research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[tris­­(1,10-phenanthroline-κ2N,N′)cobalt(II)] tetra­nitrate N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvate octa­hydrate

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: niels-patrick.pook@tu-clausthal.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 June 2015; accepted 6 July 2015; online 11 July 2015)

The complex cation of the title compound, [Co(C12H8N2)3]2(NO3)4·C12H12N2O6·8H2O, contains a CoII atom with a distorted octa­hedral coordination environment defined by six N atoms from three bidentate 1,10-phenanthroline ligands. The asymmetric unit of the title compound is completed by one-half of the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecule, which is located on a centre of inversion, by two nitrate counter-anions and four solvent water mol­ecules. Two [Co(C12H8N2)3]2+ cations are connected through C—H⋯O contacts and through lone-pair⋯π inter­actions involving the non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine and phenanthroline mol­ecules. The different aromatic ring systems are involved in ππ stacking and C—H⋯π inter­actions, with centroid-to-centroid distances in the range 3.7094 (8)–3.9973 (9) Å. The crystal structure is stabilized by further anion⋯π inter­actions and C—H⋯O contacts, as well as O—H⋯O and N—H⋯O hydrogen bonds between water mol­ecules, the non-coordinating nitrate anions, N,N′-(1,4-phenyl­enedicarbon­yl)diglycine and phenanthroline mol­ecules. These non-covalent inter­actions give rise to a three-dimensional supra­molecular network.

1. Chemical context

In the past decades, the focus on metal-organic complexes which form coordination polymers of different dimensions has drawn much attention due to their inter­esting structures and physical and chemical properties. Application fields for these materials are in catalysis, in gas storage (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. 116, 2388-2430.]), luminescence (Allendorf et al., 2015[Allendorf, M. D., Foster, M. E., Léonard, F., Stavila, V., Feng, P. L., Doty, F. P., Leong, K., Ma, E. Y., Johnston, S. R. & Talin, A. A. (2015). J. Phys. Chem. Lett. 6, 1182-1195.]) and very recently as scintillation materials (Allendorf et al., 2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]; Doty et al., 2009[Doty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. (2009). Adv. Mater. 21, 95-101.]; Perry et al., 2012[Perry IV, J. J., Feng, P. L., Meek, S. T., Leong, K., Doty, F. P. & Allendorf, M. D. (2012). J. Mater. Chem. 22, 10235-10248.]). The structures of coordination polymers (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Yamada et al., 2013[Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655-6669.]) often show various non-covalent inter­molecular inter­actions and forces, and therefore are intimately connected with the field of supra­molecular chemistry (Schneider, 2009[Schneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924-3977.]) and self-assembly (Cook et al., 2013[Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734-777.]). Such non-covalent inter­actions are also of utmost importance in biological macromolecules like DNA, RNA and proteins (Salonen et al., 2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]). They are typically observed in biochemical reactions as protein–ligand recognitions and are partly utilized in drug design (Meyer et al., 2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]). Apart from classical and non-classical hydrogen bonding of the types O–H⋯O, N—H⋯O and C—H⋯O, respectively, different π-inter­actions of aromatic rings such as ππ stacking, C—H⋯π, ion⋯π and lone-pair⋯π play a crucial role in the assembly of metal-organic polymers. Nitro­gen-containing heterocycles like bi­pyridine and phenanthroline are metal-coordinating, electron-deficient aromatic systems and predestined for ππ stacking as π-acceptors (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). In addition, π-donor⋯acceptor functions in different parts of an aromatic mol­ecule can lead to remarkable properties (Albrecht et al., 2010[Albrecht, M., Gjikaj, M. & Schmidt, A. (2010). Tetrahedron, 66, 7149-7154.]).

[Scheme 1]

In previously synthesized transition metal complexes with N,N′-(1,4-phenyl­enedicarbon­yl)diglycine as metal-linking ligand, zigzag chains are formed, constructing inter­penetrating networks (see Database survey). In our synthetic approach, we offer such systems another electron-deficient bidentate aromatic ring system like phenanthroline or bi­pyridine in order to block parts of the coordination sphere of the metal atoms so that these zigzag chains are truncated or not formed at all. Thus, an alternative route for the resultant system lies in the use of the offered π-inter­action possibilities as well as in stacking inter­actions as a new linking mode. Recently, we have described the inter­actions of a cobalt(III) bi­pyridine complex with supra­molecular synthons (Pook et al., 2014[Pook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160-m161.]) as well as a precursor material (Pook et al., 2013[Pook, N.-P., Gjikaj, M. & Adam, A. (2013). Acta Cryst. E69, o1731.]) that both contain N,N′-(1,4-phenyl­enedicarbon­yl)diglycine. The chosen ligand N,N′-(1,4-phenyl­enedicarbon­yl)diglycine is a relatively rigid mol­ecule with one sp3-hybridized methyl­ene carbon atom that allows the acid moiety to rotate. Moreover, this ligand simultaneously possesses several coordination sites through the carb­oxy­lic group and the oxygen atom of the amide group. These functional groups can also be involved in hydrogen bonding and D—H⋯π inter­actions.

In the present contribution we have determined the structure of a novel cobalt(II) coordination polymer with a non-coordinating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent molecule linking two tris­(phenanthroline)cobalt(II) cationic building blocks via the mentioned non-classical inter­actions.

2. Structural commentary

The mol­ecular entities (Fig. 1[link]) of the title compound include one CoII complex cation in which three bidentate phenanthroline ligands define a distorted octa­hedral coordination sphere. Distances and angles of this rather common cationic species, [Co(C12H8N2)3]2+, are well within expected ranges and are comparable to those found in the literature (Li et al., 2011[Li, L.-M., Li, Y.-F., Liu, L. & Zhang, Z.-H. (2011). Acta Cryst. E67, m973.]; Geraghty et al., 1999[Geraghty, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293, 160-166.]). A crystallographic center of inversion is located at the centroid of the protonated and non-coordin­ating N,N′-(1,4-phenyl­enedicarbon­yl)diglycine molecule. The asymmetric unit is completed by two non-coordinating nitrate counter-anions and four solvent water mol­ecules. The N,N′-(1,4-phenyl­enedicarbon­yl)diglycine mol­ecule links two complex tris­(phenanthroline-κ2N,N′)cobalt(II) cations via lone-pair⋯π inter­actions involving the carb­oxy­lic acid function and the phenanthroline aromatic system as well as C—H⋯O contacts between the oxygen atom of the amide group and one phenanthroline ligand. Moreover, ππ stacking inter­actions between different aromatic ring systems and C—H⋯π as well as O—H⋯O and N—H⋯O hydrogen bonding are observed and consolidate an extensive three-dimensional supra­molecular network.

[Figure 1]
Figure 1
The mol­ecular entities of the title structure with atom labels and displacement ellipsoids of non-H atoms drawn at the 50% probability level. Dashed lines indicate N—H⋯O and O—H⋯O hydrogen bonds, as well as lone-pair⋯π inter­actions (see Table 1[link] for details). [Symmetry code: (v) −x, −y + 2, −z.]

3. Supra­molecular features

In the crystal structure, numerous non-covalant inter­actions are observed. The two nitrate anions are linked via O—H⋯O, C—H⋯O and partly via N—H⋯O hydrogen bonds with water, phenanthroline and N,N′-(1,4-phenyl­enedicarbon­yl)diglycine mol­ecules (Fig. 1[link] and Table 1[link]). ππ inter­actions of parallel-displaced phenanthroline ligands and between phenanthroline and N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent mol­ecules stack these components along the c axis (Fig. 2[link]). The centroid-to-centroid distance of Cg1⋯Cg5 is 3.7094 (8) Å and between Cg7⋯Cg7 is 3.9973 (9) Å (Fig. 3[link]), where Cg1, Cg5 and Cg7 are the centroids defined by the ring atoms C37–C39/C37′–C39′, N3/C13-C16/C24 and N4/C19-C23, respectively. These distances are in expected ranges (Barceló-Oliver et al., 2010[Barceló-Oliver, M., Terrón, A., García-Raso, A., Lah, N. & Turel, I. (2010). Acta Cryst. C66, o313-o316.]; Kumar Seth et al., 2010[Kumar Seth, S., Dey, B., Kar, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81-88.]). In addition, a T-shaped motif between aromatic rings give rise to C—H⋯π inter­actions and leads to an expected distance (Brandl et al., 2001[Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357-377.]; Gathergood et al., 2003[Gathergood, N., Scammells, P. J. & Fallon, G. D. (2003). Acta Cryst. C59, o485-o487.]; Horiguchi et al., 2007[Horiguchi, M., Okuhara, S., Shimano, E., Fujimoto, D., Takahashi, H., Tsue, H. & Tamura, R. (2007). Cryst. Growth Des. 7, 1643-1652.]; Meyer et al., 2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]; Salonen et al., 2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]) between H20(Cg7)⋯Cg8 of 3.037 (1) Å, where Cg8 is the centroid defined by the ring atoms N5/C25–C28/C36. Moreover, a relatively short N—H⋯π distance of 4.08 (6) Å is observed (Fig. 3[link]) that is comparable to reference values (Steiner & Koellner, 2001[Steiner, T. & Koellner, G. (2001). J. Mol. Biol. 305, 535-557.]). Besides the previously mentioned forces, lone-pair⋯π and anion⋯π inter­actions (Fig. 4[link]) contribute to the consolidation of the supra­molecular network. The lone-pair⋯π inter­actions between the O3 atom of the carb­oxy­lic acid function of the N,N′-(1,4-phenyl­enedicarbon­yl)diglycine solvent and the Cg2 centroid of a phenanthroline ligand are associated with a distance of 3.400 (5) Å. Similar distances of 3.461 (5) Å prevail between the O10 atom of a water mol­ecule and the Cg3 centroid of a phenanthroline ligand, where Cg2 and Cg3 are the centroids defined by the ring atoms N1/C1–C4/C12 and C4–C7/C11/C12, respectively. The values are similar to those found in the literature (Egli & Sarkhel, 2007[Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]; Gao et al., 2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.]; Jain et al., 2009[Jain, A., Ramanathan, V. & Sankararamakrishnan, R. (2009). Protein Sci. 18, 595-605.]; Mooibroek et al., 2008[Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501-1515.]; Wan et al., 2008[Wan, C.-Q., Chen, X.-D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.]). Finally, the anion⋯π inter­actions of the nitrate (N9/O4-O6) and Cg7 of a phenanthroline ligand are reflected by a distance of 3.628 (4) Å that is comparable to previously reported structures (Ballester, 2008[Ballester, P. (2008). In Anions and π-Aromatic Systems. Do They Interact Attractively? In Recognition of Anions, edited by R. Vilar. Heidelberg, Berlin: Springer.]; Gamez et al., 2007[Gamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435-444.]; Schottel et al., 2008[Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68-83.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O10 0.82 (1) 1.80 (2) 2.598 (5) 162 (7)
O10—H10A⋯O9 0.87 (2) 2.09 (2) 2.954 (6) 172 (5)
O10—H10A⋯O7 0.87 (2) 2.54 (4) 3.190 (7) 132 (5)
O10—H10B⋯O2i 0.82 (1) 2.07 (2) 2.878 (6) 171 (6)
O11—H11A⋯O8 0.85 (8) 2.32 (8) 3.098 (9) 154 (7)
O11—H11A⋯O7 0.85 (8) 2.53 (8) 3.313 (8) 154 (7)
O11—H11B⋯O6 0.93 (8) 2.02 (8) 2.917 (7) 162 (7)
O12—H12A⋯O11ii 0.88 (2) 2.18 (7) 2.945 (10) 146 (11)
O12—H12B⋯O13 0.88 (2) 1.93 (5) 2.766 (8) 156 (11)
O13—H13A⋯O5iii 0.89 (2) 1.98 (5) 2.827 (9) 160 (12)
O13—H13B⋯O12iv 0.88 (2) 2.09 (9) 2.843 (11) 143 (12)
N7—H7⋯O4 0.82 (2) 2.06 (3) 2.861 (6) 165 (7)
C3—H3⋯O1 0.94 2.37 3.111 (6) 135
C33—H33⋯O9 0.94 2.54 3.314 (7) 140
C38—H38⋯O4 0.94 2.47 3.386 (7) 166
C41—H41B⋯O6 0.98 2.67 3.409 (7) 132
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title structure in a view along the a axis. Selected ππ stacking and C—H⋯π inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
In the crystal packing, different non-covalent inter­actions such as C—H⋯O contacts and ππ stacking, N—H⋯π and C—H⋯π inter­actions between the aromatic moieties are present (dashed lines; distances are given in Å). [Symmetry codes: (v) −x, −y + 2, −z; (vi) −x, −y + 1, −z; (viii) x, y + 1, z; (ix) −x, −y + 1, −z + 1; (x) x, y + 1, z − 1.]
[Figure 4]
Figure 4
View of the anion⋯π inter­action and the extended network of O—H⋯O and C—H⋯O hydrogen bonds with the embedded non-coordinating nitrate anion (N9/O4–O6) as well as ππ stacking. O—H⋯O contacts are indicated by red–white, C—H⋯O by black and π-inter­actions by dark-yellow dashed lines. Distances are given in Å. [Symmetry codes: (i) −x + 1, −y + 1,-z; (viii) x, y + 1, z; (xi) x + 1, y + 1, z.]

4. Database survey

A search in the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for crystal structures containing the ligand N,N′-(1,4-phenyl­enedicarbon­yl)diglycine resulted in six metal-organic compounds (Duan et al., 2010[Duan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172-3177.]; Kostakis et al., 2005[Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun., pp. 3859-3861.], 2011[Kostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060-1071.]; Zhang et al., 2005[Zhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163-m1165.], 2006[Zhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532-3536.]). Some of these structures are composed of inter­penetrating networks. Among them is a structure which includes bi­pyridine besides N,N′-(1,4-phenyl­enedicarbon­yl)diglycine and shows a number of non-classical inter­actions (Pook et al., 2014[Pook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160-m161.]).

5. Synthesis and crystallization

The starting material, N,N′-(1,4-phenyl­enedicarbon­yl)diglycine, was prepared by the method of Cleaver & Pratt (1955[Cleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544-1546.]). Cesium carbonate (2 mmol), 1,10-phenanthroline (1 mmol) and 2,2′-(benzene-1,4-dicarboxamido)­diacetatic acid (1 mmol) were dissolved in a 1:1 (v/v) mixture of water and methanol (50 ml) and refluxed for 30 minutes. The mixture was allowed to cool to room temperature, and a previously prepared aqueous solution of cobalt nitrate (1 mmol) was slowly added under continuous stirring. Deep dark-orange block-shaped crystals of the title compound were obtained by slow evaporation at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2 Ueq(C) and C—H(aromatic) = 0.94 Å and C—H(methyl­ene) = 0.98 Å using a riding model. The water H atoms were located in a different Fourier map and were refined with O—H distances restrained to 0.82–0.87 Å and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C12H8N2)3]2(NO3)4·C12H12N2O6·8H2O
Mr 1871.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 10.6663 (18), 14.314 (2), 14.573 (3)
α, β, γ (°) 85.403 (13), 73.421 (14), 82.020 (12)
V3) 2109.8 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.25 × 0.23 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Numerical (X-AREA; Stoe, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.819, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 21841, 7956, 4701
Rint 0.138
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.154, 1.05
No. of reflections 7956
No. of parameters 621
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.49
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis[tris(1,10-phenanthroline-κ2N,N')cobalt(II)] tetranitrate N,N'-(1,4-phenylenedicarbonyl)diglycine monosolvate octahydrate top
Crystal data top
[Co(C12H8N2)3]2(NO3)4·C12H12N2O6·8H2OZ = 1
Mr = 1871.48F(000) = 968.0
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6663 (18) ÅCell parameters from 7956 reflections
b = 14.314 (2) Åθ = 1.0–25.7°
c = 14.573 (3) ŵ = 0.49 mm1
α = 85.403 (13)°T = 223 K
β = 73.421 (14)°Block, orange
γ = 82.020 (12)°0.25 × 0.23 × 0.15 mm
V = 2109.8 (6) Å3
Data collection top
Stoe IPDS 2
diffractometer
7956 independent reflections
Radiation source: fine-focus sealed tube4701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
ω–scansθmax = 25.7°, θmin = 2.0°
Absorption correction: numerical
(X-AREA; Stoe, 2008)
h = 1313
Tmin = 0.819, Tmax = 0.961k = 1717
21841 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3752P]
where P = (Fo2 + 2Fc2)/3
7956 reflections(Δ/σ)max = 0.001
621 parametersΔρmax = 0.43 e Å3
8 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.04386 (7)0.23362 (5)0.27813 (5)0.03230 (18)
O10.0043 (5)0.7504 (2)0.0769 (4)0.0732 (15)
O20.3407 (4)0.6495 (3)0.0417 (3)0.0512 (9)
O30.2889 (4)0.5625 (2)0.1806 (3)0.0471 (9)
H310.342 (5)0.519 (3)0.154 (4)0.071*
O40.3317 (4)0.9176 (3)0.1619 (4)0.0686 (13)
O50.4745 (6)0.9491 (4)0.2281 (4)0.1008 (19)
O60.4044 (5)0.8125 (4)0.2524 (4)0.0841 (15)
O70.5194 (5)0.5579 (4)0.2754 (4)0.0834 (15)
O80.6586 (5)0.5272 (4)0.3545 (4)0.101 (2)
O90.6425 (4)0.4256 (3)0.2564 (3)0.0613 (11)
O100.4710 (4)0.4210 (3)0.1299 (3)0.0468 (9)
H10A0.521 (5)0.428 (4)0.165 (3)0.049 (16)*
H10B0.528 (5)0.407 (5)0.081 (3)0.07 (2)*
O110.6055 (6)0.7456 (4)0.3503 (4)0.0780 (15)
H11A0.604 (7)0.689 (6)0.339 (6)0.09 (3)*
H11B0.557 (8)0.767 (6)0.307 (6)0.10 (3)*
O120.5530 (7)0.1406 (5)0.4875 (6)0.114 (2)
H12A0.494 (9)0.151 (9)0.543 (5)0.171*
H12B0.509 (10)0.121 (8)0.451 (7)0.171*
O130.4193 (7)0.0330 (5)0.4067 (6)0.115 (2)
H13A0.453 (11)0.014 (9)0.347 (4)0.172*
H13B0.392 (12)0.009 (7)0.454 (6)0.172*
N10.0324 (4)0.3664 (3)0.2003 (3)0.0368 (10)
N20.2048 (4)0.2094 (3)0.1525 (3)0.0349 (9)
N30.1049 (4)0.1827 (3)0.2298 (3)0.0387 (10)
N40.0544 (4)0.0889 (3)0.3308 (3)0.0384 (10)
N50.0900 (4)0.2861 (3)0.4089 (3)0.0354 (9)
N60.1757 (4)0.2817 (3)0.3482 (3)0.0360 (9)
N70.1534 (5)0.8007 (3)0.1288 (3)0.0419 (10)
H70.201 (6)0.840 (4)0.130 (5)0.08 (2)*
N80.6071 (4)0.5025 (4)0.2970 (3)0.0479 (11)
N90.4026 (5)0.8936 (4)0.2152 (4)0.0558 (13)
C10.0530 (5)0.4428 (3)0.2256 (4)0.0406 (12)
H10.12070.44030.28320.049*
C20.0458 (6)0.5276 (4)0.1695 (4)0.0484 (14)
H20.10770.58070.18910.058*
C30.0531 (6)0.5313 (4)0.0858 (4)0.0485 (14)
H30.05910.58750.04770.058*
C40.1455 (5)0.4523 (3)0.0564 (4)0.0395 (12)
C50.2511 (6)0.4493 (4)0.0297 (4)0.0515 (15)
H50.25890.50290.07170.062*
C60.3392 (6)0.3729 (4)0.0528 (4)0.0527 (15)
H60.40860.37420.10940.063*
C70.3288 (5)0.2884 (4)0.0086 (4)0.0426 (12)
C80.4200 (5)0.2073 (4)0.0091 (4)0.0521 (14)
H80.49320.20570.06350.062*
C90.4024 (6)0.1303 (4)0.0529 (4)0.0542 (15)
H90.46340.07540.04200.065*
C100.2927 (5)0.1345 (4)0.1325 (4)0.0430 (12)
H100.28070.08090.17430.052*
C110.2233 (5)0.2870 (3)0.0916 (3)0.0326 (10)
C120.1301 (5)0.3703 (3)0.1167 (3)0.0342 (11)
C130.1832 (5)0.2285 (4)0.1819 (4)0.0464 (13)
H130.17340.29210.16370.056*
C140.2807 (6)0.1887 (4)0.1562 (5)0.0564 (15)
H140.33340.22440.12100.068*
C150.2969 (6)0.0969 (5)0.1837 (5)0.0617 (17)
H150.36180.06840.16790.074*
C160.2172 (6)0.0455 (4)0.2353 (4)0.0536 (15)
C170.2252 (7)0.0525 (5)0.2653 (5)0.0682 (19)
H170.28860.08430.25140.082*
C180.1424 (7)0.0990 (4)0.3130 (5)0.0673 (19)
H180.14960.16290.33130.081*
C190.0449 (6)0.0555 (4)0.3367 (4)0.0500 (14)
C200.0441 (6)0.1004 (4)0.3847 (4)0.0574 (15)
H200.04260.16480.40280.069*
C210.1334 (6)0.0522 (4)0.4060 (4)0.0538 (15)
H210.19310.08270.43860.065*
C220.1340 (5)0.0449 (4)0.3776 (4)0.0483 (13)
H220.19400.07880.39320.058*
C230.0350 (5)0.0412 (3)0.3087 (4)0.0413 (12)
C240.1207 (5)0.0913 (3)0.2575 (4)0.0403 (12)
C250.2189 (5)0.2880 (4)0.4380 (4)0.0496 (14)
H250.26040.25930.40070.060*
C260.2979 (6)0.3309 (4)0.5225 (4)0.0554 (15)
H260.38960.32990.54140.066*
C270.2384 (6)0.3743 (4)0.5767 (4)0.0504 (14)
H270.28950.40500.63220.060*
C280.1017 (5)0.3724 (3)0.5489 (3)0.0387 (11)
C290.0309 (6)0.4149 (4)0.6016 (4)0.0456 (13)
H290.07810.44580.65800.055*
C300.1008 (6)0.4115 (4)0.5725 (4)0.0466 (13)
H300.14410.43850.60980.056*
C310.1770 (5)0.3674 (3)0.4854 (4)0.0414 (12)
C320.3140 (6)0.3644 (4)0.4507 (4)0.0504 (14)
H320.36140.39190.48470.061*
C330.3780 (5)0.3213 (4)0.3674 (4)0.0522 (14)
H330.47000.31910.34290.063*
C340.3053 (5)0.2801 (4)0.3186 (4)0.0439 (12)
H340.35110.24970.26160.053*
C350.1110 (5)0.3250 (3)0.4311 (3)0.0348 (11)
C360.0303 (5)0.3275 (3)0.4638 (3)0.0347 (11)
C370.0689 (6)0.9267 (4)0.0025 (4)0.0510 (15)
H370.11660.87670.00440.061*
C380.1019 (6)0.9861 (4)0.0429 (5)0.0528 (15)
H380.17120.97740.07190.063*
C390.0323 (5)0.9110 (3)0.0405 (4)0.0429 (13)
C400.0587 (6)0.8137 (3)0.0836 (4)0.0450 (13)
C410.1763 (5)0.7131 (3)0.1820 (4)0.0424 (12)
H41A0.09290.68610.20630.051*
H41B0.20400.72720.23740.051*
C420.2788 (5)0.6397 (3)0.1250 (4)0.0371 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0358 (4)0.0300 (3)0.0299 (3)0.0081 (3)0.0054 (3)0.0008 (3)
O10.101 (4)0.026 (2)0.121 (4)0.015 (2)0.076 (3)0.010 (2)
O20.061 (3)0.050 (2)0.038 (2)0.0048 (18)0.0070 (19)0.0001 (17)
O30.058 (2)0.033 (2)0.049 (2)0.0051 (17)0.0179 (19)0.0010 (17)
O40.074 (3)0.043 (2)0.105 (4)0.004 (2)0.053 (3)0.002 (2)
O50.107 (4)0.111 (4)0.114 (5)0.058 (4)0.057 (4)0.000 (4)
O60.098 (4)0.073 (3)0.084 (4)0.015 (3)0.037 (3)0.028 (3)
O70.074 (3)0.102 (4)0.063 (3)0.021 (3)0.017 (3)0.002 (3)
O80.078 (3)0.143 (5)0.100 (4)0.009 (3)0.047 (3)0.069 (4)
O90.057 (3)0.056 (3)0.068 (3)0.011 (2)0.006 (2)0.017 (2)
O100.048 (2)0.050 (2)0.042 (2)0.0005 (18)0.012 (2)0.0065 (18)
O110.089 (4)0.070 (3)0.086 (4)0.027 (3)0.036 (3)0.006 (3)
O120.122 (6)0.113 (5)0.123 (6)0.050 (4)0.040 (4)0.019 (4)
O130.109 (5)0.108 (5)0.149 (7)0.004 (4)0.068 (5)0.040 (5)
N10.045 (2)0.029 (2)0.039 (2)0.0075 (18)0.013 (2)0.0074 (18)
N20.041 (2)0.029 (2)0.034 (2)0.0050 (18)0.0084 (18)0.0033 (17)
N30.042 (2)0.034 (2)0.041 (2)0.0054 (19)0.013 (2)0.0021 (19)
N40.041 (2)0.036 (2)0.038 (2)0.0077 (19)0.0090 (19)0.0002 (18)
N50.033 (2)0.033 (2)0.039 (2)0.0078 (17)0.0062 (18)0.0014 (17)
N60.039 (2)0.034 (2)0.033 (2)0.0110 (18)0.0045 (18)0.0001 (17)
N70.051 (3)0.029 (2)0.051 (3)0.002 (2)0.025 (2)0.0001 (19)
N80.031 (2)0.061 (3)0.049 (3)0.011 (2)0.004 (2)0.006 (2)
N90.049 (3)0.061 (3)0.058 (3)0.006 (2)0.014 (3)0.011 (3)
C10.045 (3)0.031 (3)0.047 (3)0.001 (2)0.015 (2)0.007 (2)
C20.058 (4)0.027 (3)0.069 (4)0.001 (2)0.033 (3)0.009 (3)
C30.064 (4)0.035 (3)0.060 (4)0.015 (3)0.037 (3)0.008 (3)
C40.054 (3)0.031 (3)0.042 (3)0.017 (2)0.026 (3)0.012 (2)
C50.060 (4)0.055 (4)0.047 (3)0.028 (3)0.024 (3)0.018 (3)
C60.059 (4)0.065 (4)0.036 (3)0.026 (3)0.011 (3)0.012 (3)
C70.043 (3)0.049 (3)0.036 (3)0.016 (2)0.005 (2)0.009 (2)
C80.045 (3)0.058 (4)0.048 (3)0.011 (3)0.004 (3)0.020 (3)
C90.048 (3)0.046 (3)0.059 (4)0.005 (3)0.001 (3)0.024 (3)
C100.044 (3)0.035 (3)0.044 (3)0.005 (2)0.001 (2)0.007 (2)
C110.036 (3)0.036 (3)0.027 (2)0.006 (2)0.009 (2)0.0019 (19)
C120.037 (3)0.034 (3)0.037 (3)0.009 (2)0.018 (2)0.001 (2)
C130.054 (3)0.040 (3)0.052 (3)0.007 (2)0.025 (3)0.004 (2)
C140.053 (3)0.058 (4)0.066 (4)0.010 (3)0.029 (3)0.002 (3)
C150.053 (4)0.067 (4)0.079 (5)0.022 (3)0.033 (3)0.005 (3)
C160.063 (4)0.046 (3)0.061 (4)0.023 (3)0.023 (3)0.002 (3)
C170.069 (4)0.055 (4)0.093 (5)0.030 (3)0.030 (4)0.001 (4)
C180.084 (5)0.040 (3)0.079 (5)0.031 (3)0.017 (4)0.004 (3)
C190.057 (3)0.036 (3)0.053 (3)0.007 (3)0.009 (3)0.001 (3)
C200.075 (4)0.035 (3)0.052 (4)0.007 (3)0.005 (3)0.011 (3)
C210.060 (4)0.045 (3)0.047 (3)0.003 (3)0.007 (3)0.007 (3)
C220.047 (3)0.051 (3)0.045 (3)0.003 (3)0.014 (3)0.007 (3)
C230.047 (3)0.027 (3)0.046 (3)0.012 (2)0.005 (2)0.003 (2)
C240.046 (3)0.034 (3)0.042 (3)0.011 (2)0.010 (2)0.002 (2)
C250.046 (3)0.053 (3)0.053 (3)0.014 (3)0.013 (3)0.006 (3)
C260.038 (3)0.065 (4)0.053 (4)0.008 (3)0.005 (3)0.004 (3)
C270.060 (4)0.049 (3)0.036 (3)0.004 (3)0.003 (3)0.004 (2)
C280.044 (3)0.037 (3)0.029 (3)0.004 (2)0.000 (2)0.002 (2)
C290.070 (4)0.038 (3)0.028 (3)0.003 (3)0.014 (3)0.005 (2)
C300.057 (4)0.046 (3)0.038 (3)0.004 (3)0.016 (3)0.005 (2)
C310.054 (3)0.039 (3)0.037 (3)0.013 (2)0.020 (3)0.004 (2)
C320.054 (3)0.054 (3)0.050 (3)0.015 (3)0.022 (3)0.003 (3)
C330.038 (3)0.071 (4)0.050 (4)0.016 (3)0.011 (3)0.002 (3)
C340.041 (3)0.059 (3)0.032 (3)0.010 (2)0.007 (2)0.002 (2)
C350.046 (3)0.029 (2)0.031 (3)0.008 (2)0.013 (2)0.0037 (19)
C360.046 (3)0.027 (2)0.032 (3)0.006 (2)0.012 (2)0.0026 (19)
C370.068 (4)0.028 (3)0.069 (4)0.009 (3)0.037 (3)0.002 (3)
C380.070 (4)0.029 (3)0.076 (4)0.002 (3)0.049 (3)0.001 (3)
C390.060 (3)0.027 (3)0.049 (3)0.002 (2)0.029 (3)0.001 (2)
C400.056 (3)0.028 (3)0.056 (3)0.004 (2)0.025 (3)0.002 (2)
C410.051 (3)0.037 (3)0.039 (3)0.000 (2)0.014 (2)0.001 (2)
C420.043 (3)0.030 (3)0.044 (3)0.003 (2)0.022 (2)0.003 (2)
Geometric parameters (Å, º) top
Co—N22.137 (4)C8—C91.368 (8)
Co—N12.141 (4)C8—H80.9400
Co—N32.141 (4)C9—C101.391 (8)
Co—N52.148 (4)C9—H90.9400
Co—N42.150 (4)C10—H100.9400
Co—N62.166 (4)C11—C121.442 (7)
O1—C401.226 (6)C13—C141.402 (7)
O2—C421.212 (6)C13—H130.9400
O3—C421.327 (6)C14—C151.362 (8)
O3—H310.822 (10)C14—H140.9400
O4—N91.231 (6)C15—C161.389 (8)
O5—N91.237 (6)C15—H150.9400
O6—N91.241 (6)C16—C241.416 (7)
O7—N81.235 (6)C16—C171.442 (8)
O8—N81.221 (6)C17—C181.349 (9)
O9—N81.251 (6)C17—H170.9400
O10—H10A0.87 (2)C18—C191.416 (8)
O10—H10B0.816 (10)C18—H180.9400
O11—H11A0.85 (8)C19—C201.393 (8)
O11—H11B0.93 (8)C19—C231.421 (7)
O12—H12A0.88 (2)C20—C211.365 (8)
O12—H12B0.88 (2)C20—H200.9400
O13—H13A0.89 (2)C21—C221.419 (8)
O13—H13B0.88 (2)C21—H210.9400
N1—C11.326 (6)C22—H220.9400
N1—C121.361 (6)C23—C241.424 (7)
N2—C101.314 (6)C25—C261.411 (8)
N2—C111.365 (6)C25—H250.9400
N3—C131.312 (6)C26—C271.373 (8)
N3—C241.358 (6)C26—H260.9400
N4—C221.301 (6)C27—C281.395 (7)
N4—C231.368 (6)C27—H270.9400
N5—C251.315 (6)C28—C361.408 (7)
N5—C361.368 (6)C28—C291.437 (7)
N6—C341.323 (6)C29—C301.342 (8)
N6—C351.358 (6)C29—H290.9400
N7—C401.341 (6)C30—C311.438 (7)
N7—C411.449 (6)C30—H300.9400
N7—H70.82 (2)C31—C321.400 (8)
N8—O81.221 (6)C31—C351.416 (6)
N8—O71.235 (6)C32—C331.361 (8)
N8—O91.251 (6)C32—H320.9400
N9—O41.231 (6)C33—C341.402 (7)
N9—O61.241 (6)C33—H330.9400
C1—C21.406 (7)C34—H340.9400
C1—H10.9400C35—C361.440 (7)
C2—C31.369 (8)C37—C391.380 (7)
C2—H20.9400C37—C38i1.381 (7)
C3—C41.400 (8)C37—H370.9400
C3—H30.9400C38—C37i1.381 (7)
C4—C121.408 (6)C38—C391.397 (7)
C4—C51.426 (8)C38—H380.9400
C5—C61.337 (8)C39—C401.505 (7)
C5—H50.9400C40—O11.226 (6)
C6—C71.443 (8)C41—C421.513 (7)
C6—H60.9400C41—H41A0.9800
C7—C81.396 (8)C41—H41B0.9800
C7—C111.398 (7)
N2—Co—N178.29 (16)C4—C12—C11119.4 (5)
N2—Co—N398.40 (15)N3—C13—C14124.3 (5)
N1—Co—N393.74 (16)N3—C13—H13117.8
N2—Co—N5165.26 (13)C14—C13—H13117.8
N1—Co—N594.13 (16)C15—C14—C13118.2 (5)
N3—Co—N594.67 (15)C15—C14—H14120.9
N2—Co—N494.91 (16)C13—C14—H14120.9
N1—Co—N4168.75 (15)C14—C15—C16119.8 (5)
N3—Co—N478.27 (15)C14—C15—H15120.1
N5—Co—N494.40 (16)C16—C15—H15120.1
N2—Co—N689.53 (15)C15—C16—C24118.1 (5)
N1—Co—N690.78 (14)C15—C16—C17123.6 (5)
N3—Co—N6171.53 (17)C24—C16—C17118.2 (5)
N5—Co—N677.84 (15)C18—C17—C16120.6 (5)
N4—Co—N698.18 (15)C18—C17—H17119.7
C42—O3—H31114 (5)C16—C17—H17119.7
H10A—O10—H10B98 (6)C17—C18—C19122.8 (5)
H11A—O11—H11B91 (7)C17—C18—H18118.6
H12A—O12—H12B105 (10)C19—C18—H18118.6
H13A—O13—H13B119 (10)C20—C19—C18125.1 (5)
C1—N1—C12118.6 (4)C20—C19—C23116.8 (5)
C1—N1—Co128.1 (4)C18—C19—C23118.1 (5)
C12—N1—Co113.2 (3)C21—C20—C19121.1 (5)
C10—N2—C11117.8 (4)C21—C20—H20119.5
C10—N2—Co128.4 (3)C19—C20—H20119.5
C11—N2—Co113.4 (3)C20—C21—C22118.4 (5)
C13—N3—C24117.7 (4)C20—C21—H21120.8
C13—N3—Co129.0 (3)C22—C21—H21120.8
C24—N3—Co113.2 (3)N4—C22—C21122.4 (5)
C22—N4—C23119.7 (4)N4—C22—H22118.8
C22—N4—Co128.0 (4)C21—C22—H22118.8
C23—N4—Co112.3 (3)N4—C23—C19121.7 (5)
C25—N5—C36118.1 (4)N4—C23—C24118.3 (4)
C25—N5—Co128.3 (3)C19—C23—C24120.0 (5)
C36—N5—Co113.4 (3)N3—C24—C16121.8 (5)
C34—N6—C35117.5 (4)N3—C24—C23117.8 (4)
C34—N6—Co129.4 (3)C16—C24—C23120.3 (5)
C35—N6—Co112.9 (3)N5—C25—C26123.2 (5)
C40—N7—C41121.0 (4)N5—C25—H25118.4
C40—N7—H7125 (5)C26—C25—H25118.4
C41—N7—H7114 (5)C27—C26—C25118.9 (5)
O8—N8—O7118.1 (5)C27—C26—H26120.6
O8—N8—O7118.1 (5)C25—C26—H26120.6
O8—N8—O7118.1 (5)C26—C27—C28119.6 (5)
O8—N8—O7118.1 (5)C26—C27—H27120.2
O8—N8—O9123.1 (5)C28—C27—H27120.2
O8—N8—O9123.1 (5)C27—C28—C36117.9 (5)
O7—N8—O9118.7 (5)C27—C28—C29123.4 (5)
O7—N8—O9118.7 (5)C36—C28—C29118.7 (5)
O8—N8—O9123.1 (5)C30—C29—C28121.7 (5)
O8—N8—O9123.1 (5)C30—C29—H29119.2
O7—N8—O9118.7 (5)C28—C29—H29119.2
O7—N8—O9118.7 (5)C29—C30—C31121.2 (5)
O4—N9—O5119.7 (6)C29—C30—H30119.4
O4—N9—O5119.7 (6)C31—C30—H30119.4
O4—N9—O6119.2 (5)C32—C31—C35117.8 (5)
O4—N9—O6119.2 (5)C32—C31—C30123.4 (5)
O5—N9—O6121.0 (6)C35—C31—C30118.9 (5)
O4—N9—O6119.2 (5)C33—C32—C31119.3 (5)
O4—N9—O6119.2 (5)C33—C32—H32120.3
O5—N9—O6121.0 (6)C31—C32—H32120.3
N1—C1—C2122.4 (5)C32—C33—C34119.2 (5)
N1—C1—H1118.8C32—C33—H33120.4
C2—C1—H1118.8C34—C33—H33120.4
C3—C2—C1118.7 (5)N6—C34—C33123.6 (5)
C3—C2—H2120.6N6—C34—H34118.2
C1—C2—H2120.6C33—C34—H34118.2
C2—C3—C4120.8 (5)N6—C35—C31122.5 (5)
C2—C3—H3119.6N6—C35—C36118.0 (4)
C4—C3—H3119.6C31—C35—C36119.5 (5)
C3—C4—C12116.5 (5)N5—C36—C28122.4 (4)
C3—C4—C5124.7 (5)N5—C36—C35117.5 (4)
C12—C4—C5118.7 (5)C28—C36—C35120.1 (4)
C6—C5—C4122.2 (5)C39—C37—C38i121.7 (5)
C6—C5—H5118.9C39—C37—H37119.1
C4—C5—H5118.9C38i—C37—H37119.1
C5—C6—C7120.6 (5)C37i—C38—C39119.9 (5)
C5—C6—H6119.7C37i—C38—H38120.0
C7—C6—H6119.7C39—C38—H38120.0
C8—C7—C11117.4 (5)C37—C39—C38118.4 (5)
C8—C7—C6123.7 (5)C37—C39—C40117.4 (4)
C11—C7—C6118.9 (5)C38—C39—C40124.2 (4)
C9—C8—C7119.8 (5)O1—C40—N7122.6 (5)
C9—C8—H8120.1O1—C40—N7122.6 (5)
C7—C8—H8120.1O1—C40—C39120.8 (5)
C8—C9—C10118.8 (5)O1—C40—C39120.8 (5)
C8—C9—H9120.6N7—C40—C39116.7 (4)
C10—C9—H9120.6N7—C41—C42114.7 (4)
N2—C10—C9123.6 (5)N7—C41—H41A108.6
N2—C10—H10118.2C42—C41—H41A108.6
C9—C10—H10118.2N7—C41—H41B108.6
N2—C11—C7122.6 (5)C42—C41—H41B108.6
N2—C11—C12117.3 (4)H41A—C41—H41B107.6
C7—C11—C12120.0 (4)O2—C42—O3125.5 (5)
N1—C12—C4122.9 (5)O2—C42—C41125.5 (4)
N1—C12—C11117.6 (4)O3—C42—C41109.0 (4)
N2—Co—N1—C1179.5 (4)Co—N1—C12—C111.2 (5)
N3—Co—N1—C182.7 (4)C3—C4—C12—N10.8 (6)
N5—Co—N1—C112.3 (4)C5—C4—C12—N1180.0 (4)
N4—Co—N1—C1127.0 (8)C3—C4—C12—C11178.8 (4)
N6—Co—N1—C190.1 (4)C5—C4—C12—C112.0 (6)
N2—Co—N1—C122.3 (3)N2—C11—C12—N11.6 (6)
N3—Co—N1—C12100.1 (3)C7—C11—C12—N1177.4 (4)
N5—Co—N1—C12164.9 (3)N2—C11—C12—C4179.7 (4)
N4—Co—N1—C1255.8 (10)C7—C11—C12—C40.7 (6)
N6—Co—N1—C1287.0 (3)C24—N3—C13—C141.1 (9)
N1—Co—N2—C10175.7 (4)Co—N3—C13—C14177.9 (5)
N3—Co—N2—C1092.2 (4)N3—C13—C14—C151.0 (10)
N5—Co—N2—C10115.6 (7)C13—C14—C15—C160.4 (10)
N4—Co—N2—C1013.3 (4)C14—C15—C16—C240.0 (10)
N6—Co—N2—C1084.8 (4)C14—C15—C16—C17178.4 (7)
N1—Co—N2—C113.1 (3)C15—C16—C17—C18178.2 (7)
N3—Co—N2—C1195.2 (3)C24—C16—C17—C180.2 (10)
N5—Co—N2—C1157.0 (8)C16—C17—C18—C190.4 (12)
N4—Co—N2—C11174.1 (3)C17—C18—C19—C20179.1 (7)
N6—Co—N2—C1187.8 (3)C17—C18—C19—C230.0 (10)
N2—Co—N3—C1387.7 (5)C18—C19—C20—C21178.9 (6)
N1—Co—N3—C139.0 (5)C23—C19—C20—C211.9 (9)
N5—Co—N3—C1385.5 (5)C19—C20—C21—C220.2 (9)
N4—Co—N3—C13179.0 (5)C23—N4—C22—C210.9 (8)
N2—Co—N3—C2495.3 (4)Co—N4—C22—C21178.0 (4)
N1—Co—N3—C24174.0 (4)C20—C21—C22—N41.3 (9)
N5—Co—N3—C2491.5 (4)C22—N4—C23—C190.9 (8)
N4—Co—N3—C242.0 (4)Co—N4—C23—C19180.0 (4)
N2—Co—N4—C2280.9 (5)C22—N4—C23—C24180.0 (5)
N1—Co—N4—C22133.1 (8)Co—N4—C23—C240.9 (6)
N3—Co—N4—C22178.4 (5)C20—C19—C23—N42.3 (8)
N5—Co—N4—C2287.7 (5)C18—C19—C23—N4178.4 (6)
N6—Co—N4—C229.4 (5)C20—C19—C23—C24178.7 (5)
N2—Co—N4—C2398.2 (4)C18—C19—C23—C240.6 (8)
N1—Co—N4—C2345.9 (10)C13—N3—C24—C160.6 (8)
N3—Co—N4—C230.6 (3)Co—N3—C24—C16178.0 (4)
N5—Co—N4—C2393.3 (4)C13—N3—C24—C23179.4 (5)
N6—Co—N4—C23171.6 (4)Co—N3—C24—C233.2 (6)
N2—Co—N5—C25148.5 (6)C15—C16—C24—N30.1 (9)
N1—Co—N5—C2590.2 (5)C17—C16—C24—N3178.4 (6)
N3—Co—N5—C253.9 (5)C15—C16—C24—C23178.9 (6)
N4—Co—N5—C2582.5 (5)C17—C16—C24—C230.4 (9)
N6—Co—N5—C25179.9 (5)N4—C23—C24—N32.9 (7)
N2—Co—N5—C3627.1 (8)C19—C23—C24—N3178.1 (5)
N1—Co—N5—C3685.4 (3)N4—C23—C24—C16178.3 (5)
N3—Co—N5—C36179.5 (3)C19—C23—C24—C160.8 (8)
N4—Co—N5—C36101.9 (3)C36—N5—C25—C260.3 (8)
N6—Co—N5—C364.5 (3)Co—N5—C25—C26175.1 (4)
N2—Co—N6—C347.2 (4)N5—C25—C26—C271.0 (9)
N1—Co—N6—C3485.5 (4)C25—C26—C27—C282.0 (9)
N5—Co—N6—C34179.6 (5)C26—C27—C28—C361.6 (8)
N4—Co—N6—C3487.7 (4)C26—C27—C28—C29179.3 (5)
N2—Co—N6—C35167.8 (3)C27—C28—C29—C30180.0 (5)
N1—Co—N6—C3589.5 (3)C36—C28—C29—C300.9 (8)
N5—Co—N6—C354.5 (3)C28—C29—C30—C311.8 (8)
N4—Co—N6—C3597.3 (3)C29—C30—C31—C32178.2 (5)
O8—O8—N8—O70.0 (3)C29—C30—C31—C351.5 (8)
O8—O8—N8—O70.0 (3)C35—C31—C32—C330.1 (8)
O8—O8—N8—O90.0 (5)C30—C31—C32—C33179.8 (5)
O8—O8—N8—O90.0 (5)C31—C32—C33—C340.5 (9)
O7—O7—N8—O80.0 (3)C35—N6—C34—C330.7 (8)
O7—O7—N8—O80.0 (3)Co—N6—C34—C33174.2 (4)
O7—O7—N8—O90.0 (2)C32—C33—C34—N61.0 (9)
O7—O7—N8—O90.0 (2)C34—N6—C35—C310.1 (7)
O9—O9—N8—O80.0 (4)Co—N6—C35—C31175.7 (4)
O9—O9—N8—O80.0 (4)C34—N6—C35—C36179.7 (4)
O9—O9—N8—O70.0 (3)Co—N6—C35—C364.0 (5)
O9—O9—N8—O70.0 (3)C32—C31—C35—N60.5 (7)
O4—O4—N9—O50.0 (4)C30—C31—C35—N6179.8 (5)
O4—O4—N9—O60.00 (14)C32—C31—C35—C36179.3 (4)
O4—O4—N9—O60.00 (14)C30—C31—C35—C360.4 (7)
O6—O6—N9—O40.0 (6)C25—N5—C36—C280.7 (7)
O6—O6—N9—O40.0 (6)Co—N5—C36—C28175.3 (4)
O6—O6—N9—O50.0 (8)C25—N5—C36—C35180.0 (4)
C12—N1—C1—C20.2 (7)Co—N5—C36—C353.9 (5)
Co—N1—C1—C2176.9 (3)C27—C28—C36—N50.3 (7)
N1—C1—C2—C30.1 (7)C29—C28—C36—N5179.4 (4)
C1—C2—C3—C40.0 (7)C27—C28—C36—C35179.0 (4)
C2—C3—C4—C120.4 (7)C29—C28—C36—C350.1 (7)
C2—C3—C4—C5179.6 (5)N6—C35—C36—N50.1 (6)
C3—C4—C5—C6177.7 (5)C31—C35—C36—N5179.7 (4)
C12—C4—C5—C63.2 (7)N6—C35—C36—C28179.4 (4)
C4—C5—C6—C71.5 (8)C31—C35—C36—C280.4 (7)
C5—C6—C7—C8177.5 (5)C38i—C37—C39—C380.2 (11)
C5—C6—C7—C111.3 (7)C38i—C37—C39—C40179.0 (6)
C11—C7—C8—C91.2 (7)C37i—C38—C39—C370.2 (10)
C6—C7—C8—C9180.0 (5)C37i—C38—C39—C40178.9 (6)
C7—C8—C9—C100.4 (8)O1—O1—C40—N70.0 (3)
C11—N2—C10—C90.2 (7)O1—O1—C40—C390.00 (10)
Co—N2—C10—C9172.6 (4)C41—N7—C40—O17.1 (9)
C8—C9—C10—N20.9 (9)C41—N7—C40—O17.1 (9)
C10—N2—C11—C71.9 (6)C41—N7—C40—C39172.9 (5)
Co—N2—C11—C7175.4 (3)C37—C39—C40—O12.9 (9)
C10—N2—C11—C12177.0 (4)C38—C39—C40—O1178.3 (6)
Co—N2—C11—C123.5 (5)C37—C39—C40—O12.9 (9)
C8—C7—C11—N22.4 (7)C38—C39—C40—O1178.3 (6)
C6—C7—C11—N2178.7 (4)C37—C39—C40—N7177.2 (6)
C8—C7—C11—C12176.5 (4)C38—C39—C40—N71.6 (9)
C6—C7—C11—C122.4 (7)C40—N7—C41—C4292.4 (6)
C1—N1—C12—C40.7 (6)N7—C41—C42—O20.5 (7)
Co—N1—C12—C4176.8 (3)N7—C41—C42—O3178.7 (4)
C1—N1—C12—C11178.7 (4)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O100.82 (1)1.80 (2)2.598 (5)162 (7)
O10—H10A···O90.87 (2)2.09 (2)2.954 (6)172 (5)
O10—H10A···O70.87 (2)2.54 (4)3.190 (7)132 (5)
O10—H10B···O2ii0.82 (1)2.07 (2)2.878 (6)171 (6)
O11—H11A···O80.85 (8)2.32 (8)3.098 (9)154 (7)
O11—H11A···O70.85 (8)2.53 (8)3.313 (8)154 (7)
O11—H11B···O60.93 (8)2.02 (8)2.917 (7)162 (7)
O12—H12A···O11iii0.88 (2)2.18 (7)2.945 (10)146 (11)
O12—H12B···O130.88 (2)1.93 (5)2.766 (8)156 (11)
O13—H13A···O5iv0.89 (2)1.98 (5)2.827 (9)160 (12)
O13—H13B···O12v0.88 (2)2.09 (9)2.843 (11)143 (12)
N7—H7···O40.82 (2)2.06 (3)2.861 (6)165 (7)
C3—H3···O10.942.373.111 (6)135
C33—H33···O90.942.543.314 (7)140
C38—H38···O40.942.473.386 (7)166
C41—H41B···O60.982.673.409 (7)132
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z+1.
 

Acknowledgements

We acknowledge support by Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of Clausthal University of Technology. Furthermore, the authors are indebted to Professor Dr A. Adam for his support and helpful suggestions.

References

First citationAlbrecht, M., Gjikaj, M. & Schmidt, A. (2010). Tetrahedron, 66, 7149–7154.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllendorf, M. D., Foster, M. E., Léonard, F., Stavila, V., Feng, P. L., Doty, F. P., Leong, K., Ma, E. Y., Johnston, S. R. & Talin, A. A. (2015). J. Phys. Chem. Lett. 6, 1182–1195.  Web of Science CrossRef CAS Google Scholar
First citationBallester, P. (2008). In Anions and π-Aromatic Systems. Do They Interact Attractively? In Recognition of Anions, edited by R. Vilar. Heidelberg, Berlin: Springer.  Google Scholar
First citationBarceló-Oliver, M., Terrón, A., García-Raso, A., Lah, N. & Turel, I. (2010). Acta Cryst. C66, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357–377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544–1546.  CrossRef CAS Web of Science Google Scholar
First citationCook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDoty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. & Allendorf, M. D. (2009). Adv. Mater. 21, 95–101.  Web of Science CrossRef CAS Google Scholar
First citationDuan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172–3177.  Web of Science CSD CrossRef CAS Google Scholar
First citationEgli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435–444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGathergood, N., Scammells, P. J. & Fallon, G. D. (2003). Acta Cryst. C59, o485–o487.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeraghty, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293, 160–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoriguchi, M., Okuhara, S., Shimano, E., Fujimoto, D., Takahashi, H., Tsue, H. & Tamura, R. (2007). Cryst. Growth Des. 7, 1643–1652.  Web of Science CSD CrossRef CAS Google Scholar
First citationJain, A., Ramanathan, V. & Sankararamakrishnan, R. (2009). Protein Sci. 18, 595–605.  Web of Science PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. 116, 2388–2430.  CrossRef Google Scholar
First citationKostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun., pp. 3859–3861.  Google Scholar
First citationKumar Seth, S., Dey, B., Kar, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, L.-M., Li, Y.-F., Liu, L. & Zhang, Z.-H. (2011). Acta Cryst. E67, m973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationMooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515.  Web of Science CrossRef CAS Google Scholar
First citationPerry IV, J. J., Feng, P. L., Meek, S. T., Leong, K., Doty, F. P. & Allendorf, M. D. (2012). J. Mater. Chem. 22, 10235–10248.  Web of Science CSD CrossRef Google Scholar
First citationPook, N.-P., Gjikaj, M. & Adam, A. (2013). Acta Cryst. E69, o1731.  CSD CrossRef IUCr Journals Google Scholar
First citationPook, N.-P., Gjikaj, M. & Adam, A. (2014). Acta Cryst. E70, m160–m161.  CSD CrossRef IUCr Journals Google Scholar
First citationSalonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842.  Web of Science CrossRef CAS Google Scholar
First citationSchneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924–3977.  Web of Science CrossRef CAS Google Scholar
First citationSchottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Koellner, G. (2001). J. Mol. Biol. 305, 535–557.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWan, C.-Q., Chen, X.-D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655–6669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532–3536.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163–m1165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds