organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­cyclo­hexyl­ammonium nitrate(V)

aDepartment of Chemistry, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
*Correspondence e-mail: ewa.matczak-jon@pwr.edu.pl

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 October 2015; accepted 13 October 2015; online 24 October 2015)

In the title mol­ecular salt, C12H24N+·NO3, the cyclohexyl rings adopt chair conformations with the exocyclic C—N bonds in equatorial orientations. In the crystal, a bifurcated N—H⋯(O,O) hydrogen bond links the cation to the anion; the ion pairs are linked via C—H⋯O hydrogen bonds, forming layers in the ac plane.

1. Related literature

For the crystal structure of di­cyclo­hexyl­ammonium nitrate(III), see: Golobič et al. (1999[Golobič, A., Štefane, B. & Polanc, S. (1999). Polyhedron, 18, 3661-3668.]). For other crystal structures of di­cyclo­hexyl­ammonium salts, see: Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 2149-2150.]); Bi et al. (2002[Bi, W., Sun, D., Cao, R., Chen, J.-T. & Hong, M. (2002). Acta Cryst. E58, m611-m612.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1624.]); Khawar Rauf et al. (2008[Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.]); Selvakumaran et al. (2011[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.]); Ndoye et al. (2014[Ndoye, D., Sow, M. M. & Diop, L. (2014). Acta Cryst. E70, o237.]). For crystal structures of carboxyl­ate salts with the di­cyclo­hexyl­ammonium cation belonging to the low mol­ecular weight gelators (LMWGs) class of compounds and exhibiting gelling properties, see: Trivedi et al. (2004[Trivedi, D. R., Ballabh, A., Dastidar, P. & Ganguly, B. (2004). Chem. Eur. J. 10, 5311-5322.], 2005[Trivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606-2614.]); Sahoo & Dastidar (2012[Sahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917-5924.]); Rojek et al. (2015[Rojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593-597.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H24N+·NO3

  • Mr = 244.33

  • Orthorhombic, P n a 21

  • a = 8.436 (2) Å

  • b = 18.682 (5) Å

  • c = 8.427 (3) Å

  • V = 1328.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.41 × 0.36 mm

2.2. Data collection

  • Kuma KM-4 difractometer with a CCD camera diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.962, Tmax = 0.969

  • 9001 measured reflections

  • 1759 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.09

  • 1759 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.91 (2) 2.56 (2) 3.292 (2) 138.2 (17)
N1—H1N⋯O3 0.91 (2) 2.01 (2) 2.8988 (19) 166.7 (19)
N1—H2N⋯O2i 0.86 (2) 1.98 (2) 2.799 (2) 157.6 (19)
C11—H11⋯O1ii 1.00 2.45 3.347 (2) 149
C12—H12⋯O3iii 1.00 2.52 3.456 (3) 156
C22—H22B⋯O2 0.99 2.53 3.309 (2) 136
C62—H62A⋯O1ii 0.99 2.59 3.506 (2) 153
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The di­cyclo­hexyl­ammonium cation has been widely used in the preparation of crystalline salts like chloride (Ng, 1995), nitrate(III) (Golobič et al., 1999), tungstate (Bi et al., 2002), bromide (Lo & Ng, 2008), thio­cyanate (Khawar Rauf et al., 2008; Selvakumaran et al., 2011) or sulfate­(VI) (Ndoye et al., 2014) salts. In recent years, there has been increased inter­est in di­cyclo­hexyl­ammonium carboxyl­ate salts due to their potential applications as materials capable of immobilizing organic solvents to form gels, known as low molecular weight gelators - LMWGs (Trivedi et al., 2004, 2005; Sahoo & Dastidar, 2012; Rojek et al., 2015).

The title molecular salt, Fig. 1, consists of an ion pair comprising a di­cyclo­hexyl­ammonium cation connected to a nitrate(V) anion by N1—H1N···O3 and N1—H1N···O2 hydrogen bonds (Table 1). Additionally, the ion pair is stabilized by a C22—H22B···O2 inter­action (Fig. 1 and Table 1). The N2—O2 and N2—O3 bond lengths of the nitrate(V) anion are almost equal [1.258 (2) and 1.255 (2) Å, respectively] and longer than the N2—O1 bond length [1.2353 (18) Å]. The C11—N1—C12 angle in the di­cyclo­hexyl­ammonium cation [117.34 (12)°] is larger than expected for a tetra­hedral N atom. This is attributed to the steric hindrance imposed by the cyclo­hexane rings, each of which adopt a chair conformation. The N1—C11 and N1—C12 bond lengths [1.5077 (19) and 1.510 (2) Å, respectively] are similar to those observed for other di­cyclo­hexyl­ammonium salts (Golobič et al., 1999).

In the crystal, the N1—H2N···O2i hydrogen bonds combine ion pairs into infinite chains parallel to the c axis. The chains are additionally stabilized by C12—H12···O3iii contacts and further packed in a parallel fashion by means of C62—H62A···O1ii and C11—H11···O1ii (symmetry codes as in Table 1) inter­actions giving rise to layers in the ac plane (Fig. 2).

Synthesis and crystallization top

Di­cyclo­hexyl­amine (1 mmol, 201 ml) was added to methanol (4 ml) under vigorous stirring. The clear solution was combined with nitric(V) acid (1 M, 1 ml) and stirred for 20 min. The resulting solution was left to crystallize at room temperature. After one week, large block-shaped colourless single crystals of the title salt suitable for X-ray diffraction analysis were obtained.

Refinement top

The N-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model; C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For the crystal structure of dicyclohexylammonium nitrate(III), see: Golobič et al. (1999). For other crystal structures of dicyclohexylammonium salts, see: Ng (1995); Bi et al. (2002); Lo & Ng (2008); Khawar Rauf et al. (2008); Selvakumaran et al. (2011); Ndoye et al. (2014). For crystal structures of carboxylate salts with the dicyclohexylammonium cation belonging to the low molecular weight gelators (LMWGs) class of compounds and exhibiting gelling properties, see: Trivedi et al. (2004, 2005); Sahoo & Dastidar (2012); Rojek et al. (2015).

Structure description top

The di­cyclo­hexyl­ammonium cation has been widely used in the preparation of crystalline salts like chloride (Ng, 1995), nitrate(III) (Golobič et al., 1999), tungstate (Bi et al., 2002), bromide (Lo & Ng, 2008), thio­cyanate (Khawar Rauf et al., 2008; Selvakumaran et al., 2011) or sulfate­(VI) (Ndoye et al., 2014) salts. In recent years, there has been increased inter­est in di­cyclo­hexyl­ammonium carboxyl­ate salts due to their potential applications as materials capable of immobilizing organic solvents to form gels, known as low molecular weight gelators - LMWGs (Trivedi et al., 2004, 2005; Sahoo & Dastidar, 2012; Rojek et al., 2015).

The title molecular salt, Fig. 1, consists of an ion pair comprising a di­cyclo­hexyl­ammonium cation connected to a nitrate(V) anion by N1—H1N···O3 and N1—H1N···O2 hydrogen bonds (Table 1). Additionally, the ion pair is stabilized by a C22—H22B···O2 inter­action (Fig. 1 and Table 1). The N2—O2 and N2—O3 bond lengths of the nitrate(V) anion are almost equal [1.258 (2) and 1.255 (2) Å, respectively] and longer than the N2—O1 bond length [1.2353 (18) Å]. The C11—N1—C12 angle in the di­cyclo­hexyl­ammonium cation [117.34 (12)°] is larger than expected for a tetra­hedral N atom. This is attributed to the steric hindrance imposed by the cyclo­hexane rings, each of which adopt a chair conformation. The N1—C11 and N1—C12 bond lengths [1.5077 (19) and 1.510 (2) Å, respectively] are similar to those observed for other di­cyclo­hexyl­ammonium salts (Golobič et al., 1999).

In the crystal, the N1—H2N···O2i hydrogen bonds combine ion pairs into infinite chains parallel to the c axis. The chains are additionally stabilized by C12—H12···O3iii contacts and further packed in a parallel fashion by means of C62—H62A···O1ii and C11—H11···O1ii (symmetry codes as in Table 1) inter­actions giving rise to layers in the ac plane (Fig. 2).

For the crystal structure of dicyclohexylammonium nitrate(III), see: Golobič et al. (1999). For other crystal structures of dicyclohexylammonium salts, see: Ng (1995); Bi et al. (2002); Lo & Ng (2008); Khawar Rauf et al. (2008); Selvakumaran et al. (2011); Ndoye et al. (2014). For crystal structures of carboxylate salts with the dicyclohexylammonium cation belonging to the low molecular weight gelators (LMWGs) class of compounds and exhibiting gelling properties, see: Trivedi et al. (2004, 2005); Sahoo & Dastidar (2012); Rojek et al. (2015).

Synthesis and crystallization top

Di­cyclo­hexyl­amine (1 mmol, 201 ml) was added to methanol (4 ml) under vigorous stirring. The clear solution was combined with nitric(V) acid (1 M, 1 ml) and stirred for 20 min. The resulting solution was left to crystallize at room temperature. After one week, large block-shaped colourless single crystals of the title salt suitable for X-ray diffraction analysis were obtained.

Refinement details top

The N-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model; C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecular salt, showing the atom-numbering scheme and the symmetry-independent hydrogen bonds (orange and light-blue dashed lines; see Table 1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title molecular salt, showing the hydrogen-bonded chains assembled into a layer in the ac plane. Hydrogen bonds are drawn as yellow and light-blue dashed lines (see Table 1). H atoms on C atoms of the cyclohexane rings not involved in hydrogen bonds have been omitted for clarity.
Dicyclohexylammonium nitrate top
Crystal data top
C12H24N+·NO3F(000) = 536
Mr = 244.33Dx = 1.222 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6847 reflections
a = 8.436 (2) Åθ = 3–29°
b = 18.682 (5) ŵ = 0.09 mm1
c = 8.427 (3) ÅT = 100 K
V = 1328.1 (7) Å3Block, colorless
Z = 40.45 × 0.41 × 0.36 mm
Data collection top
Kuma KM-4 difractometer with a CCD camera
diffractometer
1699 reflections with I > 2σ(I)
Radiation source: normal focus sealed tubeRint = 0.035
ω scansθmax = 28.7°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 911
Tmin = 0.962, Tmax = 0.969k = 2422
9001 measured reflectionsl = 1111
1759 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1971P]
where P = (Fo2 + 2Fc2)/3
1759 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C12H24N+·NO3V = 1328.1 (7) Å3
Mr = 244.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.436 (2) ŵ = 0.09 mm1
b = 18.682 (5) ÅT = 100 K
c = 8.427 (3) Å0.45 × 0.41 × 0.36 mm
Data collection top
Kuma KM-4 difractometer with a CCD camera
diffractometer
1759 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1699 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.969Rint = 0.035
9001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.21 e Å3
1759 reflectionsΔρmin = 0.19 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67955 (15)0.52358 (7)0.34329 (17)0.0172 (3)
H1N0.575 (3)0.5334 (10)0.348 (3)0.022 (5)*
H2N0.703 (2)0.5150 (11)0.245 (3)0.020 (5)*
C110.76844 (18)0.58933 (8)0.39662 (19)0.0174 (3)
H110.88440.58120.38020.021*
C210.7391 (2)0.60372 (9)0.5718 (2)0.0209 (3)
H21A0.77730.56260.63540.025*
H21B0.62390.60910.59090.025*
C310.8252 (2)0.67195 (8)0.6241 (2)0.0236 (3)
H31A0.79940.68220.73650.028*
H31B0.94110.66440.61630.028*
C410.7782 (2)0.73593 (8)0.5221 (2)0.0249 (3)
H41A0.84150.77820.55370.030*
H41B0.66490.74720.54000.030*
C510.8053 (2)0.72023 (9)0.3456 (2)0.0256 (3)
H51A0.76810.76130.28150.031*
H51B0.92020.71400.32560.031*
C610.71676 (19)0.65265 (8)0.2950 (2)0.0213 (3)
H61A0.60120.66020.30680.026*
H61B0.73900.64240.18200.026*
C120.71252 (17)0.45456 (8)0.4304 (2)0.0173 (3)
H120.67770.46010.54320.021*
C220.61395 (18)0.39582 (8)0.3534 (2)0.0202 (3)
H22A0.64470.39060.24060.024*
H22B0.50030.40890.35750.024*
C320.64019 (18)0.32501 (8)0.4401 (2)0.0224 (3)
H32A0.60100.32910.55040.027*
H32B0.57910.28670.38660.027*
C420.81560 (18)0.30512 (8)0.4419 (2)0.0225 (3)
H42A0.83040.26060.50400.027*
H42B0.85170.29580.33200.027*
C520.91573 (19)0.36473 (8)0.5142 (2)0.0231 (3)
H52A1.02920.35160.50730.028*
H52B0.88820.37010.62780.028*
C620.88884 (18)0.43628 (8)0.4286 (2)0.0206 (3)
H62A0.94960.47460.48220.025*
H62B0.92660.43270.31760.025*
N20.27878 (15)0.55034 (7)0.44418 (19)0.0209 (3)
O10.15367 (14)0.57836 (7)0.48831 (17)0.0325 (3)
O20.33397 (19)0.49638 (8)0.51433 (18)0.0398 (4)
O30.35579 (15)0.57519 (7)0.32934 (17)0.0318 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0173 (6)0.0172 (6)0.0172 (7)0.0010 (5)0.0018 (5)0.0027 (5)
C110.0183 (7)0.0165 (7)0.0176 (7)0.0002 (5)0.0001 (6)0.0019 (5)
C210.0260 (7)0.0202 (7)0.0165 (7)0.0022 (6)0.0009 (6)0.0014 (6)
C310.0288 (8)0.0199 (7)0.0220 (8)0.0000 (6)0.0035 (6)0.0047 (6)
C410.0274 (8)0.0179 (7)0.0293 (8)0.0012 (6)0.0015 (7)0.0026 (7)
C510.0314 (8)0.0209 (7)0.0245 (8)0.0029 (6)0.0017 (7)0.0025 (7)
C610.0256 (8)0.0199 (7)0.0184 (7)0.0001 (6)0.0003 (6)0.0021 (6)
C120.0170 (6)0.0162 (6)0.0187 (7)0.0009 (5)0.0004 (6)0.0003 (6)
C220.0173 (7)0.0189 (7)0.0242 (8)0.0007 (5)0.0013 (6)0.0025 (6)
C320.0225 (7)0.0187 (7)0.0261 (8)0.0011 (5)0.0034 (7)0.0007 (6)
C420.0236 (7)0.0188 (7)0.0252 (8)0.0017 (6)0.0029 (7)0.0004 (7)
C520.0212 (7)0.0227 (7)0.0253 (7)0.0033 (6)0.0045 (6)0.0005 (7)
C620.0178 (7)0.0196 (7)0.0243 (8)0.0002 (5)0.0031 (6)0.0009 (6)
N20.0202 (6)0.0229 (6)0.0197 (6)0.0009 (5)0.0012 (5)0.0013 (5)
O10.0197 (6)0.0370 (7)0.0409 (8)0.0041 (5)0.0034 (5)0.0079 (6)
O20.0594 (9)0.0360 (7)0.0239 (6)0.0236 (6)0.0088 (7)0.0071 (6)
O30.0296 (6)0.0394 (7)0.0263 (7)0.0000 (5)0.0050 (5)0.0082 (6)
Geometric parameters (Å, º) top
N1—C111.5077 (19)C12—C221.522 (2)
N1—C121.510 (2)C12—C621.526 (2)
N1—H1N0.91 (2)C12—H121.0000
N1—H2N0.86 (2)C22—C321.527 (2)
C11—C211.521 (2)C22—H22A0.9900
C11—C611.524 (2)C22—H22B0.9900
C11—H111.0000C32—C421.526 (2)
C21—C311.532 (2)C32—H32A0.9900
C21—H21A0.9900C32—H32B0.9900
C21—H21B0.9900C42—C521.525 (2)
C31—C411.525 (2)C42—H42A0.9900
C31—H31A0.9900C42—H42B0.9900
C31—H31B0.9900C52—C621.536 (2)
C41—C511.533 (3)C52—H52A0.9900
C41—H41A0.9900C52—H52B0.9900
C41—H41B0.9900C62—H62A0.9900
C51—C611.528 (2)C62—H62B0.9900
C51—H51A0.9900N2—O11.2353 (18)
C51—H51B0.9900N2—O31.255 (2)
C61—H61A0.9900N2—O21.258 (2)
C61—H61B0.9900
C11—N1—C12117.34 (12)H61A—C61—H61B108.1
C11—N1—H1N107.9 (13)N1—C12—C22107.92 (12)
C12—N1—H1N109.3 (13)N1—C12—C62111.45 (12)
C11—N1—H2N109.0 (14)C22—C12—C62111.51 (12)
C12—N1—H2N105.4 (14)N1—C12—H12108.6
H1N—N1—H2N108 (2)C22—C12—H12108.6
N1—C11—C21110.62 (13)C62—C12—H12108.6
N1—C11—C61108.83 (13)C12—C22—C32109.96 (13)
C21—C11—C61111.20 (13)C12—C22—H22A109.7
N1—C11—H11108.7C32—C22—H22A109.7
C21—C11—H11108.7C12—C22—H22B109.7
C61—C11—H11108.7C32—C22—H22B109.7
C11—C21—C31110.42 (14)H22A—C22—H22B108.2
C11—C21—H21A109.6C42—C32—C22110.87 (13)
C31—C21—H21A109.6C42—C32—H32A109.5
C11—C21—H21B109.6C22—C32—H32A109.5
C31—C21—H21B109.6C42—C32—H32B109.5
H21A—C21—H21B108.1C22—C32—H32B109.5
C41—C31—C21111.49 (14)H32A—C32—H32B108.1
C41—C31—H31A109.3C52—C42—C32111.30 (13)
C21—C31—H31A109.3C52—C42—H42A109.4
C41—C31—H31B109.3C32—C42—H42A109.4
C21—C31—H31B109.3C52—C42—H42B109.4
H31A—C31—H31B108.0C32—C42—H42B109.4
C31—C41—C51110.99 (13)H42A—C42—H42B108.0
C31—C41—H41A109.4C42—C52—C62111.46 (14)
C51—C41—H41A109.4C42—C52—H52A109.3
C31—C41—H41B109.4C62—C52—H52A109.3
C51—C41—H41B109.4C42—C52—H52B109.3
H41A—C41—H41B108.0C62—C52—H52B109.3
C61—C51—C41110.81 (14)H52A—C52—H52B108.0
C61—C51—H51A109.5C12—C62—C52109.50 (13)
C41—C51—H51A109.5C12—C62—H62A109.8
C61—C51—H51B109.5C52—C62—H62A109.8
C41—C51—H51B109.5C12—C62—H62B109.8
H51A—C51—H51B108.1C52—C62—H62B109.8
C11—C61—C51110.18 (13)H62A—C62—H62B108.2
C11—C61—H61A109.6O1—N2—O3121.19 (15)
C51—C61—H61A109.6O1—N2—O2120.95 (16)
C11—C61—H61B109.6O3—N2—O2117.86 (14)
C51—C61—H61B109.6
C12—N1—C11—C2156.99 (17)C11—N1—C12—C22178.34 (13)
C12—N1—C11—C61179.43 (13)C11—N1—C12—C6255.58 (18)
N1—C11—C21—C31178.14 (13)N1—C12—C22—C32178.66 (12)
C61—C11—C21—C3157.10 (18)C62—C12—C22—C3258.62 (18)
C11—C21—C31—C4155.47 (18)C12—C22—C32—C4256.86 (18)
C21—C31—C41—C5155.0 (2)C22—C32—C42—C5255.7 (2)
C31—C41—C51—C6155.81 (19)C32—C42—C52—C6255.4 (2)
N1—C11—C61—C51179.74 (13)N1—C12—C62—C52178.37 (13)
C21—C11—C61—C5158.16 (18)C22—C12—C62—C5257.70 (18)
C41—C51—C61—C1157.12 (18)C42—C52—C62—C1255.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.91 (2)2.56 (2)3.292 (2)138.2 (17)
N1—H1N···O30.91 (2)2.01 (2)2.8988 (19)166.7 (19)
N1—H2N···O2i0.86 (2)1.98 (2)2.799 (2)157.6 (19)
C11—H11···O1ii1.002.453.347 (2)149
C12—H12···O3iii1.002.523.456 (3)156
C22—H22B···O20.992.533.309 (2)136
C62—H62A···O1ii0.992.593.506 (2)153
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.91 (2)2.56 (2)3.292 (2)138.2 (17)
N1—H1N···O30.91 (2)2.01 (2)2.8988 (19)166.7 (19)
N1—H2N···O2i0.86 (2)1.98 (2)2.799 (2)157.6 (19)
C11—H11···O1ii1.002.453.347 (2)149
C12—H12···O3iii1.002.523.456 (3)156
C22—H22B···O20.992.533.309 (2)136
C62—H62A···O1ii0.992.593.506 (2)153
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1/2.
 

Acknowledgements

Financial support by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Department of Chemistry of Wrocław University of Technology is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBi, W., Sun, D., Cao, R., Chen, J.-T. & Hong, M. (2002). Acta Cryst. E58, m611–m612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGolobič, A., Štefane, B. & Polanc, S. (1999). Polyhedron, 18, 3661–3668.  Google Scholar
First citationKhawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1624.  CSD CrossRef IUCr Journals Google Scholar
First citationNdoye, D., Sow, M. M. & Diop, L. (2014). Acta Cryst. E70, o237.  CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 2149–2150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593–597.  CSD CrossRef IUCr Journals Google Scholar
First citationSahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917–5924.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606–2614.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrivedi, D. R., Ballabh, A., Dastidar, P. & Ganguly, B. (2004). Chem. Eur. J. 10, 5311–5322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds