organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (5-chloro-2-hy­dr­oxy­phen­yl)(3-methyl­isoxazolo[5,4-b]pyridin-5-yl)methanone

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: raja.13nap@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 September 2015; accepted 16 October 2015; online 24 October 2015)

In the title compound, C14H9ClN2O3, the fused pyridine and isoxazole rings are approximately planar, making a dihedral angle of 1.14 (16)°. The mol­ecule is twisted with the benzene ring and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13)°. There is an intra­molecular O—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along [001]. The chains are linked by slipped parallel ππ inter­actions, involving inversion-related benzene rings, forming slabs lying parallel to the bc plane {inter-centroid distance = 3.770 (2) Å].

1. Related literature

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996[Knyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim. 32, 1097-1103.]); Kürfurst et al. (1989[Kurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462-472.]); Enyedy et al. (2003[Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513-517.]); Arora & Knaus (1999[Arora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201-203.]); Kim et al. 2004[Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433-447.]); Pillai et al.(2003[Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). Biochem. Biophys. Res. Commun. 301, 183-186.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H9ClN2O3

  • Mr = 288.68

  • Monoclinic, P 21 /c

  • a = 11.0317 (10) Å

  • b = 11.8701 (10) Å

  • c = 11.1220 (9) Å

  • β = 118.675 (2)°

  • V = 1277.78 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.927

  • 17705 measured reflections

  • 2250 independent reflections

  • 1763 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.110

  • S = 1.13

  • 2250 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.84 2.561 (4) 145
C12—H12⋯N2i 0.93 2.40 3.315 (4) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Poly-functional pyridines are an inter­esting class of compounds due to their optical properties (Knyazhanskii et al., 1996; Kürfurst et al., 1989), and their biological activities (Enyedy et al., 2003), such as anti­convulsants (Arora et al., 1999), anti­histaminic reagents (Kim et al., 2004), and cardivascular disorder treatments (Pillai et al., 2003). In view of such facts we herein report on the synthesis and crystal structure of the new title poly-functional pyridine compound.

Structural commentary top

In the title compound, Fig. 1, the fused pyridine ring (N1/C8—C12) and isoxazole ring (O3/N2/C13/C11/C10) are almost coplanar being inclined to one another by 1.14 (16) °. The molecule is twisted with the benzene ring (C1—C6) and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13) °. The molecular conformation is partly determined by the intra­molecular O—H···O hydrogen bond which forms an S(6) ring motif.

In the crystal, molecules are linked by C—H···N hydrogen bond to form chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains are linked by slipped parallel ππ inter­actions, involving inversion related 5-chloro-2-hy­droxy­phenyl rings, forming slabs parallel to the bc-plane; see Fig. 2 [Cg3—Cg3i = 3.770 (2) Å, inter-planar distance = 3.4094 (14) Å, slippage = 1.609 Å; Cg3 is the centroid of ring (C1—C6); symmetry code: (i) -x, -y, 2-z].

Synthesis and crystallization top

To a mixture of 6-chloro-3-formyl­chromone (1 mmol) and 3-methyl­isoxazol-5-amine (1 mmol) in ethanol (3 ml) was added a catalytic amount (0.050 mmol) of In(OTf)3 and the mixture was refluxed for about 20 min. The precipitated solid was filtered and dried under vacuum to afford the pure product in 87% yield. The purified compound was recrystallised from ethanol and DMSO-D6 by slow evaporation giving colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were positioned geometrically (O—H = 0.82 Å, C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996); Kürfurst et al. (1989); Enyedy et al. (2003); Arora & Knaus (1999); Kim et al. 2004); Pillai et al.(2003).

Structure description top

Poly-functional pyridines are an inter­esting class of compounds due to their optical properties (Knyazhanskii et al., 1996; Kürfurst et al., 1989), and their biological activities (Enyedy et al., 2003), such as anti­convulsants (Arora et al., 1999), anti­histaminic reagents (Kim et al., 2004), and cardivascular disorder treatments (Pillai et al., 2003). In view of such facts we herein report on the synthesis and crystal structure of the new title poly-functional pyridine compound.

In the title compound, Fig. 1, the fused pyridine ring (N1/C8—C12) and isoxazole ring (O3/N2/C13/C11/C10) are almost coplanar being inclined to one another by 1.14 (16) °. The molecule is twisted with the benzene ring (C1—C6) and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13) °. The molecular conformation is partly determined by the intra­molecular O—H···O hydrogen bond which forms an S(6) ring motif.

In the crystal, molecules are linked by C—H···N hydrogen bond to form chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains are linked by slipped parallel ππ inter­actions, involving inversion related 5-chloro-2-hy­droxy­phenyl rings, forming slabs parallel to the bc-plane; see Fig. 2 [Cg3—Cg3i = 3.770 (2) Å, inter-planar distance = 3.4094 (14) Å, slippage = 1.609 Å; Cg3 is the centroid of ring (C1—C6); symmetry code: (i) -x, -y, 2-z].

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996); Kürfurst et al. (1989); Enyedy et al. (2003); Arora & Knaus (1999); Kim et al. 2004); Pillai et al.(2003).

Synthesis and crystallization top

To a mixture of 6-chloro-3-formyl­chromone (1 mmol) and 3-methyl­isoxazol-5-amine (1 mmol) in ethanol (3 ml) was added a catalytic amount (0.050 mmol) of In(OTf)3 and the mixture was refluxed for about 20 min. The precipitated solid was filtered and dried under vacuum to afford the pure product in 87% yield. The purified compound was recrystallised from ethanol and DMSO-D6 by slow evaporation giving colourless block-like crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were positioned geometrically (O—H = 0.82 Å, C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
(5-Chloro-2-hydroxyphenyl)(3-methylisoxazolo[5,4-b]pyridin-5-yl)methanone top
Crystal data top
C14H9ClN2O3F(000) = 592
Mr = 288.68Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1763 reflections
a = 11.0317 (10) Åθ = 2.1–25.0°
b = 11.8701 (10) ŵ = 0.31 mm1
c = 11.1220 (9) ÅT = 293 K
β = 118.675 (2)°Block, colourless
V = 1277.78 (19) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2250 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.900, Tmax = 0.927k = 1414
17705 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.3834P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C14H9ClN2O3V = 1277.78 (19) Å3
Mr = 288.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0317 (10) ŵ = 0.31 mm1
b = 11.8701 (10) ÅT = 293 K
c = 11.1220 (9) Å0.35 × 0.30 × 0.25 mm
β = 118.675 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1763 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.927Rint = 0.022
17705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.13Δρmax = 0.28 e Å3
2250 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1833 (3)0.0368 (3)0.9816 (3)0.0592 (8)
C20.1378 (3)0.0264 (4)0.8629 (3)0.0738 (10)
H20.13860.00510.78680.089*
C30.0917 (3)0.1343 (3)0.8560 (3)0.0711 (10)
H30.06140.17550.77550.085*
C40.0900 (3)0.1827 (3)0.9696 (3)0.0541 (7)
C50.1386 (2)0.1234 (2)1.0890 (2)0.0432 (6)
H50.13840.15641.16480.052*
C60.1887 (2)0.0133 (2)1.0988 (3)0.0436 (6)
C70.2418 (2)0.0531 (2)1.2263 (3)0.0455 (6)
C80.2796 (2)0.0001 (2)1.3606 (3)0.0424 (6)
C90.2544 (3)0.0637 (2)1.4535 (3)0.0578 (7)
H90.21250.13361.42430.069*
C100.3469 (3)0.0675 (3)1.6116 (3)0.0528 (7)
C110.3811 (2)0.1373 (2)1.5332 (2)0.0414 (6)
C120.3455 (2)0.1025 (2)1.4011 (2)0.0388 (6)
H120.36520.14601.34300.047*
C130.4447 (3)0.2330 (2)1.6185 (2)0.0471 (6)
C140.5010 (3)0.3350 (3)1.5876 (3)0.0607 (8)
H14A0.53860.38401.66590.091*
H14B0.42860.37331.51070.091*
H14C0.57260.31401.56620.091*
N10.2861 (3)0.0312 (2)1.5798 (3)0.0656 (7)
N20.4480 (3)0.2213 (2)1.7365 (2)0.0640 (7)
O10.2205 (3)0.1444 (2)0.9793 (3)0.0850 (8)
H10.24600.17321.05470.127*
O20.2567 (2)0.15626 (16)1.2243 (2)0.0661 (6)
O30.3854 (2)0.1149 (2)1.73518 (19)0.0709 (6)
Cl10.02472 (9)0.31717 (7)0.95930 (9)0.0802 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0495 (17)0.074 (2)0.0569 (18)0.0167 (15)0.0281 (14)0.0221 (16)
C20.071 (2)0.106 (3)0.0519 (19)0.033 (2)0.0359 (17)0.0268 (19)
C30.061 (2)0.102 (3)0.0392 (16)0.0353 (19)0.0150 (14)0.0022 (17)
C40.0383 (14)0.0663 (18)0.0424 (15)0.0144 (13)0.0070 (12)0.0058 (13)
C50.0346 (13)0.0518 (15)0.0355 (13)0.0093 (11)0.0106 (11)0.0045 (11)
C60.0340 (13)0.0525 (15)0.0442 (14)0.0113 (11)0.0188 (11)0.0120 (12)
C70.0335 (13)0.0425 (15)0.0556 (16)0.0001 (11)0.0175 (12)0.0020 (12)
C80.0371 (13)0.0408 (14)0.0444 (14)0.0072 (11)0.0156 (11)0.0055 (11)
C90.0558 (17)0.0484 (16)0.0618 (18)0.0011 (13)0.0222 (15)0.0138 (14)
C100.0456 (16)0.073 (2)0.0380 (14)0.0126 (14)0.0183 (12)0.0119 (14)
C110.0364 (13)0.0506 (15)0.0355 (13)0.0095 (11)0.0159 (11)0.0066 (11)
C120.0336 (12)0.0447 (14)0.0365 (12)0.0059 (11)0.0154 (10)0.0061 (11)
C130.0381 (14)0.0623 (17)0.0339 (13)0.0125 (12)0.0116 (11)0.0022 (12)
C140.0591 (18)0.0647 (19)0.0491 (16)0.0026 (15)0.0185 (14)0.0124 (14)
N10.0707 (17)0.0709 (18)0.0530 (15)0.0019 (14)0.0277 (13)0.0197 (13)
N20.0630 (16)0.088 (2)0.0388 (13)0.0124 (14)0.0224 (12)0.0035 (13)
O10.0909 (17)0.0841 (17)0.0906 (17)0.0042 (14)0.0521 (15)0.0375 (14)
O20.0642 (13)0.0443 (12)0.0777 (15)0.0077 (10)0.0243 (11)0.0065 (10)
O30.0781 (15)0.0984 (18)0.0404 (11)0.0073 (13)0.0317 (11)0.0092 (11)
Cl10.0684 (5)0.0677 (5)0.0732 (6)0.0036 (4)0.0090 (4)0.0258 (4)
Geometric parameters (Å, º) top
C1—O11.345 (4)C9—N11.331 (4)
C1—C21.386 (5)C9—H90.9300
C1—C61.408 (4)C10—N11.312 (4)
C2—C31.366 (5)C10—O31.351 (3)
C2—H20.9300C10—C111.380 (4)
C3—C41.396 (4)C11—C121.390 (3)
C3—H30.9300C11—C131.430 (4)
C4—C51.365 (4)C12—H120.9300
C4—Cl11.733 (3)C13—N21.302 (3)
C5—C61.403 (4)C13—C141.474 (4)
C5—H50.9300C14—H14A0.9600
C6—C71.476 (4)C14—H14B0.9600
C7—O21.237 (3)C14—H14C0.9600
C7—C81.485 (4)N2—O31.436 (3)
C8—C121.378 (3)O1—H10.8200
C8—C91.411 (4)
O1—C1—C2118.0 (3)N1—C9—H9117.5
O1—C1—C6122.8 (3)C8—C9—H9117.5
C2—C1—C6119.2 (3)N1—C10—O3121.1 (3)
C3—C2—C1121.1 (3)N1—C10—C11128.7 (3)
C3—C2—H2119.5O3—C10—C11110.2 (3)
C1—C2—H2119.5C10—C11—C12117.7 (3)
C2—C3—C4120.1 (3)C10—C11—C13104.7 (2)
C2—C3—H3120.0C12—C11—C13137.5 (2)
C4—C3—H3120.0C8—C12—C11116.4 (2)
C5—C4—C3120.0 (3)C8—C12—H12121.8
C5—C4—Cl1119.7 (2)C11—C12—H12121.8
C3—C4—Cl1120.4 (2)N2—C13—C11110.5 (3)
C4—C5—C6120.8 (3)N2—C13—C14120.7 (3)
C4—C5—H5119.6C11—C13—C14128.7 (2)
C6—C5—H5119.6C13—C14—H14A109.5
C5—C6—C1118.8 (3)C13—C14—H14B109.5
C5—C6—C7122.2 (2)H14A—C14—H14B109.5
C1—C6—C7119.0 (3)C13—C14—H14C109.5
O2—C7—C6120.4 (2)H14A—C14—H14C109.5
O2—C7—C8117.6 (2)H14B—C14—H14C109.5
C6—C7—C8122.0 (2)C10—N1—C9112.6 (2)
C12—C8—C9119.5 (2)C13—N2—O3107.7 (2)
C12—C8—C7123.5 (2)C1—O1—H1109.5
C9—C8—C7116.8 (2)C10—O3—N2106.9 (2)
N1—C9—C8125.0 (3)
O1—C1—C2—C3176.6 (3)C7—C8—C9—N1177.5 (3)
C6—C1—C2—C33.4 (5)N1—C10—C11—C121.4 (4)
C1—C2—C3—C40.1 (5)O3—C10—C11—C12178.4 (2)
C2—C3—C4—C52.1 (4)N1—C10—C11—C13179.9 (3)
C2—C3—C4—Cl1177.2 (2)O3—C10—C11—C130.1 (3)
C3—C4—C5—C60.9 (4)C9—C8—C12—C111.1 (3)
Cl1—C4—C5—C6178.34 (18)C7—C8—C12—C11176.2 (2)
C4—C5—C6—C12.4 (4)C10—C11—C12—C80.4 (3)
C4—C5—C6—C7180.0 (2)C13—C11—C12—C8178.3 (3)
O1—C1—C6—C5175.5 (2)C10—C11—C13—N20.0 (3)
C2—C1—C6—C54.4 (4)C12—C11—C13—N2178.0 (3)
O1—C1—C6—C72.2 (4)C10—C11—C13—C14179.6 (3)
C2—C1—C6—C7177.9 (3)C12—C11—C13—C141.6 (5)
C5—C6—C7—O2164.1 (2)O3—C10—N1—C9179.3 (3)
C1—C6—C7—O213.5 (4)C11—C10—N1—C90.6 (4)
C5—C6—C7—C816.1 (4)C8—C9—N1—C101.2 (4)
C1—C6—C7—C8166.3 (2)C11—C13—N2—O30.0 (3)
O2—C7—C8—C12140.6 (3)C14—C13—N2—O3179.6 (2)
C6—C7—C8—C1239.3 (4)N1—C10—O3—N2179.9 (2)
O2—C7—C8—C934.7 (3)C11—C10—O3—N20.1 (3)
C6—C7—C8—C9145.5 (2)C13—N2—O3—C100.0 (3)
C12—C8—C9—N12.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.842.561 (4)145
C12—H12···N2i0.932.403.315 (4)168
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.842.561 (4)145
C12—H12···N2i0.932.403.315 (4)168
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the data collection.

References

First citationArora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201–203.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513–517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim. 32, 1097–1103.  CAS Google Scholar
First citationKurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462–472.  Google Scholar
First citationPillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). Biochem. Biophys. Res. Commun. 301, 183–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds