* | |
H7B | 0.1983 | 0.4793 | −0.1522 | 0.061* | |
C8 | 0.1019 (4) | 0.56845 (11) | −0.27806 (15) | 0.0590 (4) | |
N1 | 0.3219 (2) | 0.64139 (9) | −0.00467 (10) | 0.0467 (3) | |
H1 | 0.4942 | 0.6316 | −0.0164 | 0.056* | |
N2 | −0.0079 (5) | 0.59089 (12) | −0.36283 (16) | 0.0947 (6) | |
O1 | 0.2779 (2) | 0.60909 (8) | 0.25698 (10) | 0.0649 (4) | |
O2 | −0.1197 (2) | 0.60352 (9) | −0.05760 (11) | 0.0713 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0617 (10) | 0.0790 (13) | 0.0714 (12) | −0.0144 (9) | 0.0087 (9) | −0.0277 (10) |
C2 | 0.0772 (13) | 0.1118 (17) | 0.0535 (11) | 0.0191 (13) | −0.0147 (9) | −0.0260 (11) |
C3 | 0.1019 (15) | 0.0806 (14) | 0.0500 (10) | 0.0116 (12) | −0.0012 (10) | −0.0002 (9) |
C4 | 0.0465 (8) | 0.0503 (9) | 0.0491 (8) | 0.0010 (7) | 0.0112 (6) | −0.0087 (7) |
C5 | 0.0624 (10) | 0.0576 (10) | 0.0535 (9) | 0.0132 (8) | 0.0110 (7) | −0.0042 (7) |
C6 | 0.0312 (7) | 0.0565 (9) | 0.0455 (8) | 0.0070 (6) | 0.0038 (6) | 0.0080 (7) |
C7 | 0.0404 (7) | 0.0614 (10) | 0.0497 (9) | 0.0038 (7) | 0.0004 (6) | −0.0016 (7) |
C8 | 0.0713 (11) | 0.0528 (10) | 0.0526 (10) | −0.0083 (8) | 0.0015 (8) | 0.0013 (8) |
N1 | 0.0339 (6) | 0.0611 (8) | 0.0458 (7) | 0.0072 (5) | 0.0079 (5) | −0.0030 (6) |
N2 | 0.1407 (18) | 0.0789 (12) | 0.0611 (10) | −0.0056 (11) | −0.0226 (11) | 0.0125 (9) |
O1 | 0.0713 (8) | 0.0667 (8) | 0.0568 (7) | −0.0098 (6) | 0.0037 (6) | 0.0023 (6) |
O2 | 0.0304 (6) | 0.1024 (10) | 0.0816 (9) | 0.0076 (6) | 0.0088 (5) | −0.0081 (7) |
C1—C4 | 1.328 (2) | C5—H5A | 0.9700 |
C1—C2 | 1.422 (3) | C5—H5B | 0.9700 |
C1—H1A | 0.9300 | C6—O2 | 1.2238 (16) |
C2—C3 | 1.314 (3) | C6—N1 | 1.3162 (18) |
C2—H2 | 0.9300 | C6—C7 | 1.516 (2) |
C3—O1 | 1.355 (2) | C7—C8 | 1.452 (2) |
C3—H3 | 0.9300 | C7—H7A | 0.9700 |
C4—O1 | 1.3602 (19) | C7—H7B | 0.9700 |
C4—C5 | 1.476 (2) | C8—N2 | 1.131 (2) |
C5—N1 | 1.4579 (19) | N1—H1 | 0.8600 |
C4—C1—C2 | 106.51 (18) | C4—C5—H5B | 108.9 |
C4—C1—H1A | 126.7 | H5A—C5—H5B | 107.7 |
C2—C1—H1A | 126.7 | O2—C6—N1 | 124.26 (14) |
C3—C2—C1 | 106.82 (17) | O2—C6—C7 | 119.83 (13) |
C3—C2—H2 | 126.6 | N1—C6—C7 | 115.90 (12) |
C1—C2—H2 | 126.6 | C8—C7—C6 | 109.59 (13) |
C2—C3—O1 | 110.29 (18) | C8—C7—H7A | 109.8 |
C2—C3—H3 | 124.9 | C6—C7—H7A | 109.8 |
O1—C3—H3 | 124.9 | C8—C7—H7B | 109.8 |
C1—C4—O1 | 109.60 (15) | C6—C7—H7B | 109.8 |
C1—C4—C5 | 134.05 (17) | H7A—C7—H7B | 108.2 |
O1—C4—C5 | 116.34 (13) | N2—C8—C7 | 178.0 (2) |
N1—C5—C4 | 113.30 (13) | C6—N1—C5 | 123.31 (12) |
N1—C5—H5A | 108.9 | C6—N1—H1 | 118.3 |
C4—C5—H5A | 108.9 | C5—N1—H1 | 118.3 |
N1—C5—H5B | 108.9 | C3—O1—C4 | 106.78 (14) |
C4—C1—C2—C3 | −0.1 (2) | N1—C6—C7—C8 | −125.10 (14) |
C1—C2—C3—O1 | 0.5 (2) | O2—C6—N1—C5 | −4.5 (2) |
C2—C1—C4—O1 | −0.39 (19) | C7—C6—N1—C5 | 175.82 (13) |
C2—C1—C4—C5 | −179.82 (17) | C4—C5—N1—C6 | 124.16 (16) |
C1—C4—C5—N1 | 105.9 (2) | C2—C3—O1—C4 | −0.7 (2) |
O1—C4—C5—N1 | −73.48 (17) | C1—C4—O1—C3 | 0.70 (18) |
O2—C6—C7—C8 | 55.19 (19) | C5—C4—O1—C3 | −179.76 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.99 | 2.846 (1) | 175 |
C7—H7A···O2i | 0.97 | 2.55 | 3.395 (2) | 145 |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.99 | 2.846 (1) | 175 |
C7—H7A···O2i | 0.97 | 2.55 | 3.395 (2) | 145 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We thank Dr Babu Varghese for the XRD data collection at the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Madras.
References
Anupam, V., Pandeya, S. N. & Shweta, S. (2011). Int. J. Res. Ayurveda Pharm. 2, 1110–1116. Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fallah-Tafti, A., Foroumadi, A., Tiwari, R., Shirazi, A. N., Hangauer, D. G., Bu, Y., Akbarzadeh, T., Parang, K. & Shafiee, A. (2011). Eur. J. Med. Chem. 46, 4853–4858. Web of Science CAS PubMed Google Scholar
Jasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461. CSD CrossRef IUCr Journals Google Scholar
Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 203–205. CSD CrossRef IUCr Journals Google Scholar
Shams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52–73. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.