research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of three 3-methyl-1H-1,2,4-triazole-5-thio­nes, including a second polymorph of 4-[(E)-(5-bromo-2-hy­dr­oxy­benzyl­­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione and a redetermination of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu 574 153, Mangaluru, D. K., India, bDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, Mangaluru, D. K., India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, and fSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 July 2015; accepted 27 July 2015; online 6 August 2015)

The structures of three 3-methyl-1H-1,2,4-triazole-5-thione derivatives are reported. The structure of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C3H6N4S, (I), has been redetermined with an improved model for the H atoms: the non-H atoms of (I) all lie on mirror planes in space group Pbcm, and the H atoms of the methyl group are disordered over two sets of reflection-related atomic sites having occupancy 0.5: two independent N—H⋯S hydrogen bonds link the mol­ecules of compound (I) into complex sheets. The non-H atoms in the mol­ecules of 4-[(E)-(3,4-di­meth­oxy­benzyl­idene)amino]-3-methyl-1H-1,2,4-tri­azol-5(4H)-thione, C12H14N4O2S, (II), despite lying in general positions are close to planar, with a dihedral angle between the two rings of 6.31 (10)°: the mol­ecules of compound (II) are linked by a three-centre N—H⋯(O)2 hydrogen bond into a C(10)C(11)[R12(5)] chain of rings. A second polymorph of 4-[(E)-(5-bromo-2-hy­droxy-5-bromo­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C10H9BrN4OS, (III), has been identified; the non-H atoms are nearly co-planar with a dihedral angle between the two rings of 1.9 (4)°. There is an intra­molecular O—H⋯N hydrogen bond and the mol­ecules are linked by N—H⋯S hydrogen bonds, forming centrosymmetric R22(8) dimers. Comparisons are made with some related structures.

1. Chemical context

Heterocyclic compounds containing both nitro­gen and sulfur exhibit a wide variety of biological activities, including analgesic (Thieme et al., 1973a[Thieme, P., König, H. & Amann, A. (1973a). German Patent 2228259.],b[Thieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.]), anti­hypertensive (Wei & Bell, 1981a[Wei, P. H. L. & Bell, C. S. (1981a). US Patent 4302585.],b[Wei, P. H. L. & Bell, C. S. (1981b).Chem. Abstr. 96, 104227.]), and anti-inflammatory activity (Dornow et al., 1964[Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173-2178.]), in addition to fungicidal (Malik et al., 2011[Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387-1394.]) and sedative action (Barrera et al., 1985[Barrera, H., Viñas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027-2030.]). Here we report the mol­ecular and crystal structures of three examples of 1,2,4-triazole-5-thio­nes, namely 4-amino-3-methyl-1H-1,2,4-triazole-5-thione, (I)[link] (Fig. 1[link]), 4-[(E)-(3,4-di­meth­oxy­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5-thione, (II)[link] (Fig. 2[link]), and 4-[(E)-(2-hy­droxy-5-bromo­benzyl­idene)amino]-3-methyl-1H-1,2,4-tri­azol-5-thione, (III)[link] (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. The non-H atoms all lie on a mirror plane and the H atom sites in the methyl group all have occupancy 0.5. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link] in the monoclinic polymorph, showing the atom-labelling scheme and the intra­molecular O—H⋯N hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.

The structure of compound (I)[link] was briefly reported a number of years ago (Escobar-Valderrama et al., 1989[Escobar-Valderrama, J. L., García-Tapia, J. H., Ramírez-Ortíz, J., Rosales, M. J., Toscano, R. A. & Valdés-Martínez, J. (1989). Can. J. Chem. 67, 198-201.]): however, there are some unexpected features in the reported structure, such as the implausibly wide range of the H—C—H angles in the methyl group, spanning the range 89–135°, and this report does not describe any supra­molecular inter­actions. A second report on this compound (Bigoli et al., 1990[Bigoli, F., Lanfranchi, M. & Pellinghelli, M. A. (1990). J. Chem. Res. (S), p. 214 (M) pp. 1712-1725.]) did not include H-atom coordinates, while in a third report (Sarala et al., 2006[Sarala, G., Sridhar, M. A., Prasad, J. S., Swamy, S. N., Basappa, Prabhuswamy, B. & Rangappa, K. S. (2006). Mol. Cryst. Liq. Cryst. 457, 215-223.]) the structure was refined in space group Pca21. However, a detailed examination of the atomic coordinates in this latter report using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) found a 100% fit to space group Pbcm, indicating that an incorrect space group had probably been selected by these authors. Hence none of the previous reports on compound (I)[link] can be regarded as satisfactory. Accordingly we have now taken the opportunity to re-determine the structure of compound (I)[link] and to analyse in detail the effects of the hydrogen bonding. Compounds (II)[link] and (III)[link] were both prepared by condensation of compound (I)[link] with the appropriate aryl aldehyde: crystallization of compound (III)[link] from acetic acid yields a monoclinic polymorph in space group P21/c, whereas crystallization from ethanol has been reported to provide a triclinic polymorph in space group P[\overline{1}] (Wang et al., 2008[Wang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374.]). However, the unit-cell dimensions and the space group for (I)[link] together confirm that the form of (I)[link] studied here is the same as that in the original report, despite the use of different crystallization solvents, methanol here as opposed to ethanol in the original report.

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in the fairly uncommon ortho­rhom­bic space group Pbcm, which is represented by just 772 examples (about 0.06% of all entries) in the June 2015 release of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). All of the non-H atoms lie on a crystallographic mirror plane. The reference mol­ecule was selected as one lying on the plane at z = 1/4, and the orientation of the methyl group is such that the H atoms of this group are disordered over two sets of sites, all having occupancy 0.5 (Fig. 1[link]). Although the mol­ecules of compounds (II)[link] and (III)[link] lie in general positions, the non-H atoms are close to co-planar in each case: an intra­molecular O—H⋯N hydrogen bond in (III)[link] (Table 2) may contribute to this. Thus in compound (II)[link] the dihedral angle between the two ring planes is 6.31 (10)° and, of the atoms in the mol­ecular skeleton, the maximum deviation from the mean plane of the skeletal atoms is 0.097 (2) Å for atom N41, with an r.m.s. deviation of 0.072 Å. In compound (III)[link], the dihedral angle between the two ring planes is just 1.9 (4)°, and the maximum deviation of any atom from the mean plane of the mol­ecular skeleton is 0.038 (5) Å for atom C26, with an r.m.s deviation of 0.020 Å.

The meth­oxy C atoms in compound (II)[link] are almost co-planar with the adjacent aryl ring, as indicated by the relevant torsional angles (Table 1[link]), and the deviations of the two atoms from the plane of the aryl ring (C21–C26) are 0.017 (5) Å for atom C231 and 0.125 (5) Å for atom C241. Consistent with this, the pairs of exocyclic C—C—O angles at atoms C23 and C24 differ by ca 10°, as typically found when meth­oxy groups are co-planar with an aryl ring (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]). Corresponding bond distances within the triazole rings (Table 1[link]) are very similar for all three compounds, as well as for the two polymorphs of compound (III)[link]: the values provide evidence for strong bond localization within the ring, with little or no hint of any aromatic-type delocalization, despite the presence of six π-electrons in rings of this type.

Table 1
Selected geometric parameters (Å, °) for compounds (I)–(III)

Parameter (I) (II) (III) (III)
      P21/c P[\overline{1}]
N1—N2 1.390 (2) 1.378 (3) 1.366 (7) 1.370 (5)
N2—C3 1.299 (3) 1.293 (3) 1.296 (7) 1.312 (5)
C3—N4 1.370 (3) 1.376 (3) 1.378 (7) 1.381 (5)
N4—C5 1.371 (2) 1.385 (3) 1.392 (7) 1.375 (5)
C5—N1 1.311 (2) 1.377 (3) 1.338 (7) 1.336 (5)
N4—N41 1.406 (2) 1.399 (3) 1.398 (7) 1.409 (5)
C5—S51 1.6833 (19) 1.675 (2) 1.644 (7) 1.681 (4)
N41—C27   1.261 (3) 1.279 (7) 1.285 (5)
         
N4—N41—C27   118.63 (19) 119.4 (5) 113.7 (3)
N41—C27—C21   121.6 (2) 119.0 (5) 120.0 (4)
C22—C23—O23   125.4 (2)    
C24—C23—O23   114.48 (19)    
C23—C24—O24   115.10 (19)    
C25—C24—O24   125.3 (2)    
         
N4—N41—C27—C21   −179.2 (2) −179.2 (5) 176.5 (3)
N41—C27—C21—C22   4.9 (4) 0.5 (9) −5.4 (6)
C22—C23—O23—C231   1.0 (4)    
C25—C24—O24—C241   −3.2 (4)    
Numerical data for the triclinic polymorph of compound (III)[link] have been taken from the original report (Wang et al., 2008), but the atom labels have been adjusted to match the systematic labels used for the structures reported here.

3. Supra­molecular inter­actions

In the crystal structure of compound (I)[link] two independent hydrogen bonds (Table 2[link]) of N—H⋯S type (Allen et al., 1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680-695.]) link the mol­ecules into complex sheets, whose formation is readily analysed in terms of two simple one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simpler of these two-sub-structures, mol­ecules related by the 21screw axis along (1/2, y, 1/4) are linked by a hydrogen bond involving the ring N—H unit as the donor, forming a C(4) chain running parallel to the [010] direction (Fig. 4[link]). The H atoms of the amino group also act as hydrogen-bond donors, and the effect is to link mol­ecules related by the 21 screw axis along (1/2, 1/2, z) to form a chain of edge-fused R22(10) rings running parallel to the [001] direction (Fig. 5[link]). The combination of these two chain motifs, along [010] and [001] respectively, gives rise to a sheet lying parallel to (100) (Fig. 6[link]): just one sheet of this type passes through each unit cell, but there are no direction-specific inter­actions between adjacent sheets. Hence the supra­moleuclar assembly of (I)[link] is two dimensional.

Table 2
Parameters (Å, °) for hydrogen bonds and short inter- and intra-mol­ecular contacts in compounds (I)–(III)

Compound D—H⋯A   D—H H⋯A DA D—H⋯A
(I) N1—H1⋯S51i   0.87 (3) 2.43 (3) 3.2326 (17) 153 (2)
  N41—H41⋯S51ii   0.882 (19) 2.753 (19) 3.5968 (8) 160.6 (16)
(II) N1—H1⋯O23iii   0.81 (3) 2.29 (3) 3.075 (3) 166 (2)
  N1—H1⋯O24iii   0.81 (3) 2.41 (3) 2.978 (3) 128 (2)
(III) N1—H1⋯S51iv   0.86 2.42 3.264 (6) 165
  O22—H22⋯N41   0.82 1.97 2.676 (6) 144
Symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, 1 − y, −[{1\over 2}] + z; (iii) [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z; (iv) 2 − x, 1 − y, 1 − z.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded C(4) chain running parallel to the [010] direction,. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, [{1\over 2}] + y, [{1\over 4}]), (1 − x, −[{1\over 2}] + y, [{1\over 4}]), (x, 1 + y, [{1\over 4}]) and (x, −1 + y, [{1\over 4}]) respectively.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of hydrogen-bonded chain of edge-fused R22(10) rings running parallel to the [001] direction,. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at z = 0.75, z = −0.25, z = 1.25 and z = −0.75 respectively.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (100). For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

The N—H bond in compound (II)[link] participates in the formation of a three-centre (bifurcated) N—H⋯(O,O) hydrogen-bond system, in which the two acceptors are the O atoms of the meth­oxy groups (Table 2[link]): this three-centre system is markedly asymmetric, but it is planar within experimental uncertainty. The effect of this inter­action is to link mol­ecules related by the 21 screw axis along (1/4, 1/2, z) to form a C(10)C(11)[R12(5) chain of rings running parallel to the [001] direction (Fig. 7[link]). Four chains of this type pass through each unit cell, but there are no direction-specific inter­actions between the chains: in particular, C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are both absent from the crystal structure. Hence the supra­molecular assembly of (II)[link] is one dimensional.

[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded C(10)C(11)[R12(5) chain of rings running parallel to the [001] direction. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{1\over 2}] − x, 1 − y, −[{1\over 2}] + z), ([{1\over 2}] − x, 1 − y, [{1\over 2}] + z) and (x, y, 1 + z) respectively.

In addition to the intra­molecular hydrogen bond in the mol­ecule of compound (III)[link], noted above, there is a single almost linear N—H⋯S hydrogen bond in this structure, which links inversion-related pairs of mol­ecules into a centrosymmetric dimer characterized by an R22(8) motif (Fig. 8[link]). There are no direction-specific inter­actions between adjacent dimers: as for compound (II)[link], C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are both absent from the crystal structure of compound (III)[link]. Hence the supra­molecular assembly in the monoclinic polymorph of (III)[link] is finite or zero dimensional. The supra­molecular assembly in the triclinic polymorph was not analysed in the original report (Wang et al., 2008[Wang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374.]). In fact, inversion-related pairs of mol­ecules are linked by N—H⋯S hydrogen bonds to form centrosymmetric R22(8) dimers, exactly as in the monoclinic polymorph, but in the triclinic form these dimers are linked by an aromatic ππ stacking inter­action to form a π-stacked chain of hydrogen-bonded dimers running parallel to the [1[\overline{1}]1] direction.

[Figure 8]
Figure 8
Part of the crystal structure of the monoclinic polymorph of compound (III)[link] showing the formation of a hydrogen-bonded R22(8) dimer. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk are at the symmetry position (1 − x, 1 − y, 1 − z).

Thus for the three structures reported here, the supra­molecular assembly in compounds (I)[link], (II)[link] and the monoclinic polymorph of (III)[link] is, respectively, two one and zero dimensional, while for the triclinic polymorph of (III)[link] it is one dimensional.

4. Database survey

Here we briefly compare the supra­molecular assembly in compounds (IV)–(VIII) (see Scheme 2), which all have mol­ecular constitutions which are similar to those of compounds (II)[link] and (III)[link] reported here.

[Scheme 2]

Compounds (IV) (Devarajegowda et al., 2012[Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.]) and (V) (Sarojini, Manjula, Kaur et al., 2014[Sarojini, B. K., Manjula, P. S., Kaur, M., Anderson, B. J. & Jasinski, J. P. (2014). Acta Cryst. E70, o57-o58.]) both crystallize in the triclinic space group P[\overline{1}], but they are not isostructural, as they crystallize with Z′ values of 2 and 1, respectively. However, their supra­molecular assembly is rather similar: in the structure of compound (IV), two independent N—H⋯S hydrogen bonds link the two mol­ecules of the selected asymmetric unit into a cyclic dimeric aggregate, while in compound (V) inversion-related pairs of mol­ecules are linked by N—H⋯S hydrogen bonds to form a cyclic centrosymmetric R22(8) dimer, analogous to those found in both polymorphs of compound (III)[link]. A similar centrosymmetric dimer is observed for compound (VI) (Sarojini et al., 2013[Sarojini, B. K., Manjula, P. S., Hegde, G., Kour, D., Gupta, V. K. & Kant, R. (2013). Acta Cryst. E69, o718-o719.]), but in compound (VII) (Sarojini, Manjula, Narayana et al., 2014[Sarojini, B. K., Manjula, P. S., Narayana, B. & Jasinski, J. P. (2014). Acta Cryst. E70, o733-o734.]), motifs of this type form part of a ribbon containing alternating edge-fused R22(8) and R44(28) rings running parallel to the [2[\overline{1}]0] direction and in which both ring types are centrosymmetric. Finally, compound (VIII), which differs from (IV) in containing an ethyl substituent rather than a methyl substituent, but which crystallizes with Z′ = 1 in P21/c. rather than with Z′ = 2 in P[\overline{1}] as for (IV), also contains a centrosymmetric R22(8) dimeric aggregate (Jeyaseelan et al., 2012[Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407.]).

5. Synthesis and crystallization

Colourless blocks of compound (I)[link] were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol. For the synthesis of compounds (II)[link] and (III)[link], to mixtures of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione (0.01 mol) with either 3,4-di­meth­oxy­benzaldehyde (0.01 mol), for (II)[link], or 5-bromo-2-hy­droxy­benzaldehyde (0.01 mol), for (III)[link], in hot ethanol (15 ml) was added a catalytic qu­antity of concentrated sulfuric acid, and each mixture was then heated under reflux for 36 h. The mixtures were cooled to ambient temperature and the resulting solid products (II)[link] and (III)[link] were collected by filtration. For (II)[link] and (III)[link], colourless blocks were grown by slow evaporation, at ambient temperature and in the presence of air of solutions in either di­chloro­methane–methanol (1:1, v/v) for (II)[link], or acetic acid for (III)[link]: m. p. (II)[link] 471–473 K, (III)[link] 465–467 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms, including the disordered methyl H atoms in (I)[link], were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (alkenyl and aromatic) or 0.96 Å (meth­yl) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms in compounds (I)[link] and (II)[link], the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Table 2[link]. For compound (III)[link], refinement of the atomic coordinates for the H atoms bonded to N and O atoms led to unacceptably large s.u.s of the resulting N—H and O—H distances: accordingly, these H atoms in (III)[link] were permitted to ride on their carrier atoms with distances N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). For each of compounds (II)[link] and (III)[link] the analysis of variance showed a large value of K for the very weak groups of reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.009 for (II)[link] and 0.000 < Fc/Fc(max) < 0.015 for (III)[link].

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C3H6N4S C12H14N4O2S C10H9BrN4OS
Mr 130.18 278.33 313.17
Crystal system, space group Orthorhombic, Pbcm Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 296 296 296
a, b, c (Å) 8.8682 (6), 9.8230 (6), 6.5427 (4) 7.3112 (4), 16.0793 (9), 22.8994 (13) 4.4122 (4), 14.7450 (13), 18.7911 (16)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 95.828 (3), 90
V3) 569.95 (6) 2692.0 (3) 1216.19 (19)
Z 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.46 0.24 3.54
Crystal size (mm) 0.24 × 0.18 × 0.15 0.21 × 0.15 × 0.11 0.22 × 0.19 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.876, 0.934 0.834, 0.974 0.376, 0.588
No. of measured, independent and observed [I > 2σ(I)] reflections 5602, 753, 687 26828, 3090, 2319 22155, 2270, 1913
Rint 0.019 0.065 0.068
(sin θ/λ)max−1) 0.667 0.650 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.14 0.057, 0.123, 1.08 0.074, 0.131, 1.27
No. of reflections 753 3090 2270
No. of parameters 55 179 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.29 0.27, −0.24 0.60, −0.57
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C3H6N4SDx = 1.517 Mg m3
Mr = 130.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 753 reflections
a = 8.8682 (6) Åθ = 4.2–28.3°
b = 9.8230 (6) ŵ = 0.46 mm1
c = 6.5427 (4) ÅT = 296 K
V = 569.95 (6) Å3Block, colourless
Z = 40.24 × 0.18 × 0.15 mm
F(000) = 272
Data collection top
Bruker APEXII CCD
diffractometer
753 independent reflections
Radiation source: sealed tube687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 28.3°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.876, Tmax = 0.934k = 1213
5602 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.361P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
753 reflectionsΔρmax = 0.33 e Å3
55 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.34731 (19)0.79125 (16)0.25000.0287 (4)
H10.399 (3)0.867 (3)0.25000.034*
N20.1908 (2)0.79840 (18)0.25000.0344 (4)
C30.1491 (2)0.6716 (2)0.25000.0292 (4)
N40.27162 (18)0.58666 (16)0.25000.0240 (3)
C50.4000 (2)0.66435 (18)0.25000.0230 (4)
C310.0098 (3)0.6251 (3)0.25000.0484 (7)
H31A0.04070.60560.11250.073*0.5
H31B0.07290.69520.30580.073*0.5
H31C0.01870.54430.33170.073*0.5
N410.2626 (2)0.44381 (17)0.25000.0324 (4)
H410.314 (2)0.4133 (18)0.144 (3)0.039*
S510.58144 (5)0.61399 (5)0.25000.02978 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0302 (8)0.0168 (7)0.0392 (9)0.0006 (6)0.0000.000
N20.0326 (9)0.0241 (8)0.0464 (10)0.0057 (7)0.0000.000
C30.0255 (9)0.0285 (9)0.0336 (10)0.0028 (7)0.0000.000
N40.0237 (7)0.0188 (7)0.0295 (8)0.0031 (6)0.0000.000
C50.0287 (9)0.0180 (8)0.0222 (8)0.0023 (7)0.0000.000
C310.0225 (10)0.0463 (13)0.0763 (19)0.0014 (9)0.0000.000
N410.0307 (9)0.0162 (7)0.0502 (11)0.0030 (6)0.0000.000
S510.0243 (3)0.0224 (3)0.0426 (3)0.00037 (16)0.0000.000
Geometric parameters (Å, º) top
N1—C51.331 (2)N4—N411.406 (2)
N1—N21.390 (2)C5—S511.6833 (19)
N1—H10.88 (3)C31—H31A0.9600
N2—C31.299 (3)C31—H31B0.9600
C3—N41.370 (3)C31—H31C0.9600
C3—C311.481 (3)N41—H410.883 (19)
N4—C51.371 (2)
C5—N1—N2113.45 (16)N1—C5—N4103.28 (16)
C5—N1—H1128.0 (16)N1—C5—S51127.64 (15)
N2—N1—H1118.6 (16)N4—C5—S51129.08 (14)
C3—N2—N1103.63 (16)C3—C31—H31A109.5
N2—C3—N4110.99 (17)C3—C31—H31B109.5
N2—C3—C31124.50 (19)H31A—C31—H31B109.5
N4—C3—C31124.51 (19)C3—C31—H31C109.5
C3—N4—C5108.65 (17)H31A—C31—H31C109.5
C3—N4—N41124.25 (16)H31B—C31—H31C109.5
C5—N4—N41127.11 (16)N4—N41—H41108.0 (12)
C5—N1—N2—C30.0N2—N1—C5—N40.0
N1—N2—C3—N40.0N2—N1—C5—S51180.0
N1—N2—C3—C31180.0C3—N4—C5—N10.0
N2—C3—N4—C50.0N41—N4—C5—N1180.0
C31—C3—N4—C5180.0C3—N4—C5—S51180.0
N2—C3—N4—N41180.0N41—N4—C5—S510.0
C31—C3—N4—N410.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S51i0.87 (3)2.43 (3)3.2326 (17)153 (2)
N41—H41···S51ii0.882 (19)2.753 (19)3.5968 (8)160.6 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z1/2.
(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C12H14N4O2SDx = 1.373 Mg m3
Mr = 278.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3343 reflections
a = 7.3112 (4) Åθ = 3.1–28.3°
b = 16.0793 (9) ŵ = 0.24 mm1
c = 22.8994 (13) ÅT = 296 K
V = 2692.0 (3) Å3Block, colourless
Z = 80.21 × 0.15 × 0.11 mm
F(000) = 1168
Data collection top
Bruker APEXII CCD
diffractometer
3090 independent reflections
Radiation source: sealed tube2319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.834, Tmax = 0.974k = 2020
26828 measured reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0344P)2 + 3.441P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.27 e Å3
3090 reflectionsΔρmin = 0.24 e Å3
179 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0037 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1213 (3)0.45675 (13)0.33824 (9)0.0329 (5)
H10.115 (4)0.4645 (17)0.3034 (13)0.040*
N20.0910 (3)0.37720 (13)0.35845 (9)0.0357 (5)
C30.1225 (4)0.38329 (15)0.41387 (10)0.0314 (5)
N40.1725 (3)0.46285 (12)0.42911 (8)0.0271 (5)
C50.1697 (3)0.51167 (15)0.37928 (9)0.0272 (5)
C310.1081 (5)0.31385 (16)0.45639 (12)0.0460 (7)
H31A0.22640.30270.47280.069*
H31B0.06400.26500.43680.069*
H31C0.02460.32890.48700.069*
N410.2135 (3)0.47940 (12)0.48766 (8)0.0293 (5)
S510.20737 (12)0.61356 (4)0.36982 (3)0.0438 (2)
C270.2852 (4)0.54836 (16)0.50047 (10)0.0341 (6)
H270.30760.58670.47100.041*
C210.3339 (3)0.56941 (15)0.56055 (9)0.0281 (5)
C220.3168 (3)0.51237 (14)0.60638 (9)0.0253 (5)
H220.27080.45940.59930.030*
C230.3684 (3)0.53506 (13)0.66210 (9)0.0238 (5)
C240.4395 (3)0.61528 (14)0.67278 (9)0.0250 (5)
C250.4521 (4)0.67139 (15)0.62759 (11)0.0335 (6)
H250.49570.72480.63450.040*
C260.3999 (4)0.64807 (16)0.57184 (10)0.0359 (6)
H260.40950.68620.54140.043*
O230.3576 (3)0.48540 (10)0.71045 (7)0.0357 (5)
C2310.2898 (5)0.40291 (15)0.70230 (11)0.0450 (7)
H23A0.28290.37520.73940.067*
H23B0.37070.37280.67700.067*
H23C0.17020.40530.68510.067*
O240.4902 (3)0.63011 (10)0.72903 (7)0.0325 (4)
C2410.5711 (4)0.70915 (15)0.74105 (11)0.0355 (6)
H24A0.48530.75250.73200.053*
H24B0.67890.71590.71760.053*
H24C0.60360.71220.78160.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0470 (14)0.0347 (11)0.0171 (10)0.0033 (10)0.0027 (9)0.0002 (9)
N20.0486 (14)0.0319 (11)0.0267 (11)0.0008 (10)0.0023 (10)0.0006 (9)
C30.0360 (14)0.0312 (12)0.0271 (12)0.0031 (11)0.0002 (11)0.0017 (10)
N40.0337 (11)0.0301 (10)0.0174 (9)0.0026 (9)0.0017 (8)0.0012 (8)
C50.0292 (13)0.0337 (12)0.0186 (11)0.0052 (10)0.0005 (9)0.0004 (9)
C310.062 (2)0.0354 (14)0.0401 (16)0.0047 (14)0.0008 (14)0.0100 (12)
N410.0358 (12)0.0375 (11)0.0145 (9)0.0030 (10)0.0031 (8)0.0024 (8)
S510.0720 (5)0.0312 (3)0.0283 (3)0.0015 (3)0.0123 (3)0.0053 (3)
C270.0417 (15)0.0408 (14)0.0198 (12)0.0043 (12)0.0022 (11)0.0063 (10)
C210.0299 (13)0.0352 (13)0.0192 (11)0.0001 (11)0.0040 (9)0.0021 (9)
C220.0293 (13)0.0245 (11)0.0221 (11)0.0010 (10)0.0012 (9)0.0001 (9)
C230.0287 (12)0.0231 (11)0.0197 (11)0.0019 (10)0.0001 (9)0.0030 (9)
C240.0267 (12)0.0287 (11)0.0194 (10)0.0009 (10)0.0009 (9)0.0004 (9)
C250.0411 (15)0.0275 (12)0.0319 (13)0.0085 (11)0.0048 (11)0.0024 (10)
C260.0468 (16)0.0370 (13)0.0240 (12)0.0073 (12)0.0051 (11)0.0132 (10)
O230.0599 (12)0.0263 (8)0.0210 (8)0.0093 (8)0.0061 (8)0.0048 (6)
C2310.073 (2)0.0284 (13)0.0334 (14)0.0118 (14)0.0106 (14)0.0072 (11)
O240.0492 (11)0.0271 (8)0.0213 (8)0.0091 (8)0.0049 (8)0.0007 (6)
C2410.0430 (15)0.0343 (13)0.0293 (14)0.0095 (12)0.0030 (11)0.0048 (10)
Geometric parameters (Å, º) top
N1—C51.337 (3)C22—C231.380 (3)
N1—N21.378 (3)C22—H220.9300
N1—H10.81 (3)C23—O231.367 (3)
N2—C31.293 (3)C23—C241.412 (3)
C3—N41.376 (3)C24—O241.362 (3)
C3—C311.485 (3)C24—C251.376 (3)
N4—C51.385 (3)C25—C261.384 (3)
N4—N411.399 (3)C25—H250.9300
C5—S511.675 (2)C26—H260.9300
C31—H31A0.9600O23—C2311.428 (3)
C31—H31B0.9600C231—H23A0.9600
C31—H31C0.9600C231—H23B0.9600
N41—C271.261 (3)C231—H23C0.9600
C27—C211.461 (3)O24—C2411.429 (3)
C27—H270.9300C241—H24A0.9600
C21—C261.378 (3)C241—H24B0.9600
C21—C221.399 (3)C241—H24C0.9600
C5—N1—N2114.80 (19)C21—C22—H22120.1
C5—N1—H1127 (2)O23—C23—C22125.4 (2)
N2—N1—H1118 (2)O23—C23—C24114.48 (19)
C3—N2—N1103.3 (2)C22—C23—C24120.2 (2)
N2—C3—N4111.5 (2)O24—C24—C25125.3 (2)
N2—C3—C31125.0 (2)O24—C24—C23115.10 (19)
N4—C3—C31123.5 (2)C25—C24—C23119.6 (2)
C3—N4—C5108.30 (19)C24—C25—C26119.8 (2)
C3—N4—N41118.48 (18)C24—C25—H25120.1
C5—N4—N41133.21 (19)C26—C25—H25120.1
N1—C5—N4102.0 (2)C21—C26—C25121.2 (2)
N1—C5—S51126.76 (18)C21—C26—H26119.4
N4—C5—S51131.16 (18)C25—C26—H26119.4
C3—C31—H31A109.5C23—O23—C231117.16 (18)
C3—C31—H31B109.5O23—C231—H23A109.5
H31A—C31—H31B109.5O23—C231—H23B109.5
C3—C31—H31C109.5H23A—C231—H23B109.5
H31A—C31—H31C109.5O23—C231—H23C109.5
H31B—C31—H31C109.5H23A—C231—H23C109.5
C27—N41—N4118.63 (19)H23B—C231—H23C109.5
N41—C27—C21121.6 (2)C24—O24—C241116.80 (18)
N41—C27—H27119.2O24—C241—H24A109.5
C21—C27—H27119.2O24—C241—H24B109.5
C26—C21—C22119.5 (2)H24A—C241—H24B109.5
C26—C21—C27118.3 (2)O24—C241—H24C109.5
C22—C21—C27122.2 (2)H24A—C241—H24C109.5
C23—C22—C21119.7 (2)H24B—C241—H24C109.5
C23—C22—H22120.1
C5—N1—N2—C30.2 (3)C26—C21—C22—C230.9 (4)
N1—N2—C3—N40.5 (3)C27—C21—C22—C23178.7 (2)
N1—N2—C3—C31179.8 (3)C21—C22—C23—O23179.7 (2)
N2—C3—N4—C51.0 (3)C21—C22—C23—C240.5 (4)
C31—C3—N4—C5179.2 (2)O23—C23—C24—O241.5 (3)
N2—C3—N4—N41179.2 (2)C22—C23—C24—O24178.4 (2)
C31—C3—N4—N410.5 (4)O23—C23—C24—C25178.3 (2)
N2—N1—C5—N40.8 (3)C22—C23—C24—C251.8 (4)
N2—N1—C5—S51177.20 (19)O24—C24—C25—C26178.4 (2)
C3—N4—C5—N11.0 (3)C23—C24—C25—C261.8 (4)
N41—N4—C5—N1179.2 (2)C22—C21—C26—C250.9 (4)
C3—N4—C5—S51176.8 (2)C27—C21—C26—C25178.6 (3)
N41—N4—C5—S512.9 (4)C24—C25—C26—C210.4 (4)
C3—N4—N41—C27169.6 (2)C22—C23—O23—C2311.0 (4)
C5—N4—N41—C2710.7 (4)C24—C23—O23—C231178.9 (2)
N4—N41—C27—C21179.2 (2)C25—C24—O24—C2413.2 (4)
N41—C27—C21—C26175.5 (3)C23—C24—O24—C241177.0 (2)
N41—C27—C21—C224.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O23i0.81 (3)2.29 (3)3.075 (3)166 (2)
N1—H1···O24i0.81 (3)2.41 (3)2.978 (3)128 (2)
Symmetry code: (i) x+1/2, y+1, z1/2.
(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H9BrN4OSF(000) = 624
Mr = 313.17Dx = 1.710 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.4122 (4) ÅCell parameters from 3002 reflections
b = 14.7450 (13) Åθ = 3.5–28.3°
c = 18.7911 (16) ŵ = 3.54 mm1
β = 95.828 (3)°T = 296 K
V = 1216.19 (19) Å3Block, colourless
Z = 40.22 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2270 independent reflections
Radiation source: sealed tube1913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 55
Tmin = 0.376, Tmax = 0.588k = 1717
22155 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + 5.4069P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max < 0.001
2270 reflectionsΔρmax = 0.60 e Å3
156 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9899 (12)0.6271 (4)0.4818 (3)0.0498 (14)
H11.08770.58510.50630.060*
N21.0447 (12)0.7171 (4)0.4944 (3)0.0463 (13)
C30.8538 (14)0.7579 (4)0.4482 (3)0.0402 (14)
N40.6829 (10)0.6958 (3)0.4066 (2)0.0353 (11)
C50.7729 (14)0.6089 (4)0.4287 (3)0.0431 (15)
C310.8213 (17)0.8564 (5)0.4384 (4)0.060 (2)
H31A0.61330.87360.44180.090*
H31B0.87830.87300.39220.090*
H31C0.95100.88710.47480.090*
N410.4646 (10)0.7266 (3)0.3529 (2)0.0357 (11)
S510.6573 (5)0.50707 (12)0.39894 (11)0.0689 (7)
C270.3065 (13)0.6689 (4)0.3142 (3)0.0388 (14)
H270.33550.60710.32220.047*
C210.0804 (11)0.7002 (4)0.2574 (3)0.0308 (12)
C220.0244 (14)0.7913 (4)0.2414 (3)0.0408 (14)
C230.1947 (14)0.8144 (5)0.1853 (3)0.0492 (17)
H230.23440.87510.17460.059*
C240.3526 (14)0.7474 (5)0.1456 (3)0.0481 (16)
H240.49840.76280.10830.058*
C250.2931 (13)0.6585 (4)0.1616 (3)0.0378 (14)
C260.0843 (13)0.6330 (4)0.2173 (3)0.0385 (14)
H260.05260.57200.22820.046*
O220.1721 (11)0.8599 (3)0.2776 (3)0.0594 (13)
H220.29460.83910.30910.089*
Br250.50755 (18)0.56596 (6)0.10681 (4)0.0652 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.055 (3)0.045 (3)0.044 (3)0.004 (3)0.024 (3)0.008 (2)
N20.049 (3)0.050 (3)0.037 (3)0.003 (3)0.012 (2)0.005 (2)
C30.045 (4)0.043 (4)0.031 (3)0.003 (3)0.000 (3)0.001 (3)
N40.032 (3)0.043 (3)0.028 (2)0.005 (2)0.006 (2)0.003 (2)
C50.042 (3)0.048 (4)0.036 (3)0.003 (3)0.011 (3)0.008 (3)
C310.070 (5)0.053 (4)0.053 (4)0.005 (4)0.008 (4)0.000 (3)
N410.033 (3)0.046 (3)0.027 (2)0.010 (2)0.003 (2)0.005 (2)
S510.0795 (14)0.0419 (10)0.0740 (13)0.0012 (9)0.0482 (11)0.0057 (9)
C270.035 (3)0.047 (4)0.033 (3)0.009 (3)0.003 (3)0.006 (3)
C210.025 (3)0.042 (3)0.026 (3)0.004 (2)0.005 (2)0.006 (2)
C220.039 (3)0.050 (4)0.033 (3)0.005 (3)0.000 (3)0.006 (3)
C230.051 (4)0.046 (4)0.048 (4)0.012 (3)0.005 (3)0.018 (3)
C240.043 (4)0.065 (4)0.034 (3)0.011 (3)0.009 (3)0.008 (3)
C250.037 (3)0.046 (4)0.030 (3)0.000 (3)0.002 (2)0.002 (3)
C260.039 (3)0.047 (4)0.029 (3)0.010 (3)0.003 (2)0.004 (3)
O220.061 (3)0.048 (3)0.064 (3)0.003 (2)0.018 (2)0.005 (2)
Br250.0616 (5)0.0720 (5)0.0574 (4)0.0023 (4)0.0166 (3)0.0105 (4)
Geometric parameters (Å, º) top
N1—C51.338 (7)C27—H270.9300
N1—N21.366 (7)C21—C221.393 (8)
N1—H10.8600C21—C261.402 (8)
N2—C31.296 (7)C22—O221.349 (7)
C3—N41.378 (7)C22—C231.399 (8)
C3—C311.470 (9)C23—C241.383 (9)
N4—C51.392 (7)C23—H230.9300
N4—N411.398 (6)C24—C251.364 (9)
C5—S511.664 (7)C24—H240.9300
C31—H31A0.9600C25—C261.374 (7)
C31—H31B0.9600C25—Br251.903 (6)
C31—H31C0.9600C26—H260.9300
N41—C271.279 (7)O22—H220.8200
C27—C211.461 (7)
C5—N1—N2115.1 (5)N41—C27—H27120.1
C5—N1—H1122.5C21—C27—H27120.1
N2—N1—H1122.4C22—C21—C26119.7 (5)
C3—N2—N1104.1 (5)C22—C21—C27123.8 (5)
N2—C3—N4110.7 (5)C26—C21—C27116.6 (5)
N2—C3—C31126.3 (6)O22—C22—C21123.3 (5)
N4—C3—C31123.1 (5)O22—C22—C23117.3 (6)
C3—N4—C5108.6 (4)C21—C22—C23119.4 (6)
C3—N4—N41119.4 (5)C24—C23—C22120.3 (6)
C5—N4—N41132.0 (5)C24—C23—H23119.9
N1—C5—N4101.5 (5)C22—C23—H23119.9
N1—C5—S51127.0 (5)C25—C24—C23119.5 (5)
N4—C5—S51131.4 (4)C25—C24—H24120.2
C3—C31—H31A109.5C23—C24—H24120.2
C3—C31—H31B109.5C24—C25—C26122.0 (6)
H31A—C31—H31B109.5C24—C25—Br25119.7 (4)
C3—C31—H31C109.5C26—C25—Br25118.3 (5)
H31A—C31—H31C109.5C25—C26—C21119.1 (6)
H31B—C31—H31C109.5C25—C26—H26120.4
C27—N41—N4119.4 (5)C21—C26—H26120.4
N41—C27—C21119.9 (5)C22—O22—H22109.5
C5—N1—N2—C30.6 (8)N41—C27—C21—C220.5 (9)
N1—N2—C3—N40.5 (7)N41—C27—C21—C26179.9 (5)
N1—N2—C3—C31179.1 (7)C26—C21—C22—O22179.7 (6)
N2—C3—N4—C50.3 (7)C27—C21—C22—O220.7 (9)
C31—C3—N4—C5178.9 (6)C26—C21—C22—C230.4 (9)
N2—C3—N4—N41179.6 (5)C27—C21—C22—C23179.2 (6)
C31—C3—N4—N410.9 (9)O22—C22—C23—C24179.5 (6)
N2—N1—C5—N40.5 (7)C21—C22—C23—C240.5 (10)
N2—N1—C5—S51178.6 (5)C22—C23—C24—C250.0 (10)
C3—N4—C5—N10.1 (7)C23—C24—C25—C261.4 (10)
N41—N4—C5—N1179.9 (6)C23—C24—C25—Br25179.5 (5)
C3—N4—C5—S51178.9 (6)C24—C25—C26—C212.3 (9)
N41—N4—C5—S510.9 (11)Br25—C25—C26—C21178.7 (4)
C3—N4—N41—C27179.8 (5)C22—C21—C26—C251.7 (8)
C5—N4—N41—C270.1 (9)C27—C21—C26—C25177.9 (5)
N4—N41—C27—C21179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S51i0.862.423.264 (6)165
O22—H22···N410.821.972.676 (6)144
Symmetry code: (i) x+2, y+1, z+1.
Selected geometric parameters (Å, °) for compounds (I)–(III) top
Parameter(I)(II)(III)(III)
P21/cP1
N1—N21.390 (2)1.378 (3)1.366 (7)1.370 (5)
N2—C31.299 (3)1.293 (3)1.296 (7)1.312 (5)
C3—N41.370 (3)1.376 (3)1.378 (7)1.381 (5)
N4—C51.371 (2)1.385 (3)1.392 (7)1.375 (5)
C5—N11.311 (2)1.377 (3)1.338 (7)1.336 (5)
N4—N411.406 (2)1.399 (3)1.398 (7)1.409 (5)
C5—S511.6833 (19)1.675 (2)1.644 (7)1.681 (4)
N41—C271.261 (3)1.279 (7)1.285 (5)
N4—N41—C27118.63 (19)119.4 (5)113.7 (3)
N41—C27—C21121.6 (2)119.0 (5)120.0 (4)
C22—C23—O23125.4 (2)
C24—C23—O23114.48 (19)
C23—C24—O24115.10 (19)
C25—C24—O24125.3 (2)
N4—N41—C27—C21-179.2 (2)-179.2 (5)176.5 (3)
N41—C27—C21—C224.9 (4)0.5 (9)-5.4 (6)
C22—C23—O23—C2311.0 (4)
C25—C24—O24—C241-3.2 (4)
Numerical data for the triclinic polymorph of compound (III) have been taken from the original report (Wang et al., 2008), but the atom labels have been adjusted to match the systematic labels used for the structures reported here.
Parameters (Å, °) for hydrogen bonds and short inter- and intra-molecular contacts in compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H1···S51i0.87 (3)2.43 (3)3.2326 (17)153 (2)
N41—H41···S51ii0.882 (19)2.753 (19)3.5968 (8)160.6 (16)
(II)N1—H1···O23iii0.81 (3)2.29 (3)3.075 (3)166 (2)
N1—H1···O24iii0.81 (3)2.41 (3)2.978 (3)128 (2)
(III)N1—H1···S51iv0.862.423.264 (6)165
O22—H22···N410.821.972.676 (6)144
Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1 - y, -1/2 + z; (iii) 1/2 - x, 1 - y, -1/2 + z; (iv) 2 - x, 1 - y, 1 - z.
 

Acknowledgements

PSM and BKS gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBarrera, H., Viñas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Lanfranchi, M. & Pellinghelli, M. A. (1990). J. Chem. Res. (S), p. 214 (M) pp. 1712–1725.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.  CSD CrossRef IUCr Journals Google Scholar
First citationDornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.  CrossRef CAS Web of Science Google Scholar
First citationEscobar-Valderrama, J. L., García-Tapia, J. H., Ramírez-Ortíz, J., Rosales, M. J., Toscano, R. A. & Valdés-Martínez, J. (1989). Can. J. Chem. 67, 198–201.  CAS Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407.  CSD CrossRef IUCr Journals Google Scholar
First citationMalik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.  Web of Science CrossRef CAS Google Scholar
First citationSarala, G., Sridhar, M. A., Prasad, J. S., Swamy, S. N., Basappa, Prabhuswamy, B. & Rangappa, K. S. (2006). Mol. Cryst. Liq. Cryst. 457, 215–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Manjula, P. S., Hegde, G., Kour, D., Gupta, V. K. & Kant, R. (2013). Acta Cryst. E69, o718–o719.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Manjula, P. S., Kaur, M., Anderson, B. J. & Jasinski, J. P. (2014). Acta Cryst. E70, o57–o58.  CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Manjula, P. S., Narayana, B. & Jasinski, J. P. (2014). Acta Cryst. E70, o733–o734.  CSD CrossRef IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThieme, P., König, H. & Amann, A. (1973a). German Patent 2228259.  Google Scholar
First citationThieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.  Google Scholar
First citationWang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1981a). US Patent 4302585.  Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1981b).Chem. Abstr. 96, 104227.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds