research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(3,4-di­cyano­phen­­oxy)-N-[3-(di­methyl­amino)­prop­yl]benzamide mono­hydrate: a phen­­oxy­phthalo­nitrile derivative

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sakarya University, 54187 Esentepe, Sakarya, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 August 2015; accepted 11 August 2015; online 15 August 2015)

In the title compound, C20H20N4O2·H2O, the planes of the phen­oxy and phthalo­nitrile rings are oriented at a dihedral angle of 60.39 (5)°. The 3-(di­­methyl­amino)­propyl chain has an extended conformation and is cis with respect to the phthalo­nitrile ring. In the crystal, O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules to form slabs parallel to (100). There are also C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions present within the slabs. The slabs are linked by a pair of inversion-related C—H⋯N hydrogen bonds, involving phthalo­nitrile rings, forming a three-dimensional structure.

1. Chemical context

Amido amine derivatives are suggested as exhibiting an outstanding combination of surfactant properties. Well-known application fields for amino derivatives are their use as synthetic inter­mediates of anti­cancer agents, anti­biotics and other drugs. They also exhibit exceptionally low ocular irritation and oral toxicity, being well tolerated by human tissue (Roy et al., 2010[Roy, A., Kundu, D., Kundu, S. K., Majee, A. & Hajra, A. (2010). The Open Catalysis J. 3, 34-39.]). Amides and amido amines of fatty acids and polyamine products are used as typical corrosion inhibitors in high dosage, despite their poor biodegradability, because of their extremely good oil solubility. Polyamines play an important role in cell growth and bind to the phosphate residues of DNA, stabilizing the specific conformation of the latter (Karaoğlan et al., 2011[Karaoğlan, G. K., Gümrükçü, G., Koca, A., Gül, A. & Avcıata, U. (2011). Dyes Pigments, 90, 11-20.]; Göksel et al., 2013[Göksel, M., Durmuş, M. & Atilla, D. (2013). J. Photochem. Photobiol. Chem. 266, 37-46.]; Kim et al., 2012[Kim, G., Yoo, C. E., Kim, M., Kang, H. J., Park, D., Lee, M. & Huh, N. (2012). Bioconjugate Chem. 23, 2114-2120.]; Çolak et al., 2014[Çolak, S. & Yıldız, S. Z. (2014). Turk. J. Chem. 38, 1153-1165.]). In this context, we synthesized 4-(3,4-di­cyano­phen­oxy)-N-[3-(di­methyl­amino)­prop­yl]benzamide monohydrate and report herein on its crystal structure.

2. Structural commentary

The mol­ecular structure of the title compound, which crystallized as a monohydrate, is illustrated in Fig. 1[link]. The phthalo­nitrile (A = atoms C1–C6) and phen­oxy (B = atoms C9–C14) rings are oriented at a dihedral angle of 60.39 (5)°. Atoms O1 N1, N2, C7 and C8 are at distances of 0.0799 (13), −0.1207 (18), 0.0366 (18), −0.0613 (19) and 0.0183 (18) Å, respectively, from phthalo­nitrile ring A, and are thus almost coplanar with this ring. In contrast, atoms O1, N3 and C15 are displaced by −0.1329 (13), 0.1004 (15) and −0.1247 (17) Å, respectively, from phen­oxy ring B. The mean plane of the amide group (C15/O2/N3) makes a dihedral angle of 15.8 (2)° with that of phen­oxy ring B. The 3-(di­methyl­amino)­propyl chain [N4/C16–C18; maximum deviation = 0.057 (2) Å] has an extended conformation and its mean plane is inclined to ring B by 68.53 (16)°, and by 28.69 (16)° to phthalo­nitrile ring A.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, N—Hamd⋯Ow (amd = amide; w = water), O—Hw. .Oamd and O—Hw⋯Ndma (dma = di­methyl­amino) hydrogen bonds (Table 1[link] and Fig. 2[link]) link mol­ecules to form slabs lying parallel to (100). Within the slabs there are also C—H⋯O hydrogen bonds and C—H⋯π inter­actions present (Table 1[link]). The N—Hamd⋯Ow, C—Hphen⋯Ow (phen = phen­oxy), and the O—Hw⋯ Oamd, C—Hphen⋯Oamd and C—Hphen⋯Ow hydrogen bonds form R22(7) and R33(7) ring motifs, respectively (Table 1[link] and Fig. 3[link]). The slabs are linked via a pair of inversion-related Cphn—H⋯Nphn (phn = phthalo­nitrile) hydrogen bonds, forming a three-dimensional structure (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the phen­oxy ring C9—C14.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.89 (2) 1.99 (2) 2.825 (2) 155 (2)
O3—H31⋯N4ii 0.97 (3) 1.85 (3) 2.808 (2) 168 (3)
O3—H32⋯O2iii 0.88 (3) 1.93 (3) 2.803 (2) 176 (3)
C13—H13⋯O3i 0.93 2.58 3.477 (2) 162
C14—H14⋯O2iv 0.93 2.36 3.049 (2) 131
C16—H16BCg2v 0.97 2.96 3.661 (2) 130
C2—H2⋯N1vi 0.93 2.49 3.324 (2) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) x-1, y, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Part of the crystal packing of the title compound. The O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). Only H atoms involved in hydrogen bonding have been included for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound. The N—Hamd⋯Ow, O—Hw⋯Oamd, O—Hw⋯Ndma, C—Hphen⋯Oamd and C—Hphen⋯Ow (amd = amide, dma = di­methyl­amino, w = water and phen = phen­oxy) hydrogen bonds, enclosing R22(7) and R33(7) ring motifs, are shown as dashed lines (see Table 1[link]). Only H atoms involved in hydrogen bonding have been included for clarity.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). Only H atoms involved in hydrogen bonding (grey balls) have been included for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 29 hits for 4-phen­oxy­phthalo­nitrile, with no substituents in the positions ortho to the bridging O atom. The dihedral angle between the planes of the phthalo­nitrile and phen­oxy rings varies from ca 50.2–88.1°. In 4-phen­oxy­phthalo­nitrile itself (CSD refcode NIKFOD; Fang et al., 2007[Fang, X., Wang, J.-D., Chen, L.-P., Chi, C. & Chen, N.-S. (2007). Jiegou Huaxue (Chin. J. Struct. Chem.), 26, 8.]) and two other similar compounds, namely 4-(m-tol­yloxy)phthalo­nitrile (JEVSAF; Ocak Ískeleli, 2007[Ocak Ískeleli, N. (2007). Acta Cryst. E63, o997-o998.]) and 4-(4-benzyl­oxyphen­oxy)phthalo­nitrile (IROSOX; Karadayı et al., 2004[Karadayı, N., Işık, Ş., Akdemir, N., Ağar, E. & Özil, M. (2004). Acta Cryst. E60, o254-o255.]), the dihedral angles between the two aromatic rings are ca 72.03, 68.18 and 71.31 °, respectively; similar to the same dihedral angle in the title compound, viz. 68.53 (16)°.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. The water H atoms (H31 and H32) and the N—H H atom (H3) were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H20N4O2·H2O
Mr 366.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9004 (4), 10.5012 (3), 14.1343 (4)
β (°) 99.819 (5)
V3) 1886.72 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.41 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.964, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 11419, 4167, 3181
Rint 0.048
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.03
No. of reflections 4167
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

6. Synthesis and crystallization

To a mixture of N,N-di­methyl­propane-1,3-di­amine (72 mg, 0.71 mmol) and K2CO3 (293 mg, 2.12 mmol) in dry tetra­hydro­furan (THF; 5 ml), stirred in an ice bath for 15 min, was added over a period of 40 min, 4-(3,4-di­cyano­phen­oxy)benzoyl chloride (200 mg, 0.71 mmol) in dry THF (5 ml). The reaction mixture was then stirred for 5 h at room temperature and monitored by thin-layer chromatography [THF–hexane (3:4 v/v) as a mobile phase on silica-gel plates]. The oily residue obtained was dissolved in MeOH. The solvent was evaporated slowly and colourless block-like crystals appeared in ca 10 d (yield 580 mg, 73%).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-(3,4-Dicyanophenoxy)-N-[3-(dimethylamino)propyl]benzamide monohydrate top
Crystal data top
C20H20N4O2·H2OF(000) = 776
Mr = 366.42Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3102 reflections
a = 12.9004 (4) Åθ = 2.4–27.6°
b = 10.5012 (3) ŵ = 0.09 mm1
c = 14.1343 (4) ÅT = 100 K
β = 99.819 (5)°Block, colourless
V = 1886.72 (10) Å30.41 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4167 independent reflections
Radiation source: fine-focus sealed tube3181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.3333 pixels mm-1θmax = 27.1°, θmin = 1.6°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 138
Tmin = 0.964, Tmax = 0.989l = 188
11419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8262P]
where P = (Fo2 + 2Fc2)/3
4167 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67288 (10)0.57054 (11)0.44706 (9)0.0266 (3)
O20.89189 (10)0.80540 (12)0.12674 (9)0.0268 (3)
O30.03612 (13)0.61391 (15)0.10156 (11)0.0390 (4)
H310.069 (2)0.647 (3)0.050 (2)0.067 (8)*
H320.008 (2)0.676 (3)0.107 (2)0.069 (9)*
N10.44298 (14)0.98877 (15)0.59877 (12)0.0309 (4)
N20.41361 (14)0.74623 (16)0.79739 (12)0.0324 (4)
N30.92472 (12)0.97057 (14)0.22694 (11)0.0218 (3)
H30.9178 (18)1.006 (2)0.2828 (17)0.041 (6)*
N40.84238 (12)1.30422 (14)0.03388 (11)0.0256 (4)
C10.62353 (14)0.61497 (16)0.51863 (12)0.0209 (4)
C20.57723 (14)0.73408 (16)0.51653 (12)0.0207 (4)
H20.58150.79080.46680.025*
C30.52459 (13)0.76621 (16)0.59012 (12)0.0202 (4)
C40.51636 (13)0.68108 (16)0.66442 (12)0.0204 (4)
C50.56370 (15)0.56311 (17)0.66438 (13)0.0244 (4)
H50.55940.50560.71360.029*
C60.61708 (14)0.53065 (17)0.59187 (13)0.0242 (4)
H60.64910.45120.59220.029*
C70.47916 (15)0.89059 (17)0.59306 (13)0.0233 (4)
C80.45955 (14)0.71679 (17)0.73886 (13)0.0234 (4)
C90.71794 (13)0.65280 (16)0.38897 (12)0.0207 (4)
C100.70886 (13)0.61852 (16)0.29416 (12)0.0212 (4)
H100.66840.54860.27040.025*
C110.76049 (13)0.68930 (16)0.23528 (12)0.0208 (4)
H110.75490.66650.17100.025*
C120.82069 (13)0.79391 (16)0.26930 (12)0.0188 (4)
C130.82780 (14)0.82712 (17)0.36507 (12)0.0217 (4)
H130.86710.89790.38890.026*
C140.77737 (14)0.75652 (17)0.42502 (12)0.0232 (4)
H140.78320.77840.48950.028*
C150.88129 (13)0.85836 (17)0.20237 (12)0.0196 (4)
C160.99496 (14)1.02932 (18)0.16930 (13)0.0253 (4)
H16A1.03720.96330.14650.030*
H16B1.04241.08630.20980.030*
C170.93865 (15)1.10365 (17)0.08368 (13)0.0246 (4)
H17A0.98931.13000.04410.029*
H17B0.88751.04870.04520.029*
C180.88309 (14)1.22012 (17)0.11356 (13)0.0246 (4)
H18A0.82521.19270.14440.030*
H18B0.93181.26760.16050.030*
C190.80249 (17)1.42049 (19)0.07052 (16)0.0351 (5)
H19A0.85861.46330.11180.053*
H19B0.74771.39980.10620.053*
H19C0.77481.47520.01780.053*
C200.75924 (17)1.2439 (2)0.03341 (16)0.0389 (5)
H20A0.78521.16630.05670.058*
H20B0.73661.30030.08630.058*
H20C0.70091.22510.00160.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (8)0.0162 (6)0.0278 (7)0.0019 (5)0.0165 (6)0.0011 (5)
O20.0318 (7)0.0291 (7)0.0212 (6)0.0018 (6)0.0090 (5)0.0043 (5)
O30.0504 (10)0.0340 (9)0.0376 (9)0.0149 (7)0.0218 (7)0.0141 (7)
N10.0405 (10)0.0237 (9)0.0304 (9)0.0052 (7)0.0115 (7)0.0025 (7)
N20.0398 (10)0.0268 (9)0.0338 (9)0.0026 (7)0.0155 (8)0.0002 (7)
N30.0260 (8)0.0203 (8)0.0198 (8)0.0014 (6)0.0058 (6)0.0015 (6)
N40.0267 (8)0.0210 (8)0.0297 (8)0.0017 (6)0.0062 (7)0.0022 (6)
C10.0231 (9)0.0180 (9)0.0222 (9)0.0005 (7)0.0052 (7)0.0022 (7)
C20.0246 (9)0.0179 (9)0.0197 (8)0.0005 (7)0.0043 (7)0.0033 (7)
C30.0206 (8)0.0168 (8)0.0225 (9)0.0002 (7)0.0020 (7)0.0002 (7)
C40.0209 (8)0.0193 (9)0.0217 (8)0.0024 (7)0.0056 (7)0.0008 (7)
C50.0313 (10)0.0191 (9)0.0240 (9)0.0010 (8)0.0083 (7)0.0051 (7)
C60.0295 (10)0.0164 (9)0.0280 (9)0.0031 (7)0.0087 (8)0.0031 (7)
C70.0281 (9)0.0204 (9)0.0221 (9)0.0020 (7)0.0060 (7)0.0011 (7)
C80.0291 (10)0.0164 (9)0.0256 (9)0.0009 (7)0.0069 (8)0.0025 (7)
C90.0230 (9)0.0167 (8)0.0232 (9)0.0048 (7)0.0067 (7)0.0041 (7)
C100.0202 (9)0.0178 (9)0.0258 (9)0.0007 (7)0.0040 (7)0.0019 (7)
C110.0222 (9)0.0216 (9)0.0178 (8)0.0022 (7)0.0014 (7)0.0019 (7)
C120.0191 (8)0.0178 (8)0.0195 (8)0.0056 (7)0.0030 (6)0.0016 (6)
C130.0260 (9)0.0182 (9)0.0210 (8)0.0005 (7)0.0039 (7)0.0021 (7)
C140.0298 (10)0.0229 (9)0.0169 (8)0.0007 (7)0.0040 (7)0.0005 (7)
C150.0190 (8)0.0206 (9)0.0185 (8)0.0040 (7)0.0015 (6)0.0016 (7)
C160.0213 (9)0.0263 (10)0.0289 (10)0.0025 (7)0.0060 (7)0.0037 (8)
C170.0261 (9)0.0236 (10)0.0251 (9)0.0018 (7)0.0074 (7)0.0022 (7)
C180.0240 (9)0.0244 (10)0.0259 (9)0.0022 (7)0.0055 (7)0.0009 (7)
C190.0359 (11)0.0263 (10)0.0452 (12)0.0042 (9)0.0128 (9)0.0023 (9)
C200.0384 (12)0.0285 (11)0.0444 (13)0.0020 (9)0.0083 (10)0.0059 (9)
Geometric parameters (Å, º) top
O1—C11.366 (2)C11—C101.370 (2)
O1—C91.386 (2)C11—H110.9300
O2—C151.233 (2)C12—C111.383 (2)
O3—H310.96 (3)C12—C131.386 (2)
O3—H320.87 (3)C13—H130.9300
N1—C71.140 (2)C14—C91.379 (2)
N3—C161.455 (2)C14—C131.371 (2)
N3—H30.89 (2)C14—H140.9300
N4—C181.457 (2)C15—N31.325 (2)
N4—C191.454 (2)C15—C121.489 (2)
N4—C201.452 (2)C16—C171.517 (2)
C1—C21.384 (2)C16—H16A0.9700
C1—C61.376 (2)C16—H16B0.9700
C2—C31.378 (2)C17—C181.514 (3)
C2—H20.9300C17—H17A0.9700
C4—C31.397 (2)C17—H17B0.9700
C4—C51.381 (2)C18—H18A0.9700
C5—C61.372 (3)C18—H18B0.9700
C5—H50.9300C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C31.435 (2)C19—H19C0.9600
C8—N21.140 (2)C20—H20A0.9600
C8—C41.431 (3)C20—H20B0.9600
C10—C91.373 (2)C20—H20C0.9600
C10—H100.9300
C1—O1—C9121.43 (13)C12—C13—H13119.7
H31—O3—H3299 (2)C14—C13—C12120.56 (16)
C15—N3—C16120.40 (16)C14—C13—H13119.7
C15—N3—H3120.2 (15)C9—C14—H14120.3
C16—N3—H3119.0 (15)C13—C14—C9119.44 (16)
C19—N4—C18109.66 (15)C13—C14—H14120.3
C20—N4—C18111.73 (15)O2—C15—N3121.58 (16)
C20—N4—C19109.46 (16)O2—C15—C12119.59 (16)
O1—C1—C2123.13 (15)N3—C15—C12118.82 (15)
O1—C1—C6115.67 (15)N3—C16—C17113.93 (15)
C6—C1—C2121.10 (16)N3—C16—H16A108.8
C1—C2—H2120.9N3—C16—H16B108.8
C3—C2—C1118.13 (16)C17—C16—H16A108.8
C3—C2—H2120.9C17—C16—H16B108.8
C2—C3—C4121.43 (16)H16A—C16—H16B107.7
C2—C3—C7120.07 (16)C16—C17—H17A109.2
C4—C3—C7118.48 (16)C16—C17—H17B109.2
C5—C4—C3118.90 (16)C18—C17—C16112.23 (15)
C5—C4—C8121.15 (16)C18—C17—H17A109.2
C3—C4—C8119.95 (16)C18—C17—H17B109.2
C4—C5—H5119.9H17A—C17—H17B107.9
C6—C5—C4120.11 (16)N4—C18—C17113.55 (15)
C6—C5—H5119.9N4—C18—H18A108.9
C1—C6—H6119.8N4—C18—H18B108.9
C5—C6—C1120.32 (17)C17—C18—H18A108.9
C5—C6—H6119.8C17—C18—H18B108.9
N1—C7—C3177.56 (19)H18A—C18—H18B107.7
N2—C8—C4179.2 (2)N4—C19—H19A109.5
C10—C9—O1116.12 (16)N4—C19—H19B109.5
C10—C9—C14121.15 (16)N4—C19—H19C109.5
C14—C9—O1122.44 (15)H19A—C19—H19B109.5
C9—C10—H10120.6H19A—C19—H19C109.5
C11—C10—C9118.76 (16)H19B—C19—H19C109.5
C11—C10—H10120.6N4—C20—H20A109.5
C10—C11—C12121.46 (16)N4—C20—H20B109.5
C10—C11—H11119.3N4—C20—H20C109.5
C12—C11—H11119.3H20A—C20—H20B109.5
C11—C12—C13118.63 (16)H20A—C20—H20C109.5
C11—C12—C15117.69 (15)H20B—C20—H20C109.5
C13—C12—C15123.50 (16)
C9—O1—C1—C226.8 (2)C4—C5—C6—C10.2 (3)
C9—O1—C1—C6156.73 (16)C11—C10—C9—O1173.73 (15)
C1—O1—C9—C10142.73 (16)C11—C10—C9—C140.2 (3)
C1—O1—C9—C1443.4 (2)C12—C11—C10—C90.2 (3)
C15—N3—C16—C1784.1 (2)C13—C12—C11—C100.3 (3)
C20—N4—C18—C1765.6 (2)C15—C12—C11—C10174.86 (15)
C19—N4—C18—C17172.83 (16)C11—C12—C13—C140.9 (3)
O1—C1—C2—C3176.48 (16)C15—C12—C13—C14173.97 (16)
C6—C1—C2—C30.2 (3)C13—C14—C9—O1173.93 (16)
O1—C1—C6—C5176.17 (16)C13—C14—C9—C100.4 (3)
C2—C1—C6—C50.4 (3)C9—C14—C13—C120.9 (3)
C1—C2—C3—C40.9 (3)O2—C15—N3—C165.9 (2)
C1—C2—C3—C7177.39 (16)C12—C15—N3—C16172.51 (14)
C5—C4—C3—C21.1 (3)O2—C15—C12—C1113.1 (2)
C5—C4—C3—C7177.27 (16)O2—C15—C12—C13161.88 (16)
C8—C4—C3—C2178.93 (16)N3—C15—C12—C11168.50 (15)
C8—C4—C3—C72.7 (2)N3—C15—C12—C1316.6 (2)
C3—C4—C5—C60.5 (3)N3—C16—C17—C1866.6 (2)
C8—C4—C5—C6179.52 (17)C16—C17—C18—N4170.87 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the phenoxy ring C9—C14.
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.89 (2)1.99 (2)2.825 (2)155 (2)
O3—H31···N4ii0.97 (3)1.85 (3)2.808 (2)168 (3)
O3—H32···O2iii0.88 (3)1.93 (3)2.803 (2)176 (3)
C13—H13···O3i0.932.583.477 (2)162
C14—H14···O2iv0.932.363.049 (2)131
C16—H16B···Cg2v0.972.963.661 (2)130
C2—H2···N1vi0.932.493.324 (2)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+2, z; (iii) x1, y, z; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+2, z+1.
 

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationÇolak, S. & Yıldız, S. Z. (2014). Turk. J. Chem. 38, 1153–1165.  Google Scholar
First citationFang, X., Wang, J.-D., Chen, L.-P., Chi, C. & Chen, N.-S. (2007). Jiegou Huaxue (Chin. J. Struct. Chem.), 26, 8.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGöksel, M., Durmuş, M. & Atilla, D. (2013). J. Photochem. Photobiol. Chem. 266, 37–46.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaradayı, N., Işık, Ş., Akdemir, N., Ağar, E. & Özil, M. (2004). Acta Cryst. E60, o254–o255.  CSD CrossRef IUCr Journals Google Scholar
First citationKaraoğlan, G. K., Gümrükçü, G., Koca, A., Gül, A. & Avcıata, U. (2011). Dyes Pigments, 90, 11–20.  Google Scholar
First citationKim, G., Yoo, C. E., Kim, M., Kang, H. J., Park, D., Lee, M. & Huh, N. (2012). Bioconjugate Chem. 23, 2114–2120.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOcak Ískeleli, N. (2007). Acta Cryst. E63, o997–o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoy, A., Kundu, D., Kundu, S. K., Majee, A. & Hajra, A. (2010). The Open Catalysis J. 3, 34–39.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds