research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2′-[(2′,4′-di­fluoro­bi­phenyl-4-yl)carbon­yl]-1′-phenyl-1′,2′,5′,6′,7′,7a'-hexa­hydro­spiro­[indole-3,3′-pyrrolizin]-2(1H)-one

aDepartment of Chemistry, Faculty of Science, Annamalai University, Annamalainagar 608 002, India, bDepartment of Physics, Kings College of Engineering, Punalkulam 613 303, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 29 June 2015; accepted 4 July 2015; online 11 July 2015)

In the title pyrrolizidine derivative, C33H26F2N2O2, both pyrrolidine rings of the pyrrolizidine moiety adopt an envelope conformation. The di­fluoro­phenyl group is oriented at an angle of 54.3 (1)° with respect to the oxindole moiety. The crystal packing features an N—H⋯O hydrogen bond, which forms an R22(8) motif, and a C—H⋯O inter­action, which generates a C(8) chain along [010]. In addition, this chain structure is stabilized by C—H⋯π inter­actions. In one of the pyrrolidine rings, the methyl­ene group forming the flap of an envelope and the H atoms of the adjacent methyl­ene groups are disordered over two sets of sites, with site-occupancy factors of 0.571 (4) and 0.429 (4)

1. Chemical context

Isatin (1H-indole-2,3-dione) has been exploited extensively as a key inter­mediate in organic multicomponent reactions due to its anti­bacterial (Sridhar et al., 2001[Sridhar, S. K., Saravanan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615-625.]), anti­fungal (Amal Raj et al., 2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]; Dandia et al., 2006[Dandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409-2417.]), anti­viral (Quenelle et al., 2006[Quenelle, D., Keith, K. & Kern, E. (2006). Antiviral Res. 71, 24-30.]), anti-HIV (Sriram et al., 2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]; Pandeya et al., 2000[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249-255.]), anti-mycobacterial (Feng et al., 2010[Feng, L. S., Liu, M. L., Wang, B., Chai, Y., Hao, X. Q., Meng, S. & Guo, H. Y. (2010). Eur. J. Med. Chem. 45, 3407-3412.]), anti­cancer (Gursoy & Karali, 2003[Gürsoy, A. & Karali, N. (2003). Eur. J. Med. Chem. 38, 633-643.]), anti-inflammatory (Sridhar & Ramesh, 2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]) and anti­convulsant (Verma et al., 2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]) activities. The versatile reactivity of isatin has led to the synthesis of a number of isatin-based spiro compounds. Chalcones are precursors and valuable inter­mediates for the synthesis of many biologically important heterocyclic compounds. Therefore, the combination of chalcone with isatin and secondary amino acids provides spiro­oxindolopyrrolizidine derivatives with enhanced biological activities. In view of the many inter­esting applications of pyrrolizidine derivatives, we synthesized the title compound and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illus­trated in Fig. 1[link]. The geometry of the pyrrolizidine ring system (N1/C20/C14–C19) in (I)[link] is comparable with that reported for similar structures, namely methyl 4-phenyl-1,2,3,3a,4,4a,5,12c-octa­hydro­naphtho­[1′,2′:3,2]furo[5,4-b]pyrrolizine-4a-carboxyl­ate (II) (Selvanayagam et al., 2010[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2010). Acta Cryst. E66, o1345.]), ethyl 2,2′′-dioxo-2′,3′,5′,6′,7′,7a′-hexa­hydro­acenaphthene-1-spiro-3′-1′H-pyrrolizine-2′spiro-1′′-acenaphthene-1-carboxyl­ate (III) (Usha et al., 2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267-o2269.]) and 2′-(p-meth­oxy­benzo­yl)-1′,2,2′,3,5′,6′,7′,7a′-octa­hydro-1H-indan-2-spiro-3′-(3′H- pyrrolizine)-1′-spiro-3′′-1H-indoline-1,2′′,3-trione (IV) (Seshadri et al., 2003[Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1783-o1785.]). The superposition of the pyrrolizidine ring system of (I)[link] with that in the above-mentioned structures, using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), gives an r.m.s. deviation of 0.290 Å between (I)[link] and (II), 0.115 Å between (I)[link] and (III), and 0.389 Å between (I)[link] and (IV); see Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of pyrrolizidine ring system of (I)[link] (magenta) with the similar reported pyrrolizidine ring system structures in (II) (yellow; Selvanayagam et al., 2010[Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2010). Acta Cryst. E66, o1345.]), (III) (green; Usha et al., 2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267-o2269.]) and (IV) (red; Seshadri et al., 2003[Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1783-o1785.]).

The sum of the angles at N1 of the pyrrolizidine ring system (340°) is in accordance with sp3 hybridization. The fluorine atoms, F1 and F2, deviate by 0.006 (2) and −0.010 (2) Å, respectively, from the plane of the benzene ring (C1–C6) to which they are attached. The oxindole group system is planar with maximum deviations from its plane for the carbonyl C30 [−0.048 (2) Å] and O2 atoms [−0.122 (1) Å]. The di­fluoro­phenyl group is oriented at an angle of 54.3 (1)° with respect to the oxindole moiety. The benzene rings C7–C12 and C21–C26 are oriented at a dihedral angle of 52.7 (1)°. The dihedral angles subtended by these two benzene rings with respect to the oxindole moiety are 21.2 (1) and 31.6 (1)°, respectively. The dihedral angle between the benzene rings of the biphenyl group is 44.3 (1)°. Atom C18 of the pyrrolizidine ring system, and the adjacent methyl­ene group H atoms, are disordered over two sets of sites, with the site-occupancy factors of 0.571 (4) and 0.429 (4).

In the pyrrolizidine ring system, both pyrrolidine rings adopt envelope conformations; the puckering parameters are: q2 = 0.393 (2) Å and φ = −167.8 (2)° for N1/C20/C14–C16 ring, and q2 = 0.280 (3) Å and φ = 104.8 (4)° for N1/C16–C19. In the N1/C20/C14–C16 ring, atom C14 deviates by 0.594 (2) Å from the least-squares plane through the remaining four atoms, whereas in the N1/C16-C19 ring, atoms C18 and C18′ deviate by −0.401 (5) and 0.434 (4) Å, respectively, from the plane through the remaining four atoms.

3. Supra­molecular features

The geometry of inter­actions observed in this structure are given in Table 1[link]. In the crystal, mol­ecules associate via N—H⋯O hydrogen bonds into inversion dimers, generating an [R_{2}^{2}](8) motif; see Fig. 3[link]. C—H⋯O hydrogen bonds link the mol­ecules, forming C(8) chains propagating along [010]; see Fig. 4[link]. C—H⋯π inter­actions also link the mol­ecules into C(8) chains propagating along [010]; see Fig. 5[link]. In addition, weak intra­molecular ππ inter­actions, involving the benzene ring (C7–C12) and the pyrrolidine ring of the oxindole moiety (C20/C27/N2/C28/C33) stabilize the mol­ecular packing [centroid-to-centroid distance = 3.621 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.06 2.854 (2) 154
C18—H18B⋯O1ii 0.97 2.36 3.175 (6) 141
C19—H19CCgiii 0.97 2.91 3.659 (2) 135
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 3]
Figure 3
The inversion dimer formed via N—H⋯O hydrogen bonds (dashed lines). For clarity H atoms not involved in these hydrogen bonds have been omitted.
[Figure 4]
Figure 4
The packing of the title compound, viewed approximately down the a axis. C—H⋯O inter­actions are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these inter­actions have been omitted.
[Figure 5]
Figure 5
The packing of the title compound, showing the C—H⋯π and ππ inter­actions as dashed lines. For clarity H atoms not involved in these inter­actions have been omitted.

4. Synthesis and crystallization

To a solution of isatin (1 mmol) and L-proline (1 mmol) in methanol (25 ml), 1-[4-(2,4-di­fluoro­phen­yl)phen­yl]3-phenyl­prop-2-en-1-one (1 mmol) was added and the solution was refluxed for 6–8 h. The completion of reaction was monitored by thin layer chromatography. After completion, the reaction mixture was poured onto crushed ice. The precipitate obtained was filtered and dried at room temperature. Suitable crystals were obtained by slow evaporation of a solution of the title compound in aceto­nitrile at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Atom C18 is disordered over two positions, with the major component having 0.571 (4) occupancy. Pairs of C—C distances were restrained to 1.54 (1) Å. The temperature factor of C18′ was set to that of C18 with the EADP instruction of SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C33H26F2N2O2
Mr 520.56
Crystal system, space group Monoclinic, P21/n
Temperature (K) 292
a, b, c (Å) 12.6019 (13), 9.3128 (10), 22.441 (2)
β (°) 98.805 (2)
V3) 2602.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 29662, 6300, 4886
Rint 0.025
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.155, 1.04
No. of reflections 6300
No. of parameters 356
No. of restraints 4
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.20
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2'-[(2',4'-Difluorobiphenyl-4-yl)carbonyl]-1'-phenyl-1',2',5',6',7',7a'-hexahydrospiro[indole-3,3'-pyrrolizin]-2(1H)-one top
Crystal data top
C33H26F2N2O2Dx = 1.329 Mg m3
Mr = 520.56Melting point: 451 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.6019 (13) ÅCell parameters from 18178 reflections
b = 9.3128 (10) Åθ = 2.2–27.2°
c = 22.441 (2) ŵ = 0.09 mm1
β = 98.805 (2)°T = 292 K
V = 2602.6 (5) Å3Block, brown
Z = 40.22 × 0.20 × 0.18 mm
F(000) = 1088
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 1.8°
ω scansh = 1616
29662 measured reflectionsk = 1212
6300 independent reflectionsl = 2929
4886 reflections with I > 2σ(I)
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.7147P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6300 reflectionsΔρmax = 0.30 e Å3
356 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F11.42983 (13)0.1726 (2)0.03334 (8)0.1156 (6)
F21.15354 (12)0.15319 (15)0.14980 (7)0.0922 (5)
O10.75919 (11)0.28958 (15)0.18945 (6)0.0609 (4)
O20.86504 (9)0.55718 (14)0.00609 (5)0.0492 (3)
N10.78219 (10)0.71854 (14)0.10329 (6)0.0426 (3)
N21.01135 (10)0.54887 (15)0.08094 (6)0.0457 (3)
H21.06120.54040.05890.055*
C11.21887 (15)0.0862 (2)0.03545 (9)0.0555 (4)
H11.19470.17070.01580.067*
C21.30872 (17)0.0194 (3)0.01994 (10)0.0692 (6)
H2A1.34530.05870.00920.083*
C31.34241 (18)0.1056 (3)0.04851 (11)0.0738 (6)
C41.29191 (19)0.1656 (3)0.09195 (12)0.0755 (6)
H41.31600.25090.11090.091*
C51.20386 (16)0.0946 (2)0.10660 (10)0.0595 (5)
C61.16360 (13)0.03136 (17)0.07927 (8)0.0463 (4)
C71.06742 (13)0.10538 (17)0.09596 (8)0.0439 (4)
C81.05427 (14)0.1245 (2)0.15593 (8)0.0515 (4)
H81.10590.08880.18640.062*
C90.96640 (14)0.19527 (19)0.17080 (8)0.0495 (4)
H90.95870.20580.21110.059*
C100.88866 (13)0.25143 (16)0.12608 (7)0.0416 (3)
C110.90091 (13)0.23278 (17)0.06626 (7)0.0444 (4)
H110.84960.26940.03590.053*
C120.98902 (13)0.16000 (17)0.05137 (8)0.0450 (4)
H120.99580.14750.01100.054*
C130.79685 (13)0.33090 (17)0.14605 (7)0.0422 (3)
C140.75582 (11)0.46789 (16)0.11342 (7)0.0370 (3)
H140.72540.44420.07180.044*
C150.67061 (12)0.54637 (17)0.14317 (7)0.0396 (3)
H150.69770.55450.18640.048*
C160.67149 (12)0.69620 (18)0.11570 (7)0.0442 (4)
H160.62140.69920.07770.053*
C170.64921 (16)0.8225 (2)0.15536 (10)0.0655 (5)
H17A0.61600.78990.18920.079*0.429 (4)
H17B0.60220.89180.13240.079*0.429 (4)
H17C0.57670.85790.14330.079*0.571 (4)
H17D0.65730.79340.19730.079*0.571 (4)
C180.7598 (4)0.8885 (6)0.1772 (2)0.0596 (8)0.429 (4)
H18A0.75430.99190.18080.072*0.429 (4)
H18B0.79010.84940.21620.072*0.429 (4)
C18'0.7266 (3)0.9325 (4)0.14717 (19)0.0596 (8)0.571 (4)
H18C0.74500.98860.18370.072*0.571 (4)
H18D0.69810.99650.11450.072*0.571 (4)
C190.82659 (15)0.85131 (19)0.13188 (10)0.0574 (5)
H19A0.90040.83680.15060.069*0.429 (4)
H19B0.82470.92740.10220.069*0.429 (4)
H19C0.86290.90680.10450.069*0.571 (4)
H19D0.87680.83080.16810.069*0.571 (4)
C200.84415 (12)0.58513 (16)0.11279 (7)0.0364 (3)
C210.56087 (12)0.47812 (19)0.13646 (7)0.0436 (4)
C220.51065 (14)0.4564 (2)0.18619 (8)0.0533 (4)
H220.54620.48000.22440.064*
C230.40755 (16)0.3997 (2)0.17992 (11)0.0683 (6)
H230.37460.38600.21380.082*
C240.35447 (16)0.3642 (3)0.12446 (11)0.0729 (6)
H240.28560.32590.12040.088*
C250.40302 (17)0.3850 (3)0.07466 (11)0.0801 (7)
H250.36670.36160.03660.096*
C260.50557 (16)0.4405 (3)0.08058 (9)0.0691 (6)
H260.53810.45280.04640.083*
C270.90604 (12)0.56227 (16)0.05899 (7)0.0388 (3)
C281.02933 (13)0.55045 (17)0.14422 (8)0.0441 (4)
C291.12487 (15)0.5294 (2)0.18212 (10)0.0608 (5)
H291.18850.51340.16700.073*
C301.12263 (17)0.5329 (3)0.24354 (10)0.0714 (6)
H301.18580.51760.27010.086*
C311.02894 (18)0.5586 (2)0.26619 (9)0.0666 (6)
H311.02970.56120.30770.080*
C320.93354 (15)0.5804 (2)0.22761 (8)0.0520 (4)
H320.87020.59830.24290.062*
C330.93381 (12)0.57534 (16)0.16614 (7)0.0399 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0836 (10)0.1401 (15)0.1255 (13)0.0590 (10)0.0234 (9)0.0066 (11)
F20.1023 (10)0.0606 (8)0.1199 (12)0.0165 (7)0.0365 (9)0.0358 (7)
O10.0647 (8)0.0607 (8)0.0624 (8)0.0027 (6)0.0259 (6)0.0170 (6)
O20.0497 (7)0.0612 (7)0.0390 (6)0.0094 (5)0.0141 (5)0.0031 (5)
N10.0406 (7)0.0391 (7)0.0500 (7)0.0036 (5)0.0127 (6)0.0004 (6)
N20.0352 (7)0.0518 (8)0.0534 (8)0.0014 (6)0.0169 (6)0.0000 (6)
C10.0533 (10)0.0548 (10)0.0576 (11)0.0060 (8)0.0059 (8)0.0008 (8)
C20.0567 (12)0.0838 (15)0.0681 (13)0.0105 (11)0.0127 (10)0.0012 (11)
C30.0564 (12)0.0861 (16)0.0771 (15)0.0250 (11)0.0040 (11)0.0130 (12)
C40.0725 (14)0.0603 (13)0.0888 (16)0.0262 (11)0.0034 (12)0.0028 (11)
C50.0590 (11)0.0476 (10)0.0704 (12)0.0051 (9)0.0048 (9)0.0062 (9)
C60.0427 (8)0.0398 (8)0.0538 (9)0.0012 (7)0.0011 (7)0.0036 (7)
C70.0421 (8)0.0341 (8)0.0542 (9)0.0016 (6)0.0035 (7)0.0007 (7)
C80.0502 (9)0.0526 (10)0.0488 (9)0.0065 (8)0.0017 (7)0.0067 (8)
C90.0538 (10)0.0495 (9)0.0444 (9)0.0028 (8)0.0054 (7)0.0051 (7)
C100.0428 (8)0.0335 (7)0.0479 (9)0.0024 (6)0.0055 (7)0.0022 (6)
C110.0464 (9)0.0381 (8)0.0457 (9)0.0027 (7)0.0022 (7)0.0012 (7)
C120.0501 (9)0.0391 (8)0.0445 (9)0.0023 (7)0.0027 (7)0.0037 (7)
C130.0411 (8)0.0418 (8)0.0437 (8)0.0059 (6)0.0065 (6)0.0008 (7)
C140.0335 (7)0.0415 (8)0.0369 (7)0.0009 (6)0.0083 (6)0.0002 (6)
C150.0329 (7)0.0515 (9)0.0352 (7)0.0002 (6)0.0075 (6)0.0035 (6)
C160.0377 (8)0.0491 (9)0.0464 (9)0.0063 (7)0.0086 (6)0.0045 (7)
C170.0613 (12)0.0610 (12)0.0785 (14)0.0111 (9)0.0248 (10)0.0178 (10)
C180.081 (2)0.0434 (17)0.059 (2)0.0007 (14)0.0238 (18)0.0071 (13)
C18'0.081 (2)0.0434 (17)0.059 (2)0.0007 (14)0.0238 (18)0.0071 (13)
C190.0568 (10)0.0402 (9)0.0761 (13)0.0026 (8)0.0127 (9)0.0041 (8)
C200.0360 (7)0.0383 (8)0.0361 (7)0.0008 (6)0.0100 (6)0.0007 (6)
C210.0337 (7)0.0528 (9)0.0453 (8)0.0018 (7)0.0096 (6)0.0011 (7)
C220.0433 (9)0.0679 (12)0.0514 (10)0.0011 (8)0.0159 (7)0.0054 (8)
C230.0537 (11)0.0800 (14)0.0789 (14)0.0079 (10)0.0350 (10)0.0065 (11)
C240.0433 (10)0.0815 (15)0.0966 (17)0.0167 (10)0.0188 (11)0.0200 (13)
C250.0536 (12)0.114 (2)0.0702 (14)0.0231 (13)0.0027 (10)0.0201 (13)
C260.0494 (10)0.1077 (18)0.0503 (11)0.0186 (11)0.0077 (8)0.0067 (11)
C270.0398 (8)0.0361 (7)0.0433 (8)0.0023 (6)0.0151 (6)0.0034 (6)
C280.0390 (8)0.0403 (8)0.0528 (9)0.0031 (6)0.0062 (7)0.0032 (7)
C290.0388 (9)0.0633 (12)0.0782 (13)0.0002 (8)0.0025 (9)0.0065 (10)
C300.0536 (11)0.0810 (15)0.0715 (14)0.0087 (10)0.0167 (10)0.0174 (11)
C310.0689 (13)0.0795 (14)0.0469 (10)0.0198 (11)0.0051 (9)0.0107 (9)
C320.0521 (10)0.0615 (11)0.0420 (9)0.0122 (8)0.0061 (7)0.0022 (8)
C330.0369 (7)0.0389 (8)0.0441 (8)0.0050 (6)0.0069 (6)0.0019 (6)
Geometric parameters (Å, º) top
F1—C31.354 (2)C17—C18'1.446 (4)
F2—C51.352 (2)C17—C181.534 (5)
O1—C131.2096 (19)C17—H17A0.9700
O2—C271.2211 (19)C17—H17B0.9700
N1—C191.464 (2)C17—H17C0.9700
N1—C201.4655 (19)C17—H17D0.9700
N1—C161.478 (2)C18—C191.457 (5)
N2—C271.349 (2)C18—H18A0.9700
N2—C281.403 (2)C18—H18B0.9700
N2—H20.8600C18'—C191.552 (4)
C1—C21.382 (3)C18'—H18C0.9700
C1—C61.387 (3)C18'—H18D0.9700
C1—H10.9300C19—H19A0.9700
C2—C31.365 (3)C19—H19B0.9700
C2—H2A0.9300C19—H19C0.9700
C3—C41.362 (3)C19—H19D0.9700
C4—C51.374 (3)C20—C331.518 (2)
C4—H40.9300C20—C271.549 (2)
C5—C61.383 (2)C21—C221.380 (2)
C6—C71.491 (2)C21—C261.383 (3)
C7—C121.391 (2)C22—C231.390 (3)
C7—C81.392 (2)C22—H220.9300
C8—C91.373 (2)C23—C241.361 (3)
C8—H80.9300C23—H230.9300
C9—C101.393 (2)C24—C251.367 (3)
C9—H90.9300C24—H240.9300
C10—C111.385 (2)C25—C261.379 (3)
C10—C131.499 (2)C25—H250.9300
C11—C121.385 (2)C26—H260.9300
C11—H110.9300C28—C291.378 (2)
C12—H120.9300C28—C331.388 (2)
C13—C141.522 (2)C29—C301.383 (3)
C14—C151.534 (2)C29—H290.9300
C14—C201.561 (2)C30—C311.376 (3)
C14—H140.9800C30—H300.9300
C15—C211.508 (2)C31—C321.385 (3)
C15—C161.526 (2)C31—H310.9300
C15—H150.9800C32—C331.381 (2)
C16—C171.527 (2)C32—H320.9300
C16—H160.9800
C19—N1—C20119.52 (13)C18'—C17—H17D110.4
C19—N1—C16110.16 (13)C16—C17—H17D110.4
C20—N1—C16110.51 (12)H17C—C17—H17D108.6
C27—N2—C28111.48 (13)C19—C18—C17106.0 (3)
C27—N2—H2124.3C19—C18—H18A110.5
C28—N2—H2124.3C17—C18—H18A110.5
C2—C1—C6122.21 (19)C19—C18—H18B110.5
C2—C1—H1118.9C17—C18—H18B110.5
C6—C1—H1118.9H18A—C18—H18B108.7
C3—C2—C1118.2 (2)C17—C18'—C19105.6 (2)
C3—C2—H2A120.9C17—C18'—H18C110.6
C1—C2—H2A120.9C19—C18'—H18C110.6
F1—C3—C4118.6 (2)C17—C18'—H18D110.6
F1—C3—C2118.8 (2)C19—C18'—H18D110.6
C4—C3—C2122.7 (2)H18C—C18'—H18D108.8
C3—C4—C5117.2 (2)C18—C19—N1106.5 (2)
C3—C4—H4121.4N1—C19—C18'103.87 (18)
C5—C4—H4121.4C18—C19—H19A110.4
F2—C5—C4117.51 (18)N1—C19—H19A110.4
F2—C5—C6118.67 (18)C18—C19—H19B110.4
C4—C5—C6123.8 (2)N1—C19—H19B110.4
C5—C6—C1115.88 (17)H19A—C19—H19B108.6
C5—C6—C7122.52 (17)N1—C19—H19C111.0
C1—C6—C7121.59 (15)C18'—C19—H19C111.0
C12—C7—C8118.18 (16)N1—C19—H19D111.0
C12—C7—C6120.24 (16)C18'—C19—H19D111.0
C8—C7—C6121.57 (15)H19C—C19—H19D109.0
C9—C8—C7121.07 (16)N1—C20—C33118.78 (13)
C9—C8—H8119.5N1—C20—C27108.89 (12)
C7—C8—H8119.5C33—C20—C27101.75 (12)
C8—C9—C10120.65 (16)N1—C20—C14103.27 (11)
C8—C9—H9119.7C33—C20—C14113.37 (12)
C10—C9—H9119.7C27—C20—C14110.84 (12)
C11—C10—C9118.73 (15)C22—C21—C26117.80 (16)
C11—C10—C13123.87 (14)C22—C21—C15120.53 (15)
C9—C10—C13117.40 (15)C26—C21—C15121.62 (15)
C12—C11—C10120.51 (15)C21—C22—C23120.75 (18)
C12—C11—H11119.7C21—C22—H22119.6
C10—C11—H11119.7C23—C22—H22119.6
C11—C12—C7120.86 (16)C24—C23—C22120.42 (19)
C11—C12—H12119.6C24—C23—H23119.8
C7—C12—H12119.6C22—C23—H23119.8
O1—C13—C10119.98 (15)C23—C24—C25119.61 (19)
O1—C13—C14120.52 (15)C23—C24—H24120.2
C10—C13—C14119.42 (13)C25—C24—H24120.2
C13—C14—C15113.52 (13)C24—C25—C26120.3 (2)
C13—C14—C20113.61 (12)C24—C25—H25119.9
C15—C14—C20102.61 (12)C26—C25—H25119.9
C13—C14—H14108.9C25—C26—C21121.12 (19)
C15—C14—H14108.9C25—C26—H26119.4
C20—C14—H14108.9C21—C26—H26119.4
C21—C15—C16114.09 (13)O2—C27—N2126.71 (14)
C21—C15—C14116.62 (13)O2—C27—C20125.07 (14)
C16—C15—C14102.18 (12)N2—C27—C20108.22 (13)
C21—C15—H15107.8C29—C28—C33121.90 (17)
C16—C15—H15107.8C29—C28—N2127.86 (16)
C14—C15—H15107.8C33—C28—N2110.23 (14)
N1—C16—C15105.67 (12)C28—C29—C30117.55 (19)
N1—C16—C17105.33 (14)C28—C29—H29121.2
C15—C16—C17117.11 (15)C30—C29—H29121.2
N1—C16—H16109.5C31—C30—C29121.45 (18)
C15—C16—H16109.5C31—C30—H30119.3
C17—C16—H16109.5C29—C30—H30119.3
C18'—C17—C16106.51 (19)C30—C31—C32120.43 (19)
C16—C17—C18104.8 (2)C30—C31—H31119.8
C16—C17—H17A110.8C32—C31—H31119.8
C18—C17—H17A110.8C33—C32—C31119.01 (18)
C16—C17—H17B110.8C33—C32—H32120.5
C18—C17—H17B110.8C31—C32—H32120.5
H17A—C17—H17B108.9C32—C33—C28119.65 (15)
C18'—C17—H17C110.4C32—C33—C20132.10 (15)
C16—C17—H17C110.4C28—C33—C20108.17 (13)
C6—C1—C2—C30.9 (3)C16—N1—C19—C1817.6 (3)
C1—C2—C3—F1179.5 (2)C20—N1—C19—C18'145.4 (2)
C1—C2—C3—C40.9 (4)C16—N1—C19—C18'15.8 (2)
F1—C3—C4—C5179.6 (2)C17—C18'—C19—N127.8 (3)
C2—C3—C4—C50.1 (4)C19—N1—C20—C3319.1 (2)
C3—C4—C5—F2179.8 (2)C16—N1—C20—C33110.25 (15)
C3—C4—C5—C61.0 (3)C19—N1—C20—C2796.55 (17)
F2—C5—C6—C1179.88 (18)C16—N1—C20—C27134.06 (13)
C4—C5—C6—C11.0 (3)C19—N1—C20—C14145.62 (14)
F2—C5—C6—C70.5 (3)C16—N1—C20—C1416.22 (15)
C4—C5—C6—C7179.63 (19)C13—C14—C20—N1157.37 (12)
C2—C1—C6—C50.0 (3)C15—C14—C20—N134.41 (14)
C2—C1—C6—C7179.36 (18)C13—C14—C20—C3327.52 (17)
C5—C6—C7—C12136.73 (18)C15—C14—C20—C3395.44 (14)
C1—C6—C7—C1243.9 (2)C13—C14—C20—C2786.17 (15)
C5—C6—C7—C844.6 (2)C15—C14—C20—C27150.87 (12)
C1—C6—C7—C8134.78 (19)C16—C15—C21—C22111.32 (18)
C12—C7—C8—C90.0 (3)C14—C15—C21—C22129.83 (17)
C6—C7—C8—C9178.73 (16)C16—C15—C21—C2666.1 (2)
C7—C8—C9—C100.8 (3)C14—C15—C21—C2652.7 (2)
C8—C9—C10—C110.9 (3)C26—C21—C22—C230.5 (3)
C8—C9—C10—C13178.25 (16)C15—C21—C22—C23177.01 (18)
C9—C10—C11—C120.2 (2)C21—C22—C23—C240.2 (3)
C13—C10—C11—C12178.90 (15)C22—C23—C24—C250.2 (4)
C10—C11—C12—C70.6 (2)C23—C24—C25—C260.6 (4)
C8—C7—C12—C110.7 (2)C24—C25—C26—C211.0 (4)
C6—C7—C12—C11178.04 (15)C22—C21—C26—C250.9 (3)
C11—C10—C13—O1143.39 (17)C15—C21—C26—C25176.6 (2)
C9—C10—C13—O137.5 (2)C28—N2—C27—O2175.97 (15)
C11—C10—C13—C1439.9 (2)C28—N2—C27—C203.84 (17)
C9—C10—C13—C14139.20 (15)N1—C20—C27—O256.15 (19)
O1—C13—C14—C153.2 (2)C33—C20—C27—O2177.63 (15)
C10—C13—C14—C15173.45 (13)C14—C20—C27—O256.79 (19)
O1—C13—C14—C20119.99 (17)N1—C20—C27—N2124.03 (13)
C10—C13—C14—C2056.69 (18)C33—C20—C27—N22.19 (16)
C13—C14—C15—C2172.60 (17)C14—C20—C27—N2123.03 (13)
C20—C14—C15—C21164.38 (13)C27—N2—C28—C29175.07 (17)
C13—C14—C15—C16162.29 (12)C27—N2—C28—C334.09 (19)
C20—C14—C15—C1639.26 (14)C33—C28—C29—C300.4 (3)
C19—N1—C16—C15125.74 (14)N2—C28—C29—C30178.66 (18)
C20—N1—C16—C158.51 (16)C28—C29—C30—C310.9 (3)
C19—N1—C16—C171.15 (19)C29—C30—C31—C320.6 (3)
C20—N1—C16—C17133.09 (15)C30—C31—C32—C330.3 (3)
C21—C15—C16—N1156.70 (13)C31—C32—C33—C280.9 (3)
C14—C15—C16—N129.93 (15)C31—C32—C33—C20175.64 (17)
C21—C15—C16—C1786.42 (18)C29—C28—C33—C320.5 (3)
C14—C15—C16—C17146.81 (15)N2—C28—C33—C32179.70 (15)
N1—C16—C17—C18'19.2 (3)C29—C28—C33—C20176.78 (16)
C15—C16—C17—C18'136.3 (2)N2—C28—C33—C202.44 (18)
N1—C16—C17—C1814.8 (3)N1—C20—C33—C3263.6 (2)
C15—C16—C17—C18102.3 (3)C27—C20—C33—C32176.98 (17)
C16—C17—C18—C1925.7 (4)C14—C20—C33—C3257.9 (2)
C16—C17—C18'—C1928.9 (3)N1—C20—C33—C28119.62 (15)
C17—C18—C19—N126.6 (4)C27—C20—C33—C280.18 (16)
C20—N1—C19—C18111.9 (3)C14—C20—C33—C28118.87 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.062.854 (2)154
C18—H18B···O1ii0.972.363.175 (6)141
C19—H19C···Cgiii0.972.913.659 (2)135
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: profmani.au@gmail.com.

Acknowledgements

MF and HM thank the Department of Chemistry, Annamalai University, Annamalainagar, for providing laboratory and library facilities. SS thanks the Principal and Management of Kings College of Engineering, Punalkulam, for their support and encouragement.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409–2417.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, L. S., Liu, M. L., Wang, B., Chai, Y., Hao, X. Q., Meng, S. & Guo, H. Y. (2010). Eur. J. Med. Chem. 45, 3407–3412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGürsoy, A. & Karali, N. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuenelle, D., Keith, K. & Kern, E. (2006). Antiviral Res. 71, 24–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2010). Acta Cryst. E66, o1345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1783–o1785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSridhar, S. K., Saravanan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267–o2269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds