research communications
N-[3-(dimethylamino)propyl]benzamide monohydrate: a phenoxyphthalonitrile derivative
of 4-(3,4-dicyanophenoxy)-aDepartment of Chemistry, Sakarya University, 54187 Esentepe, Sakarya, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title compound, C20H20N4O2·H2O, the planes of the phenoxy and phthalonitrile rings are oriented at a dihedral angle of 60.39 (5)°. The 3-(dimethylamino)propyl chain has an extended conformation and is cis with respect to the phthalonitrile ring. In the crystal, O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the molecules to form slabs parallel to (100). There are also C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π interactions present within the slabs. The slabs are linked by a pair of inversion-related C—H⋯N hydrogen bonds, involving phthalonitrile rings, forming a three-dimensional structure.
Keywords: crystal structure; amido amine derivatives; phthalonitrile derivatives; hydrogen bonding.
CCDC reference: 1418026
1. Chemical context
Amido amine derivatives are suggested as exhibiting an outstanding combination of et al., 2010). and amido of and polyamine products are used as typical corrosion inhibitors in high dosage, despite their poor biodegradability, because of their extremely good oil solubility. Polyamines play an important role in cell growth and bind to the phosphate residues of DNA, stabilizing the specific conformation of the latter (Karaoğlan et al., 2011; Göksel et al., 2013; Kim et al., 2012; Çolak et al., 2014). In this context, we synthesized 4-(3,4-dicyanophenoxy)-N-[3-(dimethylamino)propyl]benzamide monohydrate and report herein on its crystal structure.
properties. Well-known application fields for amino derivatives are their use as synthetic intermediates of anticancer agents, antibiotics and other drugs. They also exhibit exceptionally low ocular irritation and oral toxicity, being well tolerated by human tissue (Roy2. Structural commentary
The molecular structure of the title compound, which crystallized as a monohydrate, is illustrated in Fig. 1. The phthalonitrile (A = atoms C1–C6) and phenoxy (B = atoms C9–C14) rings are oriented at a dihedral angle of 60.39 (5)°. Atoms O1 N1, N2, C7 and C8 are at distances of 0.0799 (13), −0.1207 (18), 0.0366 (18), −0.0613 (19) and 0.0183 (18) Å, respectively, from phthalonitrile ring A, and are thus almost coplanar with this ring. In contrast, atoms O1, N3 and C15 are displaced by −0.1329 (13), 0.1004 (15) and −0.1247 (17) Å, respectively, from phenoxy ring B. The mean plane of the amide group (C15/O2/N3) makes a dihedral angle of 15.8 (2)° with that of phenoxy ring B. The 3-(dimethylamino)propyl chain [N4/C16–C18; maximum deviation = 0.057 (2) Å] has an extended conformation and its mean plane is inclined to ring B by 68.53 (16)°, and by 28.69 (16)° to phthalonitrile ring A.
3. Supramolecular features
In the crystal, N—Hamd⋯Ow (amd = amide; w = water), O—Hw. .Oamd and O—Hw⋯Ndma (dma = dimethylamino) hydrogen bonds (Table 1 and Fig. 2) link molecules to form slabs lying parallel to (100). Within the slabs there are also C—H⋯O hydrogen bonds and C—H⋯π interactions present (Table 1). The N—Hamd⋯Ow, C—Hphen⋯Ow (phen = phenoxy), and the O—Hw⋯ Oamd, C—Hphen⋯Oamd and C—Hphen⋯Ow hydrogen bonds form R22(7) and R33(7) ring motifs, respectively (Table 1 and Fig. 3). The slabs are linked via a pair of inversion-related Cphn—H⋯Nphn (phn = phthalonitrile) hydrogen bonds, forming a three-dimensional structure (Table 1 and Fig. 4).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) gave 29 hits for 4-phenoxyphthalonitrile, with no substituents in the positions ortho to the bridging O atom. The dihedral angle between the planes of the phthalonitrile and phenoxy rings varies from ca 50.2–88.1°. In 4-phenoxyphthalonitrile itself (CSD refcode NIKFOD; Fang et al., 2007) and two other similar compounds, namely 4-(m-tolyloxy)phthalonitrile (JEVSAF; Ocak Ískeleli, 2007) and 4-(4-benzyloxyphenoxy)phthalonitrile (IROSOX; Karadayı et al., 2004), the dihedral angles between the two aromatic rings are ca 72.03, 68.18 and 71.31 °, respectively; similar to the same dihedral angle in the title compound, viz. 68.53 (16)°.
5. Refinement
The experimental details including the crystal data, data collection and . The water H atoms (H31 and H32) and the N—H H atom (H3) were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.
are summarized in Table 2
|
6. Synthesis and crystallization
To a mixture of N,N-dimethylpropane-1,3-diamine (72 mg, 0.71 mmol) and K2CO3 (293 mg, 2.12 mmol) in dry tetrahydrofuran (THF; 5 ml), stirred in an ice bath for 15 min, was added over a period of 40 min, 4-(3,4-dicyanophenoxy)benzoyl chloride (200 mg, 0.71 mmol) in dry THF (5 ml). The reaction mixture was then stirred for 5 h at room temperature and monitored by [THF–hexane (3:4 v/v) as a mobile phase on silica-gel plates]. The oily residue obtained was dissolved in MeOH. The solvent was evaporated slowly and colourless block-like crystals appeared in ca 10 d (yield 580 mg, 73%).
Supporting information
CCDC reference: 1418026
https://doi.org/10.1107/S2056989015014991/su5187sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014991/su5187Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014991/su5187Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C20H20N4O2·H2O | F(000) = 776 |
Mr = 366.42 | Dx = 1.290 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3102 reflections |
a = 12.9004 (4) Å | θ = 2.4–27.6° |
b = 10.5012 (3) Å | µ = 0.09 mm−1 |
c = 14.1343 (4) Å | T = 100 K |
β = 99.819 (5)° | Block, colourless |
V = 1886.72 (10) Å3 | 0.41 × 0.21 × 0.12 mm |
Z = 4 |
Bruker Kappa APEXII CCD area-detector diffractometer | 4167 independent reflections |
Radiation source: fine-focus sealed tube | 3181 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 27.1°, θmin = 1.6° |
φ and ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −13→8 |
Tmin = 0.964, Tmax = 0.989 | l = −18→8 |
11419 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8262P] where P = (Fo2 + 2Fc2)/3 |
4167 reflections | (Δ/σ)max < 0.001 |
258 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67288 (10) | 0.57054 (11) | 0.44706 (9) | 0.0266 (3) | |
O2 | 0.89189 (10) | 0.80540 (12) | 0.12674 (9) | 0.0268 (3) | |
O3 | 0.03612 (13) | 0.61391 (15) | 0.10156 (11) | 0.0390 (4) | |
H31 | 0.069 (2) | 0.647 (3) | 0.050 (2) | 0.067 (8)* | |
H32 | −0.008 (2) | 0.676 (3) | 0.107 (2) | 0.069 (9)* | |
N1 | 0.44298 (14) | 0.98877 (15) | 0.59877 (12) | 0.0309 (4) | |
N2 | 0.41361 (14) | 0.74623 (16) | 0.79739 (12) | 0.0324 (4) | |
N3 | 0.92472 (12) | 0.97057 (14) | 0.22694 (11) | 0.0218 (3) | |
H3 | 0.9178 (18) | 1.006 (2) | 0.2828 (17) | 0.041 (6)* | |
N4 | 0.84238 (12) | 1.30422 (14) | 0.03388 (11) | 0.0256 (4) | |
C1 | 0.62353 (14) | 0.61497 (16) | 0.51863 (12) | 0.0209 (4) | |
C2 | 0.57723 (14) | 0.73408 (16) | 0.51653 (12) | 0.0207 (4) | |
H2 | 0.5815 | 0.7908 | 0.4668 | 0.025* | |
C3 | 0.52459 (13) | 0.76621 (16) | 0.59012 (12) | 0.0202 (4) | |
C4 | 0.51636 (13) | 0.68108 (16) | 0.66442 (12) | 0.0204 (4) | |
C5 | 0.56370 (15) | 0.56311 (17) | 0.66438 (13) | 0.0244 (4) | |
H5 | 0.5594 | 0.5056 | 0.7136 | 0.029* | |
C6 | 0.61708 (14) | 0.53065 (17) | 0.59187 (13) | 0.0242 (4) | |
H6 | 0.6491 | 0.4512 | 0.5922 | 0.029* | |
C7 | 0.47916 (15) | 0.89059 (17) | 0.59306 (13) | 0.0233 (4) | |
C8 | 0.45955 (14) | 0.71679 (17) | 0.73886 (13) | 0.0234 (4) | |
C9 | 0.71794 (13) | 0.65280 (16) | 0.38897 (12) | 0.0207 (4) | |
C10 | 0.70886 (13) | 0.61852 (16) | 0.29416 (12) | 0.0212 (4) | |
H10 | 0.6684 | 0.5486 | 0.2704 | 0.025* | |
C11 | 0.76049 (13) | 0.68930 (16) | 0.23528 (12) | 0.0208 (4) | |
H11 | 0.7549 | 0.6665 | 0.1710 | 0.025* | |
C12 | 0.82069 (13) | 0.79391 (16) | 0.26930 (12) | 0.0188 (4) | |
C13 | 0.82780 (14) | 0.82712 (17) | 0.36507 (12) | 0.0217 (4) | |
H13 | 0.8671 | 0.8979 | 0.3889 | 0.026* | |
C14 | 0.77737 (14) | 0.75652 (17) | 0.42502 (12) | 0.0232 (4) | |
H14 | 0.7832 | 0.7784 | 0.4895 | 0.028* | |
C15 | 0.88129 (13) | 0.85836 (17) | 0.20237 (12) | 0.0196 (4) | |
C16 | 0.99496 (14) | 1.02932 (18) | 0.16930 (13) | 0.0253 (4) | |
H16A | 1.0372 | 0.9633 | 0.1465 | 0.030* | |
H16B | 1.0424 | 1.0863 | 0.2098 | 0.030* | |
C17 | 0.93865 (15) | 1.10365 (17) | 0.08368 (13) | 0.0246 (4) | |
H17A | 0.9893 | 1.1300 | 0.0441 | 0.029* | |
H17B | 0.8875 | 1.0487 | 0.0452 | 0.029* | |
C18 | 0.88309 (14) | 1.22012 (17) | 0.11356 (13) | 0.0246 (4) | |
H18A | 0.8252 | 1.1927 | 0.1444 | 0.030* | |
H18B | 0.9318 | 1.2676 | 0.1605 | 0.030* | |
C19 | 0.80249 (17) | 1.42049 (19) | 0.07052 (16) | 0.0351 (5) | |
H19A | 0.8586 | 1.4633 | 0.1118 | 0.053* | |
H19B | 0.7477 | 1.3998 | 0.1062 | 0.053* | |
H19C | 0.7748 | 1.4752 | 0.0178 | 0.053* | |
C20 | 0.75924 (17) | 1.2439 (2) | −0.03341 (16) | 0.0389 (5) | |
H20A | 0.7852 | 1.1663 | −0.0567 | 0.058* | |
H20B | 0.7366 | 1.3003 | −0.0863 | 0.058* | |
H20C | 0.7009 | 1.2251 | −0.0016 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0395 (8) | 0.0162 (6) | 0.0278 (7) | 0.0019 (5) | 0.0165 (6) | 0.0011 (5) |
O2 | 0.0318 (7) | 0.0291 (7) | 0.0212 (6) | −0.0018 (6) | 0.0090 (5) | −0.0043 (5) |
O3 | 0.0504 (10) | 0.0340 (9) | 0.0376 (9) | 0.0149 (7) | 0.0218 (7) | 0.0141 (7) |
N1 | 0.0405 (10) | 0.0237 (9) | 0.0304 (9) | 0.0052 (7) | 0.0115 (7) | 0.0025 (7) |
N2 | 0.0398 (10) | 0.0268 (9) | 0.0338 (9) | 0.0026 (7) | 0.0155 (8) | −0.0002 (7) |
N3 | 0.0260 (8) | 0.0203 (8) | 0.0198 (8) | −0.0014 (6) | 0.0058 (6) | 0.0015 (6) |
N4 | 0.0267 (8) | 0.0210 (8) | 0.0297 (8) | −0.0017 (6) | 0.0062 (7) | 0.0022 (6) |
C1 | 0.0231 (9) | 0.0180 (9) | 0.0222 (9) | −0.0005 (7) | 0.0052 (7) | −0.0022 (7) |
C2 | 0.0246 (9) | 0.0179 (9) | 0.0197 (8) | −0.0005 (7) | 0.0043 (7) | 0.0033 (7) |
C3 | 0.0206 (8) | 0.0168 (8) | 0.0225 (9) | −0.0002 (7) | 0.0020 (7) | 0.0002 (7) |
C4 | 0.0209 (8) | 0.0193 (9) | 0.0217 (8) | −0.0024 (7) | 0.0056 (7) | −0.0008 (7) |
C5 | 0.0313 (10) | 0.0191 (9) | 0.0240 (9) | −0.0010 (8) | 0.0083 (7) | 0.0051 (7) |
C6 | 0.0295 (10) | 0.0164 (9) | 0.0280 (9) | 0.0031 (7) | 0.0087 (8) | 0.0031 (7) |
C7 | 0.0281 (9) | 0.0204 (9) | 0.0221 (9) | −0.0020 (7) | 0.0060 (7) | 0.0011 (7) |
C8 | 0.0291 (10) | 0.0164 (9) | 0.0256 (9) | −0.0009 (7) | 0.0069 (8) | 0.0025 (7) |
C9 | 0.0230 (9) | 0.0167 (8) | 0.0232 (9) | 0.0048 (7) | 0.0067 (7) | 0.0041 (7) |
C10 | 0.0202 (9) | 0.0178 (9) | 0.0258 (9) | 0.0007 (7) | 0.0040 (7) | −0.0019 (7) |
C11 | 0.0222 (9) | 0.0216 (9) | 0.0178 (8) | 0.0022 (7) | 0.0014 (7) | −0.0019 (7) |
C12 | 0.0191 (8) | 0.0178 (8) | 0.0195 (8) | 0.0056 (7) | 0.0030 (6) | 0.0016 (6) |
C13 | 0.0260 (9) | 0.0182 (9) | 0.0210 (8) | −0.0005 (7) | 0.0039 (7) | −0.0021 (7) |
C14 | 0.0298 (10) | 0.0229 (9) | 0.0169 (8) | 0.0007 (7) | 0.0040 (7) | −0.0005 (7) |
C15 | 0.0190 (8) | 0.0206 (9) | 0.0185 (8) | 0.0040 (7) | 0.0015 (6) | 0.0016 (7) |
C16 | 0.0213 (9) | 0.0263 (10) | 0.0289 (10) | −0.0025 (7) | 0.0060 (7) | 0.0037 (8) |
C17 | 0.0261 (9) | 0.0236 (10) | 0.0251 (9) | −0.0018 (7) | 0.0074 (7) | 0.0022 (7) |
C18 | 0.0240 (9) | 0.0244 (10) | 0.0259 (9) | −0.0022 (7) | 0.0055 (7) | 0.0009 (7) |
C19 | 0.0359 (11) | 0.0263 (10) | 0.0452 (12) | 0.0042 (9) | 0.0128 (9) | 0.0023 (9) |
C20 | 0.0384 (12) | 0.0285 (11) | 0.0444 (13) | −0.0020 (9) | −0.0083 (10) | 0.0059 (9) |
O1—C1 | 1.366 (2) | C11—C10 | 1.370 (2) |
O1—C9 | 1.386 (2) | C11—H11 | 0.9300 |
O2—C15 | 1.233 (2) | C12—C11 | 1.383 (2) |
O3—H31 | 0.96 (3) | C12—C13 | 1.386 (2) |
O3—H32 | 0.87 (3) | C13—H13 | 0.9300 |
N1—C7 | 1.140 (2) | C14—C9 | 1.379 (2) |
N3—C16 | 1.455 (2) | C14—C13 | 1.371 (2) |
N3—H3 | 0.89 (2) | C14—H14 | 0.9300 |
N4—C18 | 1.457 (2) | C15—N3 | 1.325 (2) |
N4—C19 | 1.454 (2) | C15—C12 | 1.489 (2) |
N4—C20 | 1.452 (2) | C16—C17 | 1.517 (2) |
C1—C2 | 1.384 (2) | C16—H16A | 0.9700 |
C1—C6 | 1.376 (2) | C16—H16B | 0.9700 |
C2—C3 | 1.378 (2) | C17—C18 | 1.514 (3) |
C2—H2 | 0.9300 | C17—H17A | 0.9700 |
C4—C3 | 1.397 (2) | C17—H17B | 0.9700 |
C4—C5 | 1.381 (2) | C18—H18A | 0.9700 |
C5—C6 | 1.372 (3) | C18—H18B | 0.9700 |
C5—H5 | 0.9300 | C19—H19A | 0.9600 |
C6—H6 | 0.9300 | C19—H19B | 0.9600 |
C7—C3 | 1.435 (2) | C19—H19C | 0.9600 |
C8—N2 | 1.140 (2) | C20—H20A | 0.9600 |
C8—C4 | 1.431 (3) | C20—H20B | 0.9600 |
C10—C9 | 1.373 (2) | C20—H20C | 0.9600 |
C10—H10 | 0.9300 | ||
C1—O1—C9 | 121.43 (13) | C12—C13—H13 | 119.7 |
H31—O3—H32 | 99 (2) | C14—C13—C12 | 120.56 (16) |
C15—N3—C16 | 120.40 (16) | C14—C13—H13 | 119.7 |
C15—N3—H3 | 120.2 (15) | C9—C14—H14 | 120.3 |
C16—N3—H3 | 119.0 (15) | C13—C14—C9 | 119.44 (16) |
C19—N4—C18 | 109.66 (15) | C13—C14—H14 | 120.3 |
C20—N4—C18 | 111.73 (15) | O2—C15—N3 | 121.58 (16) |
C20—N4—C19 | 109.46 (16) | O2—C15—C12 | 119.59 (16) |
O1—C1—C2 | 123.13 (15) | N3—C15—C12 | 118.82 (15) |
O1—C1—C6 | 115.67 (15) | N3—C16—C17 | 113.93 (15) |
C6—C1—C2 | 121.10 (16) | N3—C16—H16A | 108.8 |
C1—C2—H2 | 120.9 | N3—C16—H16B | 108.8 |
C3—C2—C1 | 118.13 (16) | C17—C16—H16A | 108.8 |
C3—C2—H2 | 120.9 | C17—C16—H16B | 108.8 |
C2—C3—C4 | 121.43 (16) | H16A—C16—H16B | 107.7 |
C2—C3—C7 | 120.07 (16) | C16—C17—H17A | 109.2 |
C4—C3—C7 | 118.48 (16) | C16—C17—H17B | 109.2 |
C5—C4—C3 | 118.90 (16) | C18—C17—C16 | 112.23 (15) |
C5—C4—C8 | 121.15 (16) | C18—C17—H17A | 109.2 |
C3—C4—C8 | 119.95 (16) | C18—C17—H17B | 109.2 |
C4—C5—H5 | 119.9 | H17A—C17—H17B | 107.9 |
C6—C5—C4 | 120.11 (16) | N4—C18—C17 | 113.55 (15) |
C6—C5—H5 | 119.9 | N4—C18—H18A | 108.9 |
C1—C6—H6 | 119.8 | N4—C18—H18B | 108.9 |
C5—C6—C1 | 120.32 (17) | C17—C18—H18A | 108.9 |
C5—C6—H6 | 119.8 | C17—C18—H18B | 108.9 |
N1—C7—C3 | 177.56 (19) | H18A—C18—H18B | 107.7 |
N2—C8—C4 | 179.2 (2) | N4—C19—H19A | 109.5 |
C10—C9—O1 | 116.12 (16) | N4—C19—H19B | 109.5 |
C10—C9—C14 | 121.15 (16) | N4—C19—H19C | 109.5 |
C14—C9—O1 | 122.44 (15) | H19A—C19—H19B | 109.5 |
C9—C10—H10 | 120.6 | H19A—C19—H19C | 109.5 |
C11—C10—C9 | 118.76 (16) | H19B—C19—H19C | 109.5 |
C11—C10—H10 | 120.6 | N4—C20—H20A | 109.5 |
C10—C11—C12 | 121.46 (16) | N4—C20—H20B | 109.5 |
C10—C11—H11 | 119.3 | N4—C20—H20C | 109.5 |
C12—C11—H11 | 119.3 | H20A—C20—H20B | 109.5 |
C11—C12—C13 | 118.63 (16) | H20A—C20—H20C | 109.5 |
C11—C12—C15 | 117.69 (15) | H20B—C20—H20C | 109.5 |
C13—C12—C15 | 123.50 (16) | ||
C9—O1—C1—C2 | 26.8 (2) | C4—C5—C6—C1 | −0.2 (3) |
C9—O1—C1—C6 | −156.73 (16) | C11—C10—C9—O1 | −173.73 (15) |
C1—O1—C9—C10 | −142.73 (16) | C11—C10—C9—C14 | 0.2 (3) |
C1—O1—C9—C14 | 43.4 (2) | C12—C11—C10—C9 | −0.2 (3) |
C15—N3—C16—C17 | 84.1 (2) | C13—C12—C11—C10 | −0.3 (3) |
C20—N4—C18—C17 | 65.6 (2) | C15—C12—C11—C10 | 174.86 (15) |
C19—N4—C18—C17 | −172.83 (16) | C11—C12—C13—C14 | 0.9 (3) |
O1—C1—C2—C3 | 176.48 (16) | C15—C12—C13—C14 | −173.97 (16) |
C6—C1—C2—C3 | 0.2 (3) | C13—C14—C9—O1 | 173.93 (16) |
O1—C1—C6—C5 | −176.17 (16) | C13—C14—C9—C10 | 0.4 (3) |
C2—C1—C6—C5 | 0.4 (3) | C9—C14—C13—C12 | −0.9 (3) |
C1—C2—C3—C4 | −0.9 (3) | O2—C15—N3—C16 | −5.9 (2) |
C1—C2—C3—C7 | 177.39 (16) | C12—C15—N3—C16 | 172.51 (14) |
C5—C4—C3—C2 | 1.1 (3) | O2—C15—C12—C11 | −13.1 (2) |
C5—C4—C3—C7 | −177.27 (16) | O2—C15—C12—C13 | 161.88 (16) |
C8—C4—C3—C2 | −178.93 (16) | N3—C15—C12—C11 | 168.50 (15) |
C8—C4—C3—C7 | 2.7 (2) | N3—C15—C12—C13 | −16.6 (2) |
C3—C4—C5—C6 | −0.5 (3) | N3—C16—C17—C18 | 66.6 (2) |
C8—C4—C5—C6 | 179.52 (17) | C16—C17—C18—N4 | 170.87 (15) |
Cg2 is the centroid of the phenoxy ring C9—C14. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O3i | 0.89 (2) | 1.99 (2) | 2.825 (2) | 155 (2) |
O3—H31···N4ii | 0.97 (3) | 1.85 (3) | 2.808 (2) | 168 (3) |
O3—H32···O2iii | 0.88 (3) | 1.93 (3) | 2.803 (2) | 176 (3) |
C13—H13···O3i | 0.93 | 2.58 | 3.477 (2) | 162 |
C14—H14···O2iv | 0.93 | 2.36 | 3.049 (2) | 131 |
C16—H16B···Cg2v | 0.97 | 2.96 | 3.661 (2) | 130 |
C2—H2···N1vi | 0.93 | 2.49 | 3.324 (2) | 149 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+2, −z; (iii) x−1, y, z; (iv) x, −y+3/2, z+1/2; (v) −x, y+1/2, −z+1/2; (vi) −x+1, −y+2, −z+1. |
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Çolak, S. & Yıldız, S. Z. (2014). Turk. J. Chem. 38, 1153–1165. Google Scholar
Fang, X., Wang, J.-D., Chen, L.-P., Chi, C. & Chen, N.-S. (2007). Jiegou Huaxue (Chin. J. Struct. Chem.), 26, 8. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Göksel, M., Durmuş, M. & Atilla, D. (2013). J. Photochem. Photobiol. Chem. 266, 37–46. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Karadayı, N., Işık, Ş., Akdemir, N., Ağar, E. & Özil, M. (2004). Acta Cryst. E60, o254–o255. CSD CrossRef IUCr Journals Google Scholar
Karaoğlan, G. K., Gümrükçü, G., Koca, A., Gül, A. & Avcıata, U. (2011). Dyes Pigments, 90, 11–20. Google Scholar
Kim, G., Yoo, C. E., Kim, M., Kang, H. J., Park, D., Lee, M. & Huh, N. (2012). Bioconjugate Chem. 23, 2114–2120. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ocak Ískeleli, N. (2007). Acta Cryst. E63, o997–o998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roy, A., Kundu, D., Kundu, S. K., Majee, A. & Hajra, A. (2010). The Open Catalysis J. 3, 34–39. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.