organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-cyano-1-methyl­pyridinium bromide

aDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 October 2015; accepted 10 October 2015; online 17 October 2015)

In the title mol­ecular salt, C7H7N2+·Br, all the non-H atoms lie on crystallographic mirror planes. The packing consists of (010) cation–anion layers, with the cations forming dimeric units via very weak pairwise C—H⋯N inter­actions. Weak C—H⋯Br inter­actions link the cations to the anions.

1. Related literature

For structures of other salts of the 2-cyano-1-methyl­pyridinium cation, see: Koplitz et al. (2012[Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.]); Kammer et al. (2013[Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.]); Vaccaro et al. (2015[Vaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697-o698.]). For structures of salts of the isomeric 2-cyano­anilinium cation, see: Oueslati et al. (2005[Oueslati, A., Kefi, R., Akriche, S. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365-366.]); Cui & Wen (2008[Cui, L.-J. & Wen, X.-C. (2008). Acta Cryst. E64, o1620.]); Zhang, L. (2009[Zhang, L. (2009). Acta Cryst. E65, o2407.]); Zhang, Y. (2009[Zhang, Y. (2009). Acta Cryst. E65, o2373.]); Cui & Chen (2010[Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.]); Vumbaco et al. (2013[Vumbaco, D. J., Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1288.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H7N2+·Br

  • Mr = 199.06

  • Monoclinic, C 2/m

  • a = 13.3039 (12) Å

  • b = 6.5892 (6) Å

  • c = 9.3753 (8) Å

  • β = 92.419 (1)°

  • V = 821.13 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 150 K

  • 0.20 × 0.15 × 0.06 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.44, Tmax = 0.74

  • 22367 measured reflections

  • 1179 independent reflections

  • 1084 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.048

  • S = 1.02

  • 1179 reflections

  • 62 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.95 2.66 3.549 (3) 155
C1—H1A⋯Br1ii 0.98 2.96 3.876 (2) 156
C2—H2⋯Br1ii 0.95 2.66 3.586 (2) 166
C3—H3⋯Br1iii 0.95 2.77 3.711 (2) 170
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The cation in the title compound has crystallographically imposed mirror symmetry with the methyl H atoms slightly disordered about the mirror. The packing thus consists of cation/anion layers (Fig. 2) with the cations forming dimeric units via weak, pairwise C5—H5···N2 interactions (Fig. 3 and Table 1). Within the layers weak C—H···Br interactions tie the cations and anions together (Fig. 3 and Table 1).

Related literature top

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Oueslati et al. (2005); Cui & Wen (2008); Zhang, L. (2009); Zhang, Y. (2009); Cui & Chen (2010); Vumbaco et al. (2013).

Experimental top

2-Cyanopyridine (4.04 g, 38.8 mmol) was first melted in a warm water bath and then dissolved in toluene (15 ml). Gaseous bromomethane was condensed (roughly 5 ml, 170 mmol) and added to this solution slowly. The reaction mixture was thoroughly mixed to yield a light amber homogenous solution and left to evaporate slowly. Light yellow shiny flakes of 2-cyano-1-methylpyridinium bromide (m.p. 196.4–197.4 C) were collected by vacuum filtration.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Trial refinements with the single-component reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Structure description top

The cation in the title compound has crystallographically imposed mirror symmetry with the methyl H atoms slightly disordered about the mirror. The packing thus consists of cation/anion layers (Fig. 2) with the cations forming dimeric units via weak, pairwise C5—H5···N2 interactions (Fig. 3 and Table 1). Within the layers weak C—H···Br interactions tie the cations and anions together (Fig. 3 and Table 1).

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Oueslati et al. (2005); Cui & Wen (2008); Zhang, L. (2009); Zhang, Y. (2009); Cui & Chen (2010); Vumbaco et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The title compound with labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the c axis showing the layer structure.
[Figure 3] Fig. 3. Packing viewed down the b axis showing the weak C—H···N (blue dotted lines) and C—H···Br (orange dotted lines) interactions.
2-Cyano-1-methylpyridinium bromide top
Crystal data top
C7H7N2+·BrF(000) = 392
Mr = 199.06Dx = 1.610 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 13.3039 (12) ÅCell parameters from 9936 reflections
b = 6.5892 (6) Åθ = 2.2–29.1°
c = 9.3753 (8) ŵ = 4.93 mm1
β = 92.419 (1)°T = 150 K
V = 821.13 (13) Å3Block, colourless
Z = 40.20 × 0.15 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1179 independent reflections
Radiation source: fine-focus sealed tube1084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 2.2°
φ and ω scansh = 1818
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 88
Tmin = 0.44, Tmax = 0.74l = 1212
22367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
1179 reflections(Δ/σ)max = 0.001
62 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C7H7N2+·BrV = 821.13 (13) Å3
Mr = 199.06Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.3039 (12) ŵ = 4.93 mm1
b = 6.5892 (6) ÅT = 150 K
c = 9.3753 (8) Å0.20 × 0.15 × 0.06 mm
β = 92.419 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1179 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
1084 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 0.74Rint = 0.021
22367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
1179 reflectionsΔρmin = 0.44 e Å3
62 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 1897 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180 ° rotation about a*. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Trial refinements with the single-component reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.29873 (14)0.00000.32868 (18)0.0177 (4)
N20.53530 (17)0.00000.1900 (3)0.0399 (6)
C10.36322 (18)0.00000.4616 (2)0.0239 (5)
H1A0.32120.01770.54400.036*0.5
H1B0.41180.11160.45840.036*0.5
H1C0.39930.12930.47010.036*0.5
C20.19853 (17)0.00000.3369 (2)0.0218 (5)
H20.16980.00000.42800.026*
C30.13619 (18)0.00000.2157 (2)0.0269 (5)
H30.06520.00000.22290.032*
C40.17863 (19)0.00000.0830 (3)0.0273 (5)
H40.13680.00000.00170.033*
C50.28191 (18)0.00000.0749 (2)0.0237 (5)
H50.31200.00000.01520.028*
C60.34090 (17)0.00000.1994 (2)0.0198 (4)
C70.44985 (19)0.00000.1969 (3)0.0280 (5)
Br10.36532 (2)0.50000.29528 (2)0.02252 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (9)0.0176 (8)0.0152 (9)0.0000.0033 (7)0.000
N20.0292 (12)0.0484 (15)0.0431 (14)0.0000.0139 (10)0.000
C10.0261 (12)0.0271 (12)0.0182 (11)0.0000.0025 (9)0.000
C20.0220 (11)0.0245 (11)0.0196 (11)0.0000.0076 (8)0.000
C30.0219 (11)0.0337 (13)0.0251 (12)0.0000.0018 (9)0.000
C40.0300 (13)0.0314 (13)0.0203 (11)0.0000.0022 (9)0.000
C50.0315 (13)0.0232 (11)0.0170 (10)0.0000.0085 (9)0.000
C60.0207 (11)0.0178 (10)0.0216 (11)0.0000.0080 (8)0.000
C70.0274 (13)0.0294 (13)0.0280 (13)0.0000.0104 (10)0.000
Br10.02982 (14)0.02142 (12)0.01687 (12)0.0000.00747 (8)0.000
Geometric parameters (Å, º) top
N1—C21.339 (3)C2—H20.9500
N1—C61.357 (3)C3—C41.388 (3)
N1—C11.482 (3)C3—H30.9500
N2—C71.141 (3)C4—C51.379 (3)
C1—H1A0.9800C4—H40.9500
C1—H1B0.9800C5—C61.379 (3)
C1—H1C0.9800C5—H50.9500
C2—C31.378 (3)C6—C71.451 (3)
C2—N1—C6120.12 (19)C2—C3—H3120.5
C2—N1—C1119.61 (18)C4—C3—H3120.5
C6—N1—C1120.28 (18)C5—C4—C3119.5 (2)
N1—C1—H1A109.5C5—C4—H4120.2
N1—C1—H1B109.5C3—C4—H4120.2
H1A—C1—H1B109.5C6—C5—C4119.1 (2)
N1—C1—H1C109.5C6—C5—H5120.4
H1A—C1—H1C109.5C4—C5—H5120.4
H1B—C1—H1C109.5N1—C6—C5120.9 (2)
N1—C2—C3121.25 (19)N1—C6—C7117.8 (2)
N1—C2—H2119.4C5—C6—C7121.3 (2)
C3—C2—H2119.4N2—C7—C6177.7 (3)
C2—C3—C4119.1 (2)
C6—N1—C2—C30.000 (1)C1—N1—C6—C5180.000 (1)
C1—N1—C2—C3180.000 (1)C2—N1—C6—C7180.000 (1)
N1—C2—C3—C40.000 (1)C1—N1—C6—C70.000 (1)
C2—C3—C4—C50.000 (1)C4—C5—C6—N10.000 (1)
C3—C4—C5—C60.000 (1)C4—C5—C6—C7180.0
C2—N1—C6—C50.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.952.663.549 (3)155
C1—H1A···Br1ii0.982.963.876 (2)156
C2—H2···Br1ii0.952.663.586 (2)166
C3—H3···Br1iii0.952.773.711 (2)170
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.952.663.549 (3)155
C1—H1A···Br1ii0.982.963.876 (2)156
C2—H2···Br1ii0.952.663.586 (2)166
C3—H3···Br1iii0.952.773.711 (2)170
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y1/2, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, L.-J. & Wen, X.-C. (2008). Acta Cryst. E64, o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationKoplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.  CSD CrossRef IUCr Journals Google Scholar
First citationOueslati, A., Kefi, R., Akriche, S. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365–366.  CAS Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaccaro, F. A., Koplitz, L. V. & Mague, J. T. (2015). Acta Cryst. E71, o697–o698.  CSD CrossRef IUCr Journals Google Scholar
First citationVumbaco, D. J., Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1288.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. (2009). Acta Cryst. E65, o2373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. (2009). Acta Cryst. E65, o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds