research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2-{[1,1-bis­­(hy­dr­oxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-6-meth­­oxy­phenolato)manganese(IV) 0.39-hydrate

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by J. Simpson, University of Otago, New Zealand (Received 1 October 2015; accepted 4 October 2015; online 10 October 2015)

The title compound, [Mn(C12H15NO5)2]·0.39H2O, is a 0.39 hydrate of the isostructural complex bis­(2-{[1,1-bis­(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-6-meth­oxy­phenolato)manganese(IV) that has previously been reported by Back, Oliveira, Canabarro & Iglesias [Z. Anorg. Allg. Chem. (2015), 641, 941–947], based on room-temperature data. The current structure that was determined at 100 K reveals a lengthening of the c cell parameter compared with the published one due to the incorporation of the partial occupancy water mol­ecule. The title compound crystallizes in the tetra­gonal chiral space group P41212; the neutral [MnIV(C12H15NO5)2] mol­ecule is situated on a crystallographic C2 axis. The overall geometry about the central manganese ion is octa­hedral with an N2O4 core; each ligand acts as a meridional ONO donor. The coordination environment of MnIV at 100 K displays a difference in one of the two Mn–O bond lengths, compared with the room-temperature structure. In the crystal, the neutral mol­ecules are stacked in a helical fashion along the c-axis direction.

1. Chemical context

The title compound is a hydrate of the isostructural complex bis­(2-{[1,1-bis­(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­methyl}-6-meth­oxy­phenolato)manganese(IV) (refcode IGOSII; Back et al., 2015[Back, D. F., de Oliveira, G. M., Canabarro, C. M. & Iglesias, B. A. (2015). Z. Anorg. Allg. Chem. 641, 941-947.]). It was isolated as an unexpected product in an attempt to prepare a heterometallic Mn/Zn compound with the multidentate Schiff base ligand 2-{[(2-hy­droxy-3-methoxy­phen­yl)methyl­ene]amino}-2-(hy­droxy­meth­yl)-1,3-propane­diol (H4L) (Odabaşoğlu et al., 2003[Odabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.]). Zn powder and MnCl2·4H2O were reacted with the Schiff base formed in situ from the condensation between o-vanillin and tris­(hy­droxy­meth­yl)amino­methane in methanol in a 1:1:2 molar ratio. Metal powders have been successfully applied in direct synthesis of coordination compounds to yield a number of novel monometallic (Babich & Kokozay, 1997[Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487-1490.]; Babich et al., 1996[Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.]; Kovbasyuk et al., 1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.]) and heterometallic complexes (Nikitina et al., 2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]; Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.]) of various nuclearities and dimensionalities. However, the isolated black microcrystalline product of the reaction studied appeared to be the mononuclear Schiff base complex [MnIV(H2L)2]·0.39H2O (1). Oxidation of the manganese(II) atom directly to the manganese(IV) species proceeds easily in open air even in the presence of zerovalent Zn, indicating that the tridentate ligand H2L2– containing two O donors effectively stabilizes the MnIV oxidation state. Stabilization of MnIV species by similar ligands with phenolate oxygen atoms has been reported previously (Kessissoglou et al., 1987[Kessissoglou, D. P., Li, X., Butler, W. M. & Pecoraro, V. L. (1987). Inorg. Chem. 26, 2487-2492.]; Pradeep et al., 2004[Pradeep, C. P., Htwe, T., Zacharias, P. S. & Das, S. K. (2004). New J. Chem. 28, 735-739.]).

[Scheme 1]

Remarkably, the current structure that was determined at 100 K reveals shortening of the a cell parameter compared with the published one [8.0953 (2) (1), 8.1620 (2) Å (IGOSII)] as expected in the case of low-temperature determination, but lengthening of the c cell parameter [37.568 (2) (1), 37.4557 (11) Å (IGOSII)] due to the incorporation of the partial occupancy water mol­ecule. Also, (1) shows somewhat longer Mn—O bond lengths to the deprotonated hy­droxy­methyl group [1.871 (4) Å] compared to the corresponding distance in IGOSII [1.849 (2) Å], while the Mn—N bonds stay the same [1.992 (5) (1), 1.991 (3) Å (IGOSII)].

2. Structural commentary

The title compound (1) crystallizes in the tetra­gonal chiral space group P41212; the neutral [MnIV(C12H15NO5)2] mol­ecule is situated on a crystallographic C2 axis, hence the asymmetric unit comprises one half of the metal complex and the O atom of a water mol­ecule with occupancy 0.195 (15) (Fig. 1[link]). The overall geometry about the central metal ion is distorted octa­hedral with an N2O4 core; each ligand acts as a meridional ONO donor. The MnIV—N(imine) [1.992 (5) Å], MnIV–O(phenolate) [1.939 (4) Å] and MnIV—O(alkoxo) [1.871 (4) Å] bond lengths in (1) are strictly comparable to those for several reported MnIV complexes containing similar ligation (Kessissoglou et al., 1987[Kessissoglou, D. P., Li, X., Butler, W. M. & Pecoraro, V. L. (1987). Inorg. Chem. 26, 2487-2492.]; Pradeep et al., 2004[Pradeep, C. P., Htwe, T., Zacharias, P. S. & Das, S. K. (2004). New J. Chem. 28, 735-739.]). The MnO4 equatorial fragment is approximately square planar, the maximum deviation from the mean plane being about 0.11 Å. The ranges of cis and trans angles at the metal atom are 84.14 (18)–98.44 (18) and 168.6 (3)–172.89 (18)°, respectively (Table 1[link]). The Mn—N distance is longer than the average Mn—O distance by approximately 0.1 Å. This is significantly larger than the difference in covalent radii of N and O. Thus, the primary distortion of the MnN2O4 octa­hedron is axial elongation along the MnN2 axis.

Table 1
Selected geometric parameters (Å, °)

Mn1—O111 1.871 (4) Mn1—N10 1.992 (5)
Mn1—O11 1.939 (4)    
       
O111—Mn1—O111i 94.0 (3) O111i—Mn1—N10 88.07 (19)
O111—Mn1—O11i 89.58 (16) O11i—Mn1—N10 98.44 (18)
O111—Mn1—O11 172.89 (18) O11—Mn1—N10 89.82 (17)
O11i—Mn1—O11 87.6 (2) N10—Mn1—N10i 168.6 (3)
O111—Mn1—N10 84.14 (18)    
Symmetry code: (i) y, x, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation y, x, −z + 1.

The mol­ecular structure of (1) closely resembles that of the MnII complex of the same ligand, [MnII(H3L)2]·2CH3OH·0.5H2O (refcode ROMROB; Zhang et al., 2009[Zhang, X., Wei, P., Dou, J., Li, B. & Hu, B. (2009). Acta Cryst. E65, m293-m294.]) (Fig. 2[link]). The latter crystallizes in the monoclinic space group P21/n and has no crystallographically imposed symmetry. There is a marked increase in the ROMROB MnII—O(H) bond length (mean 2.134 Å) when (1) is compared to ROMROB which has two additional protons to compensate for the two additional electrons. In ROMROB, the MnII—O(phenolate) and MnII—N(imine) bonds are also elongated (mean lengths 2.011 and 2.027 Å, respectively). (1) thus provides a rare structural example of variations in the metal coordination sphere to accommodate change in the metal oxidation state. The flexibility of the lattice, formed using the partly deprotonated H4L ligand, permits distortion of the structure in the solid state to allow for changes in the charge and spin state of the Mn atom without disrupting the integrity of the crystal structure.

[Figure 2]
Figure 2
Scheme showing the structure of the closely related ROMROB MnII complex.

3. Supra­molecular features

In the crystal lattice, individual [MnIV(H2L)2] mol­ecules are stacked in a helical fashion along the c axis, as shown in Fig. 3[link], with the minimum Mn⋯Mn distances inside a column being 10.28 Å. Mol­ecules that are translated by one unit cell in the a-axis direction [Mn⋯Mn distance equals the a-axial length, 8.0953 (2) Å] are inter­twined by inter­molecular hydrogen bonds between the hydroxyl groups and phenolic and meth­oxy oxygen atoms. There is also a possible hydrogen-bonding inter­action between one hydroxyl group (O113) and the solvent water mol­ecule (O1) considering the O113⋯O1 distance of 2.17 (2) but as the H atoms on O1 could not be located this contact could not be confirmed. Details of the hydrogen bonding are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O112—H112⋯O11ii 0.84 2.2 2.850 (7) 134
O112—H112⋯O16ii 0.84 2.1 2.802 (7) 141
O113—H113⋯O112iii 0.84 2.3 2.965 (12) 137
Symmetry codes: (ii) x+1, y, z; (iii) y, x-1, -z+1.
[Figure 3]
Figure 3
Crystal packing of (1) showing the helical arrangement of MnIV(H2L)2 mol­ecules in the c-axis direction. H atoms are not shown.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for metal complexes of this ligand reveals the crystal structures of above 30 compounds, mostly comprising polynuclear homo- CoIICoIII, V2, Cu4, Mn4, Ni4, Ln9 and Ln10 and heterometallic 1s–3d and 3d–4f assemblies of 4–20 nuclearity. Mononuclear complexes of this ligand are limited to five Mn, Ni and Mo structures. The ligand mol­ecules exist in either doubly or triply deprotonated forms, adopt a chelating-bridging mode and form five- and six-membered rings. The H4L ligand can stabilize manganese in various oxidation states. Apart from MnII (ROMROB) and MnIV [(1); IGOSII] complexes, the structure of the MnIII derivative, [Mn4(HL)2(H2L)2(CH3OH)4](ClO4)2]·4CH3OH has also been reported (Zhu et al., 2014[Zhu, W., Zhang, S., Cui, C., Bi, F., Ke, H., Xie, G. & Chen, S. (2014). Inorg. Chem. Commun. 46, 315-319.]). Stabilization of MnIV species by similar ligands with phenolate oxygen atoms has been reported previously with details of three structures of [MnIVN2O4] complexes with tridentate Schiff base ligands similar to H4L (Kessissoglou et al., 1987[Kessissoglou, D. P., Li, X., Butler, W. M. & Pecoraro, V. L. (1987). Inorg. Chem. 26, 2487-2492.]; Chandra et al., 1990[Chandra, S. K., Basu, P., Ray, D., Pal, S. & Chakravorty, A. (1990). Inorg. Chem. 29, 2423-2428.]; Pradeep et al., 2004[Pradeep, C. P., Htwe, T., Zacharias, P. S. & Das, S. K. (2004). New J. Chem. 28, 735-739.]).

5. Synthesis and crystallization

2-Hy­droxy-3-meth­oxy-benzaldehyde (0.30 g, 2 mmol) and tris­(hy­droxy­meth­yl)amino­methane (0.24 g, 2 mmol), were added to methanol (20 ml) and stirred magnetically for 30 min. Next zinc powder (0.07 g, 1 mmol) and MnCl2·4H2O (0.20 g, 1 mmol) were added to the yellow solution and the mixture was heated to 323 K under stirring until total dissolution of the zinc powder was observed (1 h). The resulting brown solution was filtered and allowed to stand at room temperature. Black microcrystals of the title compound were formed in several days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 43%).

The IR spectrum of powdered (1) in the range 4000–400 cm−1 shows all the characteristic Schiff base vibration bands: ν(OH), ν(CH) and ν(C=N) at 3400, 3000–2840, and 1602 cm−1, respectively (see Supplementary data). A strong peak at 1618 cm−1 is due to the bending of the H2O mol­ecule, providing evidence of the presence of water in (1). The major feature of the X-band solid-state EPR spectrum of (1) at 77 K is a strong and broad signal at g ∼4 and a weak but resolved response at g ∼2 (see Supplementary data). This corresponds to strong axial distortion with small zero-field splitting, 2D >> hυ (hυ 0.31 cm−1 at the X-band frequency) in agreement with structural findings. The 55Mn hyperfine structure is not resolved.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The solvent was modelled as a water mol­ecule with the site occupancy refined to 0.195 (15). Associated hydrogen atoms were not located. The OH hydrogen atoms H112 and H113 were refined using a riding model with Uiso(H) = 1.5Ueq(O). All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for CH and CH2, 1.5Ueq(C) for CH3].

Table 3
Experimental details

Crystal data
Chemical formula [Mn(C12H15NO5)2]·0.39H2O
Mr 568.46
Crystal system, space group Tetragonal, P41212
Temperature (K) 100
a, c (Å) 8.0953 (2), 37.568 (2)
V3) 2461.97 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.92
Crystal size (mm) 0.09 × 0.08 × 0.01
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) using an expression derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.695, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 18553, 2214, 1885
Rint 0.103
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 1.05
No. of reflections 2214
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.34
Absolute structure Flack x determined using 584 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.007 (6)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(2-{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-6-methoxyphenolato)manganese(IV) 0.39 hydrate top
Crystal data top
[Mn(C12H15NO5)2]·0.39H2ODx = 1.534 Mg m3
Mr = 568.46Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P41212Cell parameters from 2851 reflections
Hall symbol: P 4abw 2nwθ = 3.5–67.6°
a = 8.0953 (2) ŵ = 4.92 mm1
c = 37.568 (2) ÅT = 100 K
V = 2461.97 (18) Å3Plate, black
Z = 40.09 × 0.08 × 0.01 mm
F(000) = 1188
Data collection top
Oxford Diffraction Gemini
diffractometer
2214 independent reflections
Graphite monochromator1885 reflections with I > 2σ(I)
Detector resolution: 10.4738 pixels mm-1Rint = 0.103
ω scansθmax = 67.7°, θmin = 4.7°
Absorption correction: analytical
[CrysAlis Pro (Agilent, 2014) using an expression derived by Clark & Reid (1995)]
h = 99
Tmin = 0.695, Tmax = 0.946k = 69
18553 measured reflectionsl = 4244
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0691P)2 + 1.3653P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.54 e Å3
2214 reflectionsΔρmin = 0.34 e Å3
181 parametersAbsolute structure: Flack x determined using 584 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraintsAbsolute structure parameter: 0.007 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The solvent was modelled as a water molecule with a site occupancy refined to 0.195 (15). Associated hydrogen atoms were not located.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.68511 (10)0.68511 (10)0.50.0286 (3)
C110.6187 (6)0.4968 (6)0.56423 (15)0.0308 (12)
O110.5567 (4)0.5690 (5)0.53567 (9)0.0333 (8)
C120.7784 (6)0.4298 (7)0.56576 (14)0.0330 (13)
C130.8302 (7)0.3446 (7)0.59647 (14)0.0365 (13)
H130.93720.29630.59690.044*
C140.7305 (7)0.3297 (7)0.62568 (16)0.0385 (13)
H140.76770.27210.64620.046*
C150.5729 (7)0.4005 (7)0.62492 (15)0.0394 (13)
H150.50370.3930.64530.047*
C160.5167 (7)0.4815 (7)0.59479 (14)0.0329 (11)
O160.3648 (5)0.5520 (5)0.59131 (11)0.0414 (10)
C1610.2522 (8)0.5349 (8)0.62010 (18)0.0443 (15)
H16A0.23550.41740.62530.066*
H16B0.14620.58540.61370.066*
H16C0.29710.59010.64120.066*
C100.8942 (7)0.4456 (7)0.53655 (15)0.0364 (13)
H100.99510.38630.53850.044*
N100.8733 (5)0.5316 (6)0.50849 (12)0.0349 (11)
C1011.0070 (8)0.5533 (9)0.48146 (17)0.0502 (17)
C1110.9865 (8)0.7342 (9)0.46941 (19)0.0508 (17)
H11A1.03380.80870.48760.061*
H11B1.04750.75180.44690.061*
O1110.8214 (5)0.7719 (5)0.46438 (11)0.0444 (10)
C1121.1779 (9)0.5228 (11)0.4957 (2)0.072 (2)
H11C1.18970.40440.50180.087*
H11D1.260.54920.4770.087*
O1121.2110 (7)0.6187 (10)0.52604 (19)0.096 (2)
H1121.28480.57270.53820.143*
C1130.9654 (11)0.4419 (9)0.44961 (19)0.065 (2)
H11E0.85280.46780.4410.078*
H11F1.0440.4640.430.078*
O1130.9740 (11)0.2689 (7)0.45943 (17)0.105 (3)
H1130.90020.24780.47450.157*
O10.787 (3)0.090 (3)0.4441 (6)0.048 (9)0.195 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0282 (4)0.0282 (4)0.0293 (6)0.0008 (5)0.0022 (4)0.0022 (4)
C110.031 (3)0.025 (3)0.036 (3)0.002 (2)0.005 (2)0.000 (2)
O110.026 (2)0.039 (2)0.034 (2)0.0011 (15)0.0036 (16)0.0023 (17)
C120.034 (3)0.030 (3)0.035 (3)0.005 (2)0.003 (2)0.002 (2)
C130.031 (3)0.037 (3)0.042 (3)0.001 (2)0.006 (2)0.003 (2)
C140.043 (3)0.035 (3)0.037 (3)0.005 (3)0.007 (2)0.008 (2)
C150.046 (3)0.035 (3)0.037 (3)0.008 (3)0.002 (3)0.001 (2)
C160.032 (3)0.029 (3)0.037 (3)0.005 (2)0.001 (2)0.003 (2)
O160.032 (2)0.052 (2)0.041 (2)0.0051 (17)0.0082 (17)0.0053 (19)
C1610.038 (3)0.043 (4)0.052 (4)0.002 (3)0.011 (3)0.007 (3)
C100.026 (3)0.041 (3)0.042 (3)0.002 (2)0.002 (2)0.000 (3)
N100.028 (2)0.045 (3)0.032 (2)0.002 (2)0.0006 (18)0.007 (2)
C1010.036 (3)0.067 (5)0.047 (4)0.008 (3)0.007 (3)0.012 (3)
C1110.045 (4)0.060 (4)0.047 (4)0.008 (3)0.004 (3)0.016 (3)
O1110.043 (2)0.048 (2)0.041 (2)0.010 (2)0.0092 (19)0.0110 (18)
C1120.039 (4)0.098 (6)0.080 (6)0.006 (4)0.019 (4)0.035 (5)
O1120.049 (3)0.142 (6)0.096 (5)0.025 (4)0.025 (3)0.055 (4)
C1130.085 (6)0.056 (4)0.055 (4)0.015 (4)0.024 (4)0.012 (4)
O1130.184 (8)0.053 (3)0.077 (4)0.048 (4)0.067 (5)0.025 (3)
O10.055 (16)0.037 (13)0.052 (15)0.017 (11)0.016 (11)0.008 (10)
Geometric parameters (Å, º) top
Mn1—O1111.871 (4)C161—H16B0.98
Mn1—O111i1.871 (4)C161—H16C0.98
Mn1—O11i1.939 (4)C10—N101.275 (7)
Mn1—O111.939 (4)C10—H100.95
Mn1—N101.992 (5)N10—C1011.495 (7)
Mn1—N10i1.992 (5)C101—C1121.504 (10)
C11—O111.321 (6)C101—C1131.536 (10)
C11—C121.403 (8)C101—C1111.542 (10)
C11—C161.420 (8)C111—O1111.384 (8)
C12—C131.408 (7)C111—H11A0.99
C12—C101.449 (8)C111—H11B0.99
C13—C141.368 (8)C112—O1121.405 (11)
C13—H130.95C112—H11C0.99
C14—C151.399 (9)C112—H11D0.99
C14—H140.95O112—H1120.84
C15—C161.384 (8)C113—O1131.450 (9)
C15—H150.95C113—H11E0.99
C16—O161.362 (7)C113—H11F0.99
O16—C1611.421 (7)O113—H1130.84
C161—H16A0.98
O111—Mn1—O111i94.0 (3)H16A—C161—H16B109.5
O111—Mn1—O11i89.58 (16)O16—C161—H16C109.5
O111i—Mn1—O11i172.89 (19)H16A—C161—H16C109.5
O111—Mn1—O11172.89 (18)H16B—C161—H16C109.5
O111i—Mn1—O1189.58 (16)N10—C10—C12126.0 (5)
O11i—Mn1—O1187.6 (2)N10—C10—H10117
O111—Mn1—N1084.14 (18)C12—C10—H10117
O111i—Mn1—N1088.07 (19)C10—N10—C101122.0 (5)
O11i—Mn1—N1098.44 (18)C10—N10—Mn1125.1 (4)
O11—Mn1—N1089.82 (17)C101—N10—Mn1111.8 (4)
O111—Mn1—N10i88.07 (19)N10—C101—C112113.9 (5)
O111i—Mn1—N10i84.14 (18)N10—C101—C113107.5 (6)
O11i—Mn1—N10i89.82 (17)C112—C101—C113112.5 (7)
O11—Mn1—N10i98.44 (18)N10—C101—C111103.5 (5)
N10—Mn1—N10i168.6 (3)C112—C101—C111111.1 (6)
O11—C11—C12123.7 (5)C113—C101—C111107.8 (5)
O11—C11—C16118.3 (5)O111—C111—C101110.7 (5)
C12—C11—C16118.0 (5)O111—C111—H11A109.5
C11—O11—Mn1124.9 (3)C101—C111—H11A109.5
C11—C12—C13119.8 (5)O111—C111—H11B109.5
C11—C12—C10122.1 (5)C101—C111—H11B109.5
C13—C12—C10118.1 (5)H11A—C111—H11B108.1
C14—C13—C12121.6 (5)C111—O111—Mn1112.9 (4)
C14—C13—H13119.2O112—C112—C101111.9 (7)
C12—C13—H13119.2O112—C112—H11C109.2
C13—C14—C15119.0 (5)C101—C112—H11C109.2
C13—C14—H14120.5O112—C112—H11D109.2
C15—C14—H14120.5C101—C112—H11D109.2
C16—C15—C14120.7 (5)H11C—C112—H11D107.9
C16—C15—H15119.7C112—O112—H112109.5
C14—C15—H15119.7O113—C113—C101111.0 (6)
O16—C16—C15125.0 (5)O113—C113—H11E109.4
O16—C16—C11114.3 (5)C101—C113—H11E109.4
C15—C16—C11120.7 (5)O113—C113—H11F109.4
C16—O16—C161117.7 (5)C101—C113—H11F109.4
O16—C161—H16A109.5H11E—C113—H11F108
O16—C161—H16B109.5C113—O113—H113109.5
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O112—H112···O11ii0.842.22.850 (7)134
O112—H112···O16ii0.842.12.802 (7)141
O113—H113···O112iii0.842.32.965 (12)137
Symmetry codes: (ii) x+1, y, z; (iii) y, x1, z+1.
 

Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487–1490.  CSD CrossRef CAS Web of Science Google Scholar
First citationBabich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.  CSD CrossRef CAS Web of Science Google Scholar
First citationBack, D. F., de Oliveira, G. M., Canabarro, C. M. & Iglesias, B. A. (2015). Z. Anorg. Allg. Chem. 641, 941–947.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChandra, S. K., Basu, P., Ray, D., Pal, S. & Chakravorty, A. (1990). Inorg. Chem. 29, 2423–2428.  CSD CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKessissoglou, D. P., Li, X., Butler, W. M. & Pecoraro, V. L. (1987). Inorg. Chem. 26, 2487–2492.  CSD CrossRef CAS Web of Science Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPradeep, C. P., Htwe, T., Zacharias, P. S. & Das, S. K. (2004). New J. Chem. 28, 735–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X., Wei, P., Dou, J., Li, B. & Hu, B. (2009). Acta Cryst. E65, m293–m294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, W., Zhang, S., Cui, C., Bi, F., Ke, H., Xie, G. & Chen, S. (2014). Inorg. Chem. Commun. 46, 315–319.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds