research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-bis­­(di­phenyl­phosphanyl)methane-κ2P:P′]digold(I) dichloride acetone monosolvate monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 July 2015; accepted 12 July 2015; online 17 July 2015)

In the title complex salt, [Au2{(C6H5)2PCH2P(C6H5)2}]Cl2·(CH3)2C=O·H2O, the dication forms an eight-membered {—PCPAu}2 ring with a transannular aurophilic inter­action [Au⋯Au = 2.9743 (2) Å]. The ring approximates a flattened boat conformation, with the two methyl­ene C atoms lying ca 0.58–0.59 Å above the least-squares plane defined by the Au2P4 atoms (r.m.s. deviation = 0.0849 Å). One Cl anion functions as a weak bridge between the AuI atoms [Au⋯Cl = 2.9492 (13) and 2.9776 (12) Å]. The second Cl anion forms two (water)O—H⋯Cl hydrogen bonds about a centre of inversion, forming a centrosymmetric eight-membered {⋯HOH⋯Cl}2 supra­molecular square. Globally, the dications and loosely associated Cl anions assemble into layers lying parallel to the ac plane, being connected by C—H⋯Cl,π(phen­yl) inter­actions. The supra­molecular squares and solvent acetone mol­ecules are sandwiched in the inter-layer region, being connected to the layers on either side by C—H⋯Cl,O(acetone) inter­actions.

1. Chemical context

Recent studies have highlighted the significant biological activity exhibited by phosphanegold(I) carbonimido­thio­ates, i.e. compounds of the general formula Ph3PAu[SC(OR)=N(ar­yl)]; R = alkyl. These compounds are cytotoxic and kill cancer cells by initiating apoptotic pathways (Yeo, Ooi et al., 2013[Yeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24-38.]; Ooi et al., 2015[Ooi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md, Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855-873.]) and prove to be very potent to Gram-positive bacteria (Yeo, Sim et al., 2013[Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145-152.]). Over and above this potential, phosphanegold(I) carbonimido­thio­ates offer opportunities in crystal engineering (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]) and exhibit solid-state luminescence (Ho et al., 2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]).

[Scheme 1]

As a part of an effort to increase the nuclearity of these phosphanegold(I) thiol­ates, reactions with the bipodal mol­ecule, {1,4-[MeOC(=S)N(H)]2C6H4} (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]), were performed. When the bridging phosphane ligand was bis­(di­phenyl­phosphane)methane, the title salt, [Au2(Ph2PCH2PPh2)]Cl2, was isolated as an acetone monosolvate monohydrate, (I)[link]. The structure of (I)[link] is discussed herein along with a comparison with analogous [Au2(Ph2PCH2PPh2)]Cl2 salts characterized as an acetone solvate (Schmidbaur et al., 1977[Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751-2757.]) and as an aceto­nitrile solvate (Liou et al., 1994[Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.]), as well as related species.

2. Structural commentary

The asymmetric unit of (I)[link] comprises a [Au2(Ph2PCH2PPh2)]2+ dication, two Cl anions, and a solvent mol­ecule each of acetone and water; all species are in general positions. The mol­ecular structure of the dication is shown in Fig. 1[link]. Two AuI atoms are bridged by two Ph2PCH2PPh2 ligands, forming an eight-membered {—PCPAu}2 ring. The ring has the form of a boat with the methyl­ene-C1 and C2 atoms lying to one side of the ring and 0.589 (5) and 0.581 (5) Å, respectively, above the least-squares plane through the Au2P4 atoms which have a r.m.s. deviation of 0.0849 Å. There is a transannular Au1⋯Au2 (aurophilic) inter­action of 2.9743 (2) Å. This inter­action is partly responsible for the deviations of the P1—Au1—P3 and P2—Au2—P4 angles from the ideal 180°, i.e. 173.24 (4) and 170.04 (4)°, respectively. The Au—P bond lengths are almost equivalent, ranging from a short Au1—P1 2.3061 (12) to a long Au2—P4 2.3130 (12) Å. The Cl1 anion forms a weak bridge between the two AuI atoms with Au1⋯Cl1 and Au2⋯Cl2 separations of 2.9492 (13) and 2.9776 (12) Å, respectively. The second Cl anion participates in hydrogen bonding as described below in Supra­molecular features.

[Figure 1]
Figure 1
The mol­ecular structure of the [Au2(Ph2PCH2PPh2)]2+ dication in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The most notable feature of the crystal packing of (I)[link] is the formation of (water)O—H⋯Cl2 hydrogen bonds that lead to centrosymmetric eight-membered {⋯HOH⋯Cl}2 supra­molecular squares with edge lengths of 3.217 (5) and 3.200 (5) Å, Table 1[link] (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). These reside parallel to the ac plane, corresponding to the inter-layer region between layers of dications and Cl1 anions, Fig. 2[link]. Three independent (phen­yl)C—H⋯π(phen­yl) contacts occur between the dicat­ions. The Cl1 anion forms a single (phen­yl)C—H⋯Cl contact, a reduced propensity reflecting its close association with the AuI atoms (see above). By contrast, the Cl2 anion forms four independent C—H⋯Cl2 inter­actions, i.e. a (methyl­ene)C—H⋯Cl2 and three (phen­yl)C—H⋯Cl2 inter­actions, providing links between the {⋯HOH⋯Cl}2 rings and the cations. The acetone solvent mol­ecule accepts a (methyl­ene)- and a (phen­yl)C—H⋯O contact.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the ring centroids of the C11–C16, C71–C76 and C51–C56 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl2 0.84 (2) 2.39 (2) 3.217 (5) 168 (6)
O1W—H2W⋯Cl2i 0.84 (3) 2.37 (3) 3.200 (5) 173 (3)
C1—H1B⋯O1ii 0.99 2.35 3.310 (7) 164
C2—H2B⋯Cl2iii 0.99 2.51 3.487 (5) 168
C12—H12⋯O1ii 0.95 2.57 3.249 (7) 129
C22—H22⋯Cl1ii 0.95 2.74 3.580 (6) 148
C44—H44⋯Cl2iv 0.95 2.73 3.424 (5) 130
C52—H52⋯Cl2iii 0.95 2.68 3.616 (5) 169
C82—H82⋯Cl2iii 0.95 2.81 3.723 (5) 161
C34—H34⋯Cg1v 0.95 2.82 3.542 (6) 133
C43—H43⋯Cg2vi 0.95 2.74 3.574 (5) 147
C75—H75⋯Cg3v 0.95 2.83 3.619 (5) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) x-1, y, z; (vi) -x, -y, -z+2.
[Figure 2]
Figure 2
Unit-cell contents of (I)[link] shown in projection down the c axis. Intra­molecular aurophilic inter­actions are drawn as orange dashed lines and the weak Au⋯Cl contacts are shown as black dashed lines. Inter­molecular O—H⋯Cl, C—H⋯Cl1, C—H⋯Cl2, C—H⋯O(acetone) and C—H⋯π inter­actions are shown as blue, orange, brown, green and purple dashed lines, respectively. The acetone mol­ecules have been highlighted in space-filling mode.

4. Database survey

The [Au2(Ph2PCH2PPh2)]Cl2 salt has been characterized twice previously, originally as an acetone solvate (Schmidbaur et al., 1977[Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751-2757.]) and subsequently as an aceto­nitrile solvate (Liou et al., 1994[Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.]). Geometric data characterizing the eight-membered rings are summarized in Table 2[link]. The most notable difference between the structure of (I)[link] and the dications is that the latter are disposed about a centre of inversion and the eight-membered {—PCPAu}2 rings have flattened chair conformations, with the methyl­ene-C atoms lying to either side of the eight-membered ring. The similarity between the literature structures and the difference between these and the dication in (I)[link] are highlighted in the overlay diagram shown in Fig. 3[link]. The other remarkable difference between the three structur­ally characterized [Au2(Ph2PCH2PPh2)]Cl2 salts relates to the mode of association between the complex Au cations and Cl anions. As noted above and shown in Fig. 4[link]a, the Cl1 anion in (I)[link] forms a weak bridge between the two AuI atoms. In the acetone solvate (Schmidbaur et al., 1977[Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751-2757.]), each Cl anion associates with one AuI atom at a distance of 2.771 (4) Å. A similar pattern is noted in the aceto­nitrile solvate (Liou et al., 1994[Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.]), but the distances are significantly longer at 2.951 (4) Å. The close Au⋯Cl contacts appear to influence the P—Au—P angles in that those in the [Au2(Ph2PCH2PPh2)]Cl2 salts with loosely associated Cl anions having greater distortions from linearity, in particular for the acetone solvate (Schmidbaur et al., 1977[Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751-2757.]), compared with dications characterized with non-coordinating counter-anions, namely BH4 (Porter et al., 1989[Porter, L. C., Khan, Md. N. I., King, C. & Fackler, J. P. (1989). Acta Cryst. C45, 947-949.]), ClO4 (Cao et al., 2006[Cao, Q.-Y., Yin, B. & Liu, J.-H. (2006). Acta Cryst. E62, m2730-m2731.]), PF6 (Wu et al., 2003[Wu, M., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m72-m73.]) and [H3BCN] (Khan et al., 1989[Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Porter, L. C. (1989). Inorg. Chem. 28, 2150-2154.]), Table 2[link].

Table 2
Summary of [Au2(Ph2PCH2PPh2)]2+ dication structures

Anion solvent symmetry Au⋯Au Au—P P—Au—P CCDC REFCODE Reference
Cl Me2C=O [\overline{1}] 2.962 (1) 2.327 (3), 2.288 (3) 155.9 (1) PPEAUC Schmidbaur et al. (1977[Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751-2757.])
Cl MeCN [\overline{1}] 2.9941 (8) 2.333 (3), 2.299 (3) 164.90 (9) LEKGAJ Liou et al. (1994[Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.])
Cl Me2C=O, H2O 1 2.9743 (2) 2.3061 (12), 2.3102 (12); 2.3082 (12), 2.3130 (12) 173.24 (4); 170.04 (4) this work
BH4 [\overline{1}] 2.931 (1) 2.311 (3), 2.310 (3) 177.28 (12) JAMKAJ Porter et al. (1989[Porter, L. C., Khan, Md. N. I., King, C. & Fackler, J. P. (1989). Acta Cryst. C45, 947-949.])
ClO4 [\overline{1}] 2.9258 (10) 2.3118 (15), 2.3139 (15) 177.15 (5) NEQNIH Cao et al. (2006[Cao, Q.-Y., Yin, B. & Liu, J.-H. (2006). Acta Cryst. E62, m2730-m2731.])
PF6 CH2Cl2 2 2.9792 (10) 2.314 (3), 2.318 (3) 177.85 (13) MUVVEE Wu et al. (2003[Wu, M., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m72-m73.])
H3BCN CH2Cl2 [\overline{1}] 2.982 (3) 2.311 (6), 2.329 (6) 175.2 (2) SAVRAI Khan et al. (1989[Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Porter, L. C. (1989). Inorg. Chem. 28, 2150-2154.])
Note: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).
[Figure 3]
Figure 3
Overlay diagram of the [Au2(Ph2PCH2PPh2)]2+ dications in (I)[link] (red image), LEKGAJ (green) and PPEAUC (blue), overlapped so that the one methyl­ene C and the two AuI atoms are coincident.
[Figure 4]
Figure 4
Details of the weak Au⋯Cl inter­actions, shown as dashed black lines, in the dications of (a) (I)[link], (b) LEKGAJ and (c) PPEAUC. For clarity, all H atoms have been removed and only the ipso-C atoms shown.

5. Synthesis and crystallization

The title compound is an unexpected product from the reaction of bis­[chlorido­gold(I)] bis­(di­phenyl­phosphane)methane with an equimolar amount of {1,4-[MeOC(=S)N(H)]2C6H4} (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]). The preparation was as follows. To the gold precursor, (Ph2PCH2PPh2)(AuCl)2 (0.5 mmol, 0.42 g) in aceto­nitrile (50 ml) was added NaOH (1.0 mmol, 0.04 g in 20 ml H2O) and {1,4-[MeOC(=S)N(H)]2C6H4} (0.5 mmol, 0.13 g) in aceto­nitrile (50 ml). The resulting mixture was stirred at 323 K for 2 h. The final product was extracted with di­chloro­methane (100 ml) and the solution was left for evaporation at room temperature. After 3 weeks a slurry formed. This was redissolved in a solvent mixture of acetone/aceto­nitrile (1:1 v/v, 100 ml) and left for slow evaporation. Colourless crystals were obtained after 10 days. Yield: 0.213 g (43%). M.p. 477–479 K. 1H NMR (400 MHz, acetone-d6, 298 K): δ 7.96 (d, 8H, o-Ph-H, J = 6.20 Hz), 7.49 (t, 4H, p-Ph-H, J = 7.32 Hz), 7.41 (t, 8H, m-Ph-H, J = 7.82 Hz), 4.84 (s, br, 2H, CH2), 2.82 (s, br, 1H, H2O). Analysis calculated for C53H52Au2Cl2O2P4: C, 48.61; H, 4.00. Found: C, 48.64; H, 3.99. IR (cm−1): 3044 (m) ν(C—H), 1484 (s) ν(C—C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The water-bound H atoms were refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Uequiv(O). The U33 parameter was elongated for the C93 atom. In the final refinement this was restrained to be nearly isotropic using the ISOR command in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The maximum and minimum residual electron density peaks of 3.50 and 1.82 eÅ−3, respectively, were located 0.90 Å and 0.78 Å from the Au1 and Au2 atoms, respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Au2(C25H22P2)2]Cl2·C3H6O·H2O
Mr 1309.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.7708 (3), 13.3657 (3), 16.1209 (4)
α, β, γ (°) 94.056 (2), 92.059 (2), 97.882 (2)
V3) 2503.29 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.13
Crystal size (mm) 0.22 × 0.12 × 0.07
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.544, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 56582, 11486, 9744
Rint 0.069
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.10
No. of reflections 11486
No. of parameters 576
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 3.50, −1.82
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[µ-bis(diphenylphosphanyl)methane-κ2P:P']digold(I) dichloride acetone monosolvate monohydrate top
Crystal data top
[Au2(C25H22P2)2]Cl2·C3H6O·H2OZ = 2
Mr = 1309.66F(000) = 1276
Triclinic, P1Dx = 1.737 Mg m3
a = 11.7708 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.3657 (3) ÅCell parameters from 22677 reflections
c = 16.1209 (4) Åθ = 3.0–30.2°
α = 94.056 (2)°µ = 6.13 mm1
β = 92.059 (2)°T = 100 K
γ = 97.882 (2)°Prism, colourless
V = 2503.29 (11) Å30.22 × 0.12 × 0.07 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
11486 independent reflections
Radiation source: Agilent SuperNova (Mo) X-ray Source9744 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.069
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1717
Tmin = 0.544, Tmax = 1.000l = 2020
56582 measured reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.3597P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
11486 reflectionsΔρmax = 3.50 e Å3
576 parametersΔρmin = 1.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 3.50 and 1.82 e Å-3, respectively, were located 0.90 Å and 0.78 Å from the Au1 and Au2 atoms, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.28677 (2)0.04681 (2)0.68901 (2)0.01293 (6)
Au20.06008 (2)0.03012 (2)0.76651 (2)0.01298 (6)
Cl10.09244 (11)0.12210 (10)0.60460 (7)0.0240 (3)
Cl20.66940 (11)0.51164 (9)0.08410 (8)0.0240 (3)
P10.24235 (10)0.11146 (9)0.61967 (7)0.0113 (2)
P20.01377 (10)0.13401 (9)0.70857 (7)0.0122 (2)
P30.35008 (10)0.19848 (9)0.76508 (7)0.0120 (2)
P40.11500 (10)0.18167 (9)0.84524 (7)0.0117 (2)
O10.0662 (4)0.3808 (3)0.4856 (3)0.0386 (10)
O1W0.3973 (4)0.4688 (3)0.1077 (3)0.0345 (9)
H1W0.4694 (10)0.477 (5)0.109 (4)0.052*
H2W0.375 (5)0.469 (5)0.0576 (14)0.052*
C10.0875 (4)0.1522 (4)0.6120 (3)0.0146 (9)
H1A0.05310.11490.56890.017*
H1B0.07360.22510.59300.017*
C20.2293 (4)0.2626 (4)0.7984 (3)0.0147 (10)
H2A0.19610.29100.74940.018*
H2B0.25900.32000.83910.018*
C110.3081 (4)0.2114 (3)0.6638 (3)0.0140 (9)
C120.3073 (4)0.3048 (4)0.6191 (3)0.0188 (10)
H120.27480.31540.56390.023*
C130.3539 (4)0.3820 (4)0.6548 (3)0.0224 (11)
H130.35270.44550.62420.027*
C140.4020 (5)0.3671 (4)0.7348 (3)0.0254 (12)
H140.43260.42080.75930.031*
C150.4058 (5)0.2736 (4)0.7799 (3)0.0268 (12)
H150.44040.26280.83460.032*
C160.3588 (4)0.1968 (4)0.7442 (3)0.0199 (10)
H160.36100.13310.77470.024*
C210.2820 (4)0.1187 (3)0.5120 (3)0.0133 (9)
C220.2038 (5)0.1342 (4)0.4457 (3)0.0224 (11)
H220.12390.14160.45490.027*
C230.2417 (5)0.1391 (4)0.3650 (3)0.0294 (13)
H230.18710.14990.31920.035*
C240.3569 (5)0.1286 (4)0.3505 (3)0.0287 (12)
H240.38190.13220.29510.034*
C250.4365 (5)0.1126 (4)0.4174 (3)0.0225 (11)
H250.51630.10490.40770.027*
C260.4001 (4)0.1079 (4)0.4978 (3)0.0197 (10)
H260.45470.09750.54350.024*
C310.1349 (4)0.1735 (4)0.6745 (3)0.0154 (10)
C320.1851 (5)0.1157 (4)0.6191 (3)0.0284 (12)
H320.14030.05950.59770.034*
C330.2992 (5)0.1402 (4)0.5945 (3)0.0304 (13)
H330.33280.10080.55610.036*
C340.3661 (5)0.2226 (4)0.6255 (3)0.0295 (12)
H340.44530.23860.60950.035*
C350.3150 (5)0.2803 (4)0.6798 (3)0.0272 (12)
H350.35980.33700.70040.033*
C360.1999 (4)0.2572 (4)0.7047 (3)0.0198 (10)
H360.16580.29780.74190.024*
C410.0521 (4)0.2259 (4)0.7777 (3)0.0158 (10)
C420.0559 (4)0.2008 (4)0.8632 (3)0.0176 (10)
H420.03420.13810.88360.021*
C430.0906 (5)0.2656 (4)0.9184 (3)0.0233 (11)
H430.09050.24830.97660.028*
C440.1259 (4)0.3563 (4)0.8895 (3)0.0217 (11)
H440.15380.39940.92750.026*
C450.1200 (4)0.3833 (4)0.8043 (3)0.0222 (11)
H450.14210.44600.78420.027*
C460.0824 (4)0.3200 (4)0.7489 (3)0.0191 (10)
H460.07700.33980.69100.023*
C510.4417 (4)0.1860 (4)0.8555 (3)0.0165 (10)
C520.4751 (4)0.2664 (4)0.9156 (3)0.0168 (10)
H520.44550.32850.91130.020*
C530.5503 (4)0.2553 (4)0.9814 (3)0.0191 (10)
H530.57420.31061.02120.023*
C540.5908 (4)0.1638 (4)0.9891 (3)0.0209 (11)
H540.64160.15611.03460.025*
C550.5569 (5)0.0832 (4)0.9300 (3)0.0220 (11)
H550.58420.02020.93560.026*
C560.4834 (4)0.0942 (4)0.8632 (3)0.0188 (10)
H560.46150.03920.82260.023*
C610.4295 (4)0.2909 (3)0.7029 (3)0.0166 (10)
C620.5306 (4)0.3522 (4)0.7314 (3)0.0203 (11)
H620.55910.34930.78690.024*
C630.5894 (5)0.4169 (4)0.6803 (3)0.0252 (11)
H630.65820.45840.70040.030*
C640.5480 (5)0.4215 (4)0.5988 (3)0.0274 (12)
H640.58900.46570.56310.033*
C650.4484 (5)0.3624 (4)0.5702 (3)0.0269 (12)
H650.42000.36640.51480.032*
C660.3879 (5)0.2959 (4)0.6218 (3)0.0220 (11)
H660.31900.25470.60160.026*
C710.0015 (4)0.2598 (3)0.8562 (3)0.0130 (9)
C720.0215 (4)0.3630 (4)0.8813 (3)0.0197 (10)
H720.09790.39650.89090.024*
C730.0707 (5)0.4167 (4)0.8922 (3)0.0235 (11)
H730.05670.48670.91020.028*
C740.1822 (4)0.3699 (4)0.8772 (3)0.0235 (11)
H740.24450.40750.88460.028*
C750.2031 (4)0.2672 (4)0.8514 (3)0.0225 (11)
H750.27970.23480.84070.027*
C760.1127 (4)0.2124 (4)0.8411 (3)0.0162 (10)
H760.12760.14220.82370.019*
C810.1678 (4)0.1642 (4)0.9500 (3)0.0147 (9)
C820.2221 (4)0.2446 (4)1.0032 (3)0.0202 (11)
H820.23170.31120.98500.024*
C830.2624 (5)0.2283 (4)1.0825 (3)0.0235 (11)
H830.30090.28311.11810.028*
C840.2458 (5)0.1309 (4)1.1091 (3)0.0238 (11)
H840.27240.11911.16350.029*
C850.1914 (5)0.0519 (4)1.0576 (3)0.0281 (12)
H850.18070.01431.07650.034*
C860.1515 (5)0.0671 (4)0.9777 (3)0.0225 (11)
H860.11360.01170.94240.027*
C910.0033 (6)0.3868 (4)0.5431 (4)0.0430 (17)
C920.0315 (11)0.3930 (7)0.6302 (5)0.098 (4)
H92A0.11300.40090.63130.117*
H92B0.01450.45140.66110.117*
H92C0.01900.33090.65590.117*
C930.1267 (7)0.3843 (6)0.5275 (7)0.086 (3)
H93A0.14300.40690.47210.130*
H93B0.14430.31510.53050.130*
H93C0.17420.42950.56960.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01005 (10)0.01270 (11)0.01551 (10)0.00047 (7)0.00282 (7)0.00157 (7)
Au20.01054 (10)0.01158 (11)0.01655 (11)0.00107 (7)0.00271 (7)0.00093 (7)
Cl10.0188 (6)0.0282 (7)0.0257 (6)0.0037 (5)0.0032 (5)0.0079 (5)
Cl20.0206 (7)0.0165 (6)0.0345 (7)0.0041 (5)0.0052 (5)0.0009 (5)
P10.0081 (6)0.0128 (6)0.0130 (6)0.0020 (5)0.0017 (4)0.0010 (4)
P20.0093 (6)0.0118 (6)0.0152 (6)0.0010 (5)0.0028 (4)0.0005 (4)
P30.0087 (6)0.0117 (6)0.0153 (6)0.0009 (5)0.0023 (4)0.0000 (5)
P40.0103 (6)0.0111 (6)0.0138 (6)0.0010 (5)0.0026 (4)0.0005 (4)
O10.040 (3)0.028 (2)0.045 (3)0.0041 (19)0.017 (2)0.0045 (19)
O1W0.025 (2)0.038 (2)0.036 (2)0.004 (2)0.0014 (18)0.0037 (19)
C10.013 (2)0.016 (2)0.015 (2)0.0026 (19)0.0002 (17)0.0010 (18)
C20.010 (2)0.014 (2)0.021 (2)0.0006 (18)0.0032 (17)0.0026 (19)
C110.010 (2)0.013 (2)0.019 (2)0.0016 (18)0.0039 (17)0.0012 (18)
C120.013 (2)0.022 (3)0.021 (2)0.004 (2)0.0017 (18)0.003 (2)
C130.019 (3)0.017 (3)0.032 (3)0.004 (2)0.010 (2)0.001 (2)
C140.018 (3)0.028 (3)0.033 (3)0.007 (2)0.007 (2)0.014 (2)
C150.024 (3)0.039 (3)0.020 (3)0.006 (2)0.001 (2)0.008 (2)
C160.016 (3)0.027 (3)0.017 (2)0.003 (2)0.0044 (18)0.005 (2)
C210.012 (2)0.014 (2)0.014 (2)0.0021 (18)0.0048 (17)0.0011 (17)
C220.023 (3)0.027 (3)0.018 (2)0.006 (2)0.007 (2)0.003 (2)
C230.032 (3)0.039 (3)0.016 (3)0.005 (3)0.000 (2)0.004 (2)
C240.034 (3)0.033 (3)0.019 (3)0.003 (3)0.012 (2)0.002 (2)
C250.018 (3)0.022 (3)0.028 (3)0.002 (2)0.011 (2)0.002 (2)
C260.019 (3)0.023 (3)0.018 (2)0.005 (2)0.0015 (19)0.001 (2)
C310.010 (2)0.017 (2)0.019 (2)0.0027 (19)0.0011 (17)0.0055 (19)
C320.018 (3)0.030 (3)0.039 (3)0.005 (2)0.006 (2)0.011 (2)
C330.014 (3)0.041 (3)0.038 (3)0.009 (2)0.002 (2)0.011 (3)
C340.012 (3)0.036 (3)0.039 (3)0.002 (2)0.000 (2)0.006 (3)
C350.017 (3)0.021 (3)0.041 (3)0.002 (2)0.002 (2)0.001 (2)
C360.013 (3)0.020 (3)0.027 (3)0.000 (2)0.0036 (19)0.001 (2)
C410.009 (2)0.017 (2)0.020 (2)0.0005 (19)0.0001 (17)0.0020 (19)
C420.016 (3)0.015 (2)0.021 (2)0.0012 (19)0.0016 (18)0.0006 (19)
C430.024 (3)0.022 (3)0.024 (3)0.004 (2)0.004 (2)0.004 (2)
C440.015 (3)0.024 (3)0.028 (3)0.003 (2)0.003 (2)0.010 (2)
C450.018 (3)0.018 (3)0.032 (3)0.004 (2)0.007 (2)0.003 (2)
C460.017 (3)0.019 (3)0.022 (2)0.001 (2)0.0033 (19)0.002 (2)
C510.014 (2)0.017 (2)0.018 (2)0.0003 (19)0.0034 (18)0.0011 (19)
C520.017 (3)0.014 (2)0.020 (2)0.0024 (19)0.0056 (18)0.0049 (19)
C530.022 (3)0.019 (3)0.016 (2)0.001 (2)0.0003 (19)0.0002 (19)
C540.019 (3)0.030 (3)0.015 (2)0.006 (2)0.0024 (18)0.007 (2)
C550.019 (3)0.020 (3)0.028 (3)0.006 (2)0.000 (2)0.008 (2)
C560.016 (3)0.015 (2)0.026 (3)0.0032 (19)0.0032 (19)0.000 (2)
C610.016 (3)0.014 (2)0.020 (2)0.0015 (19)0.0030 (18)0.0011 (18)
C620.018 (3)0.020 (3)0.022 (3)0.001 (2)0.0010 (19)0.002 (2)
C630.019 (3)0.019 (3)0.036 (3)0.003 (2)0.004 (2)0.001 (2)
C640.033 (3)0.023 (3)0.028 (3)0.002 (2)0.013 (2)0.009 (2)
C650.039 (3)0.023 (3)0.020 (3)0.006 (2)0.004 (2)0.004 (2)
C660.020 (3)0.019 (3)0.026 (3)0.002 (2)0.000 (2)0.001 (2)
C710.013 (2)0.017 (2)0.010 (2)0.0044 (19)0.0055 (16)0.0037 (17)
C720.013 (2)0.019 (3)0.027 (3)0.002 (2)0.0030 (19)0.002 (2)
C730.021 (3)0.018 (3)0.032 (3)0.004 (2)0.005 (2)0.001 (2)
C740.014 (3)0.027 (3)0.032 (3)0.009 (2)0.007 (2)0.002 (2)
C750.012 (3)0.031 (3)0.024 (3)0.000 (2)0.0022 (19)0.001 (2)
C760.016 (3)0.017 (2)0.015 (2)0.0004 (19)0.0009 (18)0.0052 (18)
C810.012 (2)0.018 (2)0.014 (2)0.0036 (19)0.0048 (17)0.0008 (18)
C820.021 (3)0.019 (3)0.021 (3)0.002 (2)0.0070 (19)0.001 (2)
C830.020 (3)0.029 (3)0.020 (3)0.001 (2)0.002 (2)0.001 (2)
C840.022 (3)0.033 (3)0.018 (3)0.009 (2)0.001 (2)0.004 (2)
C850.032 (3)0.026 (3)0.027 (3)0.006 (2)0.000 (2)0.006 (2)
C860.025 (3)0.022 (3)0.020 (2)0.003 (2)0.002 (2)0.001 (2)
C910.059 (5)0.014 (3)0.053 (4)0.002 (3)0.027 (3)0.003 (3)
C920.179 (13)0.052 (5)0.050 (5)0.014 (7)0.022 (6)0.007 (4)
C930.046 (5)0.039 (4)0.174 (9)0.002 (4)0.038 (6)0.031 (5)
Geometric parameters (Å, º) top
Au1—P12.3061 (12)C42—H420.9500
Au1—P32.3102 (12)C43—C441.389 (7)
Au1—Au22.9743 (2)C43—H430.9500
Au2—P22.3082 (12)C44—C451.393 (7)
Au2—P42.3130 (12)C44—H440.9500
P1—C111.808 (5)C45—C461.374 (7)
P1—C211.814 (4)C45—H450.9500
P1—C11.826 (5)C46—H460.9500
P2—C411.807 (5)C51—C561.394 (7)
P2—C311.811 (5)C51—C521.398 (7)
P2—C11.827 (5)C52—C531.386 (7)
P3—C511.814 (5)C52—H520.9500
P3—C611.825 (5)C53—C541.383 (7)
P3—C21.835 (5)C53—H530.9500
P4—C711.811 (5)C54—C551.392 (7)
P4—C811.821 (5)C54—H540.9500
P4—C21.828 (5)C55—C561.386 (7)
O1—C911.205 (7)C55—H550.9500
O1W—H1W0.840 (10)C56—H560.9500
O1W—H2W0.841 (10)C61—C661.388 (7)
C1—H1A0.9900C61—C621.392 (7)
C1—H1B0.9900C62—C631.372 (7)
C2—H2A0.9899C62—H620.9500
C2—H2B0.9901C63—C641.393 (8)
C11—C121.396 (6)C63—H630.9500
C11—C161.396 (7)C64—C651.366 (8)
C12—C131.383 (7)C64—H640.9500
C12—H120.9500C65—C661.402 (7)
C13—C141.379 (8)C65—H650.9500
C13—H130.9500C66—H660.9500
C14—C151.396 (8)C71—C721.395 (7)
C14—H140.9500C71—C761.411 (7)
C15—C161.381 (7)C72—C731.391 (7)
C15—H150.9500C72—H720.9500
C16—H160.9500C73—C741.380 (7)
C21—C221.370 (7)C73—H730.9500
C21—C261.406 (7)C74—C751.391 (7)
C22—C231.391 (7)C74—H740.9500
C22—H220.9500C75—C761.381 (7)
C23—C241.375 (8)C75—H750.9500
C23—H230.9500C76—H760.9500
C24—C251.388 (8)C81—C821.393 (7)
C24—H240.9500C81—C861.393 (7)
C25—C261.381 (7)C82—C831.390 (7)
C25—H250.9500C82—H820.9500
C26—H260.9500C83—C841.391 (7)
C31—C321.389 (7)C83—H830.9500
C31—C361.393 (7)C84—C851.366 (7)
C32—C331.376 (7)C84—H840.9500
C32—H320.9500C85—C861.393 (7)
C33—C341.396 (8)C85—H850.9500
C33—H330.9500C86—H860.9500
C34—C351.380 (8)C91—C921.475 (11)
C34—H340.9500C91—C931.488 (12)
C35—C361.387 (7)C92—H92A0.9800
C35—H350.9500C92—H92B0.9800
C36—H360.9500C92—H92C0.9800
C41—C421.393 (6)C93—H93A0.9800
C41—C461.406 (7)C93—H93B0.9800
C42—C431.374 (7)C93—H93C0.9800
P1—Au1—P3173.24 (4)C43—C42—H42119.6
P1—Au1—Au291.96 (3)C41—C42—H42119.6
P3—Au1—Au291.83 (3)C42—C43—C44120.3 (5)
P2—Au2—P4170.04 (4)C42—C43—H43119.8
P2—Au2—Au190.59 (3)C44—C43—H43119.8
P4—Au2—Au190.86 (3)C43—C44—C45119.3 (5)
C11—P1—C21103.6 (2)C43—C44—H44120.4
C11—P1—C1107.3 (2)C45—C44—H44120.4
C21—P1—C1103.1 (2)C46—C45—C44120.6 (5)
C11—P1—Au1115.57 (15)C46—C45—H45119.7
C21—P1—Au1114.70 (15)C44—C45—H45119.7
C1—P1—Au1111.43 (16)C45—C46—C41120.2 (4)
C41—P2—C31106.7 (2)C45—C46—H46119.9
C41—P2—C1107.8 (2)C41—C46—H46119.9
C31—P2—C1101.9 (2)C56—C51—C52119.4 (4)
C41—P2—Au2112.26 (16)C56—C51—P3118.4 (4)
C31—P2—Au2116.58 (15)C52—C51—P3122.1 (4)
C1—P2—Au2110.82 (16)C53—C52—C51120.2 (4)
C51—P3—C61107.0 (2)C53—C52—H52120.2
C51—P3—C2109.0 (2)C51—C52—H52119.6
C61—P3—C2102.6 (2)C54—C53—C52120.2 (4)
C51—P3—Au1113.79 (16)C54—C53—H53119.9
C61—P3—Au1112.42 (15)C52—C53—H53119.9
C2—P3—Au1111.33 (16)C53—C54—C55119.8 (4)
C71—P4—C81106.8 (2)C53—C54—H54120.1
C71—P4—C2104.0 (2)C55—C54—H54120.1
C81—P4—C2106.6 (2)C56—C55—C54120.4 (5)
C71—P4—Au2113.82 (16)C56—C55—H55119.8
C81—P4—Au2112.80 (16)C54—C55—H55119.8
C2—P4—Au2112.24 (16)C55—C56—C51119.9 (5)
H1W—O1W—H2W107 (5)C55—C56—H56120.0
P1—C1—P2115.1 (3)C51—C56—H56120.0
P1—C1—H1A108.6C66—C61—C62119.3 (4)
P2—C1—H1A108.6C66—C61—P3117.1 (4)
P1—C1—H1B108.4C62—C61—P3123.5 (4)
P2—C1—H1B108.4C63—C62—C61120.8 (5)
H1A—C1—H1B107.5C63—C62—H62119.6
P4—C2—P3114.6 (3)C61—C62—H62119.6
P4—C2—H2A108.6C62—C63—C64119.9 (5)
P3—C2—H2A108.5C62—C63—H63120.0
P4—C2—H2B108.7C64—C63—H63120.0
P3—C2—H2B108.6C65—C64—C63120.0 (5)
H2A—C2—H2B107.6C65—C64—H64120.0
C12—C11—C16118.8 (4)C63—C64—H64120.0
C12—C11—P1120.8 (4)C64—C65—C66120.5 (5)
C16—C11—P1120.3 (4)C64—C65—H65119.7
C13—C12—C11120.3 (5)C66—C65—H65119.7
C13—C12—H12119.9C61—C66—C65119.5 (5)
C11—C12—H12119.9C61—C66—H66120.3
C14—C13—C12120.3 (5)C65—C66—H66120.3
C14—C13—H13119.9C72—C71—C76118.9 (4)
C12—C13—H13119.9C72—C71—P4123.3 (4)
C13—C14—C15120.4 (5)C76—C71—P4117.8 (4)
C13—C14—H14119.8C73—C72—C71119.8 (5)
C15—C14—H14119.8C73—C72—H72120.1
C16—C15—C14119.2 (5)C71—C72—H72120.1
C16—C15—H15120.4C74—C73—C72121.0 (5)
C14—C15—H15120.4C74—C73—H73119.5
C15—C16—C11121.1 (5)C72—C73—H73119.5
C15—C16—H16119.5C73—C74—C75119.7 (5)
C11—C16—H16119.5C73—C74—H74120.2
C22—C21—C26119.7 (4)C75—C74—H74120.2
C22—C21—P1123.6 (4)C76—C75—C74120.2 (5)
C26—C21—P1116.7 (3)C76—C75—H75119.9
C21—C22—C23119.8 (5)C74—C75—H75119.9
C21—C22—H22120.1C75—C76—C71120.4 (5)
C23—C22—H22120.1C75—C76—H76119.8
C24—C23—C22120.9 (5)C71—C76—H76119.8
C24—C23—H23119.5C82—C81—C86119.4 (4)
C22—C23—H23119.5C82—C81—P4122.2 (4)
C23—C24—C25119.5 (5)C86—C81—P4118.4 (4)
C23—C24—H24120.3C83—C82—C81120.6 (5)
C25—C24—H24120.3C83—C82—H82119.7
C26—C25—C24120.2 (5)C81—C82—H82119.7
C26—C25—H25119.9C82—C83—C84119.3 (5)
C24—C25—H25119.9C82—C83—H83120.3
C25—C26—C21119.9 (5)C84—C83—H83120.3
C25—C26—H26120.1C85—C84—C83120.3 (5)
C21—C26—H26120.1C85—C84—H84119.8
C32—C31—C36120.0 (5)C83—C84—H84119.8
C32—C31—P2118.2 (4)C84—C85—C86121.0 (5)
C36—C31—P2121.8 (4)C84—C85—H85119.5
C33—C32—C31120.2 (5)C86—C85—H85119.5
C33—C32—H32119.8C85—C86—C81119.4 (5)
C31—C32—H32120.0C85—C86—H86120.3
C32—C33—C34120.5 (5)C81—C86—H86120.3
C32—C33—H33119.8O1—C91—C92121.4 (8)
C34—C33—H33119.8O1—C91—C93120.2 (8)
C35—C34—C33118.9 (5)C92—C91—C93118.3 (7)
C35—C34—H34120.6C91—C92—H92A109.5
C33—C34—H34120.6C91—C92—H92B109.5
C34—C35—C36121.4 (5)H92A—C92—H92B109.5
C34—C35—H35119.3C91—C92—H92C109.5
C36—C35—H35119.3H92A—C92—H92C109.5
C35—C36—C31119.0 (5)H92B—C92—H92C109.5
C35—C36—H36120.5C91—C93—H93A109.5
C31—C36—H36120.5C91—C93—H93B109.5
C42—C41—C46118.7 (4)H93A—C93—H93B109.5
C42—C41—P2118.5 (4)C91—C93—H93C109.5
C46—C41—P2122.8 (4)H93A—C93—H93C109.5
C43—C42—C41120.8 (4)H93B—C93—H93C109.5
C11—P1—C1—P280.8 (3)C41—C42—C43—C441.9 (8)
C21—P1—C1—P2170.2 (3)C42—C43—C44—C453.3 (8)
Au1—P1—C1—P246.6 (3)C43—C44—C45—C461.6 (8)
C41—P2—C1—P171.9 (3)C44—C45—C46—C411.5 (8)
C31—P2—C1—P1176.0 (2)C42—C41—C46—C452.9 (7)
Au2—P2—C1—P151.3 (3)P2—C41—C46—C45174.6 (4)
C71—P4—C2—P3171.5 (2)C61—P3—C51—C56113.0 (4)
C81—P4—C2—P375.9 (3)C2—P3—C51—C56136.7 (4)
Au2—P4—C2—P348.1 (3)Au1—P3—C51—C5611.8 (4)
C51—P3—C2—P478.5 (3)C61—P3—C51—C5264.5 (4)
C61—P3—C2—P4168.3 (3)C2—P3—C51—C5245.8 (5)
Au1—P3—C2—P447.8 (3)Au1—P3—C51—C52170.7 (3)
C21—P1—C11—C1240.5 (4)C56—C51—C52—C531.0 (7)
C1—P1—C11—C1268.2 (4)P3—C51—C52—C53176.4 (4)
Au1—P1—C11—C12166.8 (3)C51—C52—C53—C541.5 (7)
C21—P1—C11—C16140.7 (4)C52—C53—C54—C550.8 (8)
C1—P1—C11—C16110.6 (4)C53—C54—C55—C560.5 (8)
Au1—P1—C11—C1614.4 (4)C54—C55—C56—C511.0 (8)
C16—C11—C12—C131.4 (7)C52—C51—C56—C550.2 (7)
P1—C11—C12—C13177.4 (4)P3—C51—C56—C55177.8 (4)
C11—C12—C13—C140.4 (7)C51—P3—C61—C66165.7 (4)
C12—C13—C14—C151.0 (8)C2—P3—C61—C6679.7 (4)
C13—C14—C15—C161.3 (8)Au1—P3—C61—C6640.0 (4)
C14—C15—C16—C110.2 (8)C51—P3—C61—C6211.5 (5)
C12—C11—C16—C151.1 (7)C2—P3—C61—C62103.1 (4)
P1—C11—C16—C15177.7 (4)Au1—P3—C61—C62137.2 (4)
C11—P1—C21—C22121.8 (4)C66—C61—C62—C630.3 (7)
C1—P1—C21—C2210.0 (5)P3—C61—C62—C63176.8 (4)
Au1—P1—C21—C22111.3 (4)C61—C62—C63—C640.0 (8)
C11—P1—C21—C2657.9 (4)C62—C63—C64—C650.6 (8)
C1—P1—C21—C26169.7 (4)C63—C64—C65—C660.8 (8)
Au1—P1—C21—C2669.0 (4)C62—C61—C66—C650.1 (7)
C26—C21—C22—C230.1 (7)P3—C61—C66—C65177.2 (4)
P1—C21—C22—C23179.8 (4)C64—C65—C66—C610.4 (8)
C21—C22—C23—C240.0 (8)C81—P4—C71—C7272.3 (4)
C22—C23—C24—C250.1 (9)C2—P4—C71—C7240.1 (4)
C23—C24—C25—C260.4 (8)Au2—P4—C71—C72162.6 (3)
C24—C25—C26—C210.4 (8)C81—P4—C71—C76105.6 (4)
C22—C21—C26—C250.3 (7)C2—P4—C71—C76142.0 (3)
P1—C21—C26—C25180.0 (4)Au2—P4—C71—C7619.6 (4)
C41—P2—C31—C32178.9 (4)C76—C71—C72—C731.0 (7)
C1—P2—C31—C3266.0 (4)P4—C71—C72—C73176.8 (4)
Au2—P2—C31—C3254.7 (4)C71—C72—C73—C741.1 (7)
C41—P2—C31—C363.4 (4)C72—C73—C74—C750.4 (8)
C1—P2—C31—C36116.3 (4)C73—C74—C75—C760.3 (8)
Au2—P2—C31—C36122.9 (4)C74—C75—C76—C710.4 (7)
C36—C31—C32—C330.7 (8)C72—C71—C76—C750.3 (7)
P2—C31—C32—C33177.0 (4)P4—C71—C76—C75177.7 (4)
C31—C32—C33—C340.6 (8)C71—P4—C81—C8264.7 (4)
C32—C33—C34—C351.4 (8)C2—P4—C81—C8245.9 (4)
C33—C34—C35—C360.9 (8)Au2—P4—C81—C82169.5 (3)
C34—C35—C36—C310.3 (8)C71—P4—C81—C86114.4 (4)
C32—C31—C36—C351.1 (7)C2—P4—C81—C86134.9 (4)
P2—C31—C36—C35176.5 (4)Au2—P4—C81—C8611.3 (4)
C31—P2—C41—C42101.7 (4)C86—C81—C82—C831.5 (7)
C1—P2—C41—C42149.5 (4)P4—C81—C82—C83179.3 (4)
Au2—P2—C41—C4227.2 (4)C81—C82—C83—C841.4 (7)
C31—P2—C41—C4680.8 (4)C82—C83—C84—C850.6 (8)
C1—P2—C41—C4628.0 (5)C83—C84—C85—C860.1 (8)
Au2—P2—C41—C46150.3 (4)C84—C85—C86—C810.2 (8)
C46—C41—C42—C431.2 (7)C82—C81—C86—C851.0 (7)
P2—C41—C42—C43176.4 (4)P4—C81—C86—C85179.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the ring centroids of the C11–C16, C71–C76 and C51–C56 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl20.84 (2)2.39 (2)3.217 (5)168 (6)
O1W—H2W···Cl2i0.84 (3)2.37 (3)3.200 (5)173 (3)
C1—H1B···O1ii0.992.353.310 (7)164
C2—H2B···Cl2iii0.992.513.487 (5)168
C12—H12···O1ii0.952.573.249 (7)129
C22—H22···Cl1ii0.952.743.580 (6)148
C44—H44···Cl2iv0.952.733.424 (5)130
C52—H52···Cl2iii0.952.683.616 (5)169
C82—H82···Cl2iii0.952.813.723 (5)161
C34—H34···Cg1v0.952.823.542 (6)133
C43—H43···Cg2vi0.952.743.574 (5)147
C75—H75···Cg3v0.952.833.619 (5)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x, y, z+2.
Summary of [Au2(Ph2PCH2PPh2)]2+ dication structures top
AnionsolventsymmetryAu···AuAu—PP—Au—PCCDC REFCODEaReference
Cl-Me2CO12.962 (1)2.327 (3), 2.288 (3)155.9 (1)PPEAUCSchmidbaur et al. (1977)
Cl-MeCN12.9941 (8)2.333 (3), 2.299 (3)164.90 (9)LEKGAJLiou et al. (1994)
Cl-Me2CO, H2O12.9743 (2)2.3061 (12), 2.3102 (12); 2.3082 (12), 2.3130 (12)173.24 (4); 170.04 (4)this work
BH4-12.931 (1)2.311 (3), 2.310 (3)177.28 (12)JAMKAJPorter et al. (1989)
ClO4-12.9258 (10)2.3118 (15), 2.3139 (15)177.15 (5)NEQNIHCao et al. (2006)
PF6-CH2Cl222.9792 (10)2.314 (3), 2.318 (3)177.85 (13)MUVVEEWu et al. (2003)
H3BCN-CH2Cl212.982 (3)2.311 (6), 2.329 (6)175.2 (2)SAVRAIKhan et al. (1989)
Note: (a) Groom & Allen (2014).
 

Acknowledgements

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCao, Q.-Y., Yin, B. & Liu, J.-H. (2006). Acta Cryst. E62, m2730–m2731.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKhan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Porter, L. C. (1989). Inorg. Chem. 28, 2150–2154.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538–540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOoi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md, Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855–873.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPorter, L. C., Khan, Md. N. I., King, C. & Fackler, J. P. (1989). Acta Cryst. C45, 947–949.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). Chem. Ber. 110, 2751–2757.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, M., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m72–m73.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401–41411.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24–38.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145–152.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds