metal-organic compounds
catena-poly[[[triaqua(4-cyanobenzoato-κO)nickel(II)]-μ-4,4′-bipyridine-κ2N:N′] 4-cyanobenzoate]
ofaFacultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Oriente 6, No. 1009, Colonia Rafael Alvarado, CP 94340, Orizaba, Veracruz, Mexico, and bDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, México, D.F., Mexico
*Correspondence e-mail: chemax7@yahoo.com.mx
In the title polymeric complex salt, {[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)}n, the NiII cation is coordinated by a 4-cyanobenzoate anion, two 4,4′-bipyridine ligands and three water molecules in a distorted N2O4 octahedral geometry. The 4,4′-bipyridine ligands bridge the NiII cations to form polymeric chains of the title complex cations, propagating along the c-axis direction. The dihedral angle between the pyridine rings of the 4,4′-bipyridine ligand is 24.9 (6)°. In the crystal, the uncoordinating 4-cyanobenzoate anions link with the complex cations via O—H⋯O hydrogen bonds into a three-dimensional supramolecular architecture. Weak C—H⋯O, C—H⋯N interactions and π–π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.
Keywords: crystal structure; nickel(II); 4-cyanobenzoate; 4,4′-bipyridine; polymeric complex salt; hydrogen bonding; π–π stacking.
CCDC reference: 1428986
1. Related literature
For polymer structures reported with monodentate 4-cyanobenzoate and 4,4′-bipyridyl ligands coordinating to cobalt(II) and copper(II), see: He et al. (2003); He & Zhu (2003). For metal–organic structures with monodentate benzoato and 4,4′-bipyridyl ligands coordinating to nickel(II), see: Biradha et al. (1999); Song et al. (2009). For potential applications of the title compound, see: Peña-Rodríguez et al. (2014); Song et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: COLLECT (Bruker, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1428986
https://doi.org/10.1107/S2056989015018344/xu5875sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018344/xu5875Isup2.hkl
A solution of nickel(II) nitrate hexahydrate (62.1 mg, 0.21 mmol) in 5 mL of deionized water was added dropwise to 5 mL of a methanol solution of 4,4'-bipyridine (50 mg, 0.32 mmol), the reaction mixture was refluxed for two hours; after which a solution of 4-cyanobenzoic acid (62.8 mg, 0.42 mmol) in 5 mL of DMF was slowly added at room temperature, the reaction mixture was refluxed for five hours. The solid was crystallized from the solution giving blue crystals of the title compound which were suitable for X-ray
analysis and fully characterized by standard analytical methods. M.p. > 350°C.The water H atoms were located in a difference Fourier map and refined with a distance restraint O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model approximation with distance C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).
The design of metal-organic frameworks is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Peña-Rodríguez et al., 2014; Song et al. 2009). In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and three dimensional coordination polymers with potential applications as functional materials. The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Biradha et al. 1999). 4-cyanobenzoic acid has been used to develop fluorescent materials (He & Zhu 2003a,b).
4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic frameworks due to its various coordinative modes with metal ions. Currently all the metal-organic coordination compounds obtained with cyanobenzoic acid and 4,4'-bipyridine contain the cyanobenzoato group as mono- or bidentate ligand, the title compound is the first example of a polymeric structure with cyanobenzoate as a counter ion.
The title compound is a nickel(II) polymeric complex cation (Fig. 1) together with four cyanobenzoate counter ions in the
Each nickel(II) ion displays a distorted octahedral coordination geometry being surrounded by three O-donor molecules of water, one O-donor molecule of 4-cyanobenzoato and two N-donor molecules trans-disposed of 4,4'-bipyridyl. The dihedral angle between the aromatic rings of the 4,4'-bipyridine ligand is 24.9 (6)° (ligand containing N3 and N4).In the crystal, the uncoordinate 4-cyanobenzoate anions link with the complex cations via O—H···O hydrogen bonds into the three dimensional supramolecular architecture. Weak C—H···O, C—H···N and π-π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.
For polymer structures reported with monodentate 4-cyanobenzoate and 4,4'-bipyridyl ligands coordinating to cobalt(II) and copper(II), see: He et al. (2003); He & Zhu (2003). For metal–organic structures with monodentate benzoato and 4,4'-bipyridyl ligands coordinating to nickel(II), see: Biradha et al. (1999); Song et al. (2009). For potential applications of the title compound, see: Peña-Rodríguez et al. (2014); Song et al. (2009).
Data collection: COLLECT (Bruker, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are omitted for clarity. |
[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2) | F(000) = 1160 |
Mr = 561.19 | Dx = 1.521 Mg m−3 |
Monoclinic, P21/c | Melting point: 350 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.176 (5) Å | Cell parameters from 10938 reflections |
b = 21.373 (9) Å | θ = 2.9–27.5° |
c = 17.032 (9) Å | µ = 0.85 mm−1 |
β = 110.32 (3)° | T = 293 K |
V = 2450 (2) Å3 | Needle, blue |
Z = 4 | 0.1 × 0.05 × 0.05 mm |
Nonius KappaCCD diffractometer | 5632 independent reflections |
Radiation source: Enraf Nonius FR590 | 2419 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.143 |
Detector resolution: 9 pixels mm-1 | θmax = 27.6°, θmin = 3.2° |
CCD rotation images, thick slices scans | h = −9→9 |
Absorption correction: multi-scan (North et al., 1968) | k = −27→24 |
Tmin = 0.872, Tmax = 0.969 | l = −22→18 |
19002 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0333P)2] where P = (Fo2 + 2Fc2)/3 |
5632 reflections | (Δ/σ)max < 0.001 |
367 parameters | Δρmax = 0.38 e Å−3 |
6 restraints | Δρmin = −0.38 e Å−3 |
[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2) | V = 2450 (2) Å3 |
Mr = 561.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.176 (5) Å | µ = 0.85 mm−1 |
b = 21.373 (9) Å | T = 293 K |
c = 17.032 (9) Å | 0.1 × 0.05 × 0.05 mm |
β = 110.32 (3)° |
Nonius KappaCCD diffractometer | 5632 independent reflections |
Absorption correction: multi-scan (North et al., 1968) | 2419 reflections with I > 2σ(I) |
Tmin = 0.872, Tmax = 0.969 | Rint = 0.143 |
19002 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 6 restraints |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.38 e Å−3 |
5632 reflections | Δρmin = −0.38 e Å−3 |
367 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8802 (7) | 0.3998 (2) | −0.0400 (3) | 0.0443 (13) | |
C9 | 0.7907 (7) | 0.42600 (19) | 0.0174 (3) | 0.0360 (11) | |
C10 | 0.8269 (7) | 0.48622 (18) | 0.1392 (3) | 0.0353 (12) | |
H10 | 0.9042 | 0.5118 | 0.1824 | 0.042* | |
C12 | 0.5875 (7) | 0.73382 (18) | 0.1336 (3) | 0.0317 (11) | |
C16 | 0.6335 (7) | 0.47103 (18) | 0.1338 (3) | 0.0318 (11) | |
C17 | 0.5189 (7) | 0.43439 (19) | 0.0674 (3) | 0.0386 (12) | |
H17 | 0.3888 | 0.4248 | 0.0623 | 0.046* | |
C20 | 0.4377 (7) | 0.68161 (19) | 0.2211 (3) | 0.0400 (12) | |
H20 | 0.3264 | 0.6758 | 0.2363 | 0.048* | |
C21 | 0.4258 (7) | 0.72438 (18) | 0.1591 (3) | 0.0362 (11) | |
H21 | 0.3094 | 0.747 | 0.1343 | 0.043* | |
C22 | 0.7544 (7) | 0.69861 (19) | 0.1740 (3) | 0.0393 (12) | |
H22 | 0.8665 | 0.703 | 0.159 | 0.047* | |
C25 | 0.5952 (7) | 0.41170 (19) | 0.0083 (3) | 0.0407 (12) | |
H25 | 0.5172 | 0.3875 | −0.0365 | 0.049* | |
C26 | 0.4655 (7) | 0.63031 (18) | 0.4810 (3) | 0.0367 (12) | |
H26 | 0.3831 | 0.5954 | 0.4691 | 0.044* | |
C28 | 0.7576 (7) | 0.65723 (19) | 0.2359 (3) | 0.0411 (12) | |
H28 | 0.8733 | 0.6346 | 0.2621 | 0.049* | |
C30 | 0.5515 (8) | 0.49599 (19) | 0.1980 (3) | 0.0346 (11) | |
C32 | 0.6965 (8) | 0.6908 (2) | 0.4545 (3) | 0.0463 (14) | |
H32 | 0.779 | 0.6986 | 0.4239 | 0.056* | |
C35 | 0.9040 (7) | 0.46355 (19) | 0.0811 (3) | 0.0387 (12) | |
H35 | 1.033 | 0.4738 | 0.0852 | 0.046* | |
C40 | 0.4596 (7) | 0.67016 (18) | 0.5451 (3) | 0.0369 (12) | |
H40 | 0.3754 | 0.6615 | 0.5747 | 0.044* | |
C41 | 0.6984 (8) | 0.7328 (2) | 0.5164 (3) | 0.0472 (14) | |
H41 | 0.7795 | 0.768 | 0.5261 | 0.057* | |
C42 | 0.5795 (7) | 0.77749 (18) | 0.0643 (3) | 0.0333 (11) | |
N2 | 0.9595 (7) | 0.3780 (2) | −0.0811 (3) | 0.0675 (14) | |
N3 | 0.5819 (6) | 0.63939 (14) | 0.4361 (2) | 0.0325 (9) | |
N4 | 0.6007 (6) | 0.64792 (14) | 0.2606 (2) | 0.0309 (9) | |
O1 | 0.9251 (5) | 0.58567 (15) | 0.40016 (19) | 0.0365 (8) | |
O4 | 0.3679 (6) | 0.49516 (16) | 0.1789 (2) | 0.0592 (10) | |
O5 | 0.6741 (4) | 0.51639 (12) | 0.26558 (18) | 0.0354 (8) | |
O7 | 0.6401 (5) | 0.50203 (15) | 0.4306 (2) | 0.0378 (8) | |
O8 | 0.3102 (5) | 0.55901 (15) | 0.2997 (2) | 0.0384 (8) | |
Ni1 | 0.61430 (9) | 0.57627 (2) | 0.34785 (3) | 0.02972 (18) | |
C13 | 0.9693 (8) | 0.3155 (2) | 0.1751 (3) | 0.0431 (13) | |
C15 | 1.0418 (7) | 0.4313 (2) | 0.3870 (3) | 0.0391 (12) | |
C19 | 1.1431 (8) | 0.3493 (2) | 0.2086 (3) | 0.0467 (13) | |
H19 | 1.2423 | 0.3469 | 0.1853 | 0.056* | |
C23 | 1.0206 (8) | 0.3895 (2) | 0.3140 (3) | 0.0392 (12) | |
C27 | 0.8511 (8) | 0.3536 (2) | 0.2800 (3) | 0.0495 (14) | |
H27 | 0.7541 | 0.3541 | 0.3046 | 0.059* | |
C29 | 0.8237 (8) | 0.3171 (2) | 0.2105 (3) | 0.0530 (14) | |
H29 | 0.708 | 0.2938 | 0.1876 | 0.064* | |
C31 | 0.9341 (8) | 0.2797 (2) | 0.0993 (3) | 0.0526 (14) | |
C36 | 1.1666 (7) | 0.3871 (2) | 0.2782 (3) | 0.0431 (12) | |
H36 | 1.2813 | 0.411 | 0.3007 | 0.052* | |
N1 | 0.9046 (7) | 0.2533 (2) | 0.0379 (3) | 0.0686 (14) | |
O2 | 1.1613 (5) | 0.47669 (14) | 0.39992 (19) | 0.0476 (9) | |
O3 | 0.9334 (5) | 0.41867 (13) | 0.42993 (18) | 0.0440 (8) | |
H1A | 0.963 (6) | 0.5900 (19) | 0.4528 (7) | 0.048 (15)* | |
H1B | 0.974 (7) | 0.5543 (14) | 0.385 (3) | 0.065 (18)* | |
H7A | 0.691 (6) | 0.5104 (19) | 0.4819 (9) | 0.048 (15)* | |
H7B | 0.716 (9) | 0.479 (3) | 0.416 (5) | 0.16 (3)* | |
H8A | 0.287 (9) | 0.536 (2) | 0.336 (3) | 0.10 (2)* | |
H8B | 0.303 (10) | 0.537 (2) | 0.258 (2) | 0.11 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.045 (4) | 0.045 (3) | 0.040 (3) | 0.005 (2) | 0.012 (3) | −0.001 (2) |
C9 | 0.044 (3) | 0.035 (2) | 0.033 (3) | 0.007 (2) | 0.018 (2) | −0.003 (2) |
C10 | 0.039 (3) | 0.036 (3) | 0.029 (3) | −0.002 (2) | 0.009 (3) | −0.006 (2) |
C12 | 0.039 (3) | 0.033 (2) | 0.025 (3) | −0.004 (2) | 0.014 (2) | −0.0022 (19) |
C16 | 0.034 (3) | 0.030 (2) | 0.030 (3) | −0.001 (2) | 0.010 (2) | −0.0001 (19) |
C17 | 0.039 (3) | 0.045 (3) | 0.034 (3) | −0.004 (2) | 0.015 (2) | −0.006 (2) |
C20 | 0.038 (3) | 0.044 (3) | 0.041 (3) | 0.005 (2) | 0.018 (3) | 0.007 (2) |
C21 | 0.043 (3) | 0.034 (2) | 0.034 (3) | 0.004 (2) | 0.016 (3) | 0.010 (2) |
C22 | 0.041 (3) | 0.047 (3) | 0.035 (3) | 0.003 (2) | 0.020 (3) | 0.007 (2) |
C25 | 0.046 (4) | 0.039 (3) | 0.034 (3) | −0.004 (2) | 0.010 (3) | −0.013 (2) |
C26 | 0.044 (3) | 0.030 (2) | 0.040 (3) | −0.009 (2) | 0.019 (3) | −0.004 (2) |
C28 | 0.038 (3) | 0.045 (3) | 0.039 (3) | 0.006 (2) | 0.012 (3) | 0.008 (2) |
C30 | 0.032 (3) | 0.040 (3) | 0.034 (3) | −0.002 (2) | 0.015 (3) | 0.000 (2) |
C32 | 0.059 (4) | 0.046 (3) | 0.046 (3) | −0.019 (3) | 0.034 (3) | −0.014 (2) |
C35 | 0.039 (3) | 0.043 (3) | 0.034 (3) | −0.001 (2) | 0.013 (3) | −0.004 (2) |
C40 | 0.041 (3) | 0.043 (3) | 0.031 (3) | −0.006 (2) | 0.019 (3) | −0.004 (2) |
C41 | 0.066 (4) | 0.040 (3) | 0.045 (3) | −0.021 (2) | 0.032 (3) | −0.013 (2) |
C42 | 0.036 (3) | 0.030 (2) | 0.034 (3) | −0.003 (2) | 0.011 (2) | −0.003 (2) |
N2 | 0.075 (4) | 0.069 (3) | 0.078 (4) | −0.002 (3) | 0.050 (3) | −0.022 (3) |
N3 | 0.043 (3) | 0.030 (2) | 0.028 (2) | −0.0065 (18) | 0.017 (2) | −0.0009 (16) |
N4 | 0.038 (3) | 0.029 (2) | 0.028 (2) | −0.0038 (18) | 0.014 (2) | −0.0007 (16) |
O1 | 0.039 (2) | 0.042 (2) | 0.026 (2) | −0.0005 (16) | 0.0079 (17) | −0.0057 (15) |
O4 | 0.042 (3) | 0.095 (3) | 0.045 (2) | −0.013 (2) | 0.020 (2) | −0.0303 (19) |
O5 | 0.036 (2) | 0.0409 (17) | 0.0245 (18) | 0.0034 (14) | 0.0047 (16) | −0.0058 (14) |
O7 | 0.048 (2) | 0.0384 (19) | 0.028 (2) | −0.0040 (17) | 0.0141 (19) | 0.0000 (15) |
O8 | 0.038 (2) | 0.047 (2) | 0.033 (2) | −0.0018 (16) | 0.0160 (18) | −0.0056 (17) |
Ni1 | 0.0363 (4) | 0.0297 (3) | 0.0249 (3) | −0.0020 (3) | 0.0128 (3) | −0.0014 (3) |
C13 | 0.057 (4) | 0.035 (3) | 0.039 (3) | 0.005 (3) | 0.018 (3) | 0.000 (2) |
C15 | 0.041 (3) | 0.047 (3) | 0.028 (3) | 0.012 (3) | 0.010 (2) | 0.007 (2) |
C19 | 0.047 (4) | 0.049 (3) | 0.050 (3) | 0.005 (3) | 0.025 (3) | 0.000 (3) |
C23 | 0.050 (4) | 0.041 (3) | 0.027 (3) | 0.006 (3) | 0.014 (3) | 0.006 (2) |
C27 | 0.057 (4) | 0.055 (3) | 0.043 (3) | −0.011 (3) | 0.025 (3) | −0.005 (3) |
C29 | 0.064 (4) | 0.050 (3) | 0.044 (3) | −0.011 (3) | 0.017 (3) | −0.007 (2) |
C31 | 0.045 (4) | 0.057 (3) | 0.050 (4) | 0.009 (3) | 0.009 (3) | −0.004 (3) |
C36 | 0.040 (4) | 0.044 (3) | 0.040 (3) | 0.004 (2) | 0.007 (3) | 0.000 (2) |
N1 | 0.060 (4) | 0.080 (3) | 0.064 (3) | 0.006 (3) | 0.019 (3) | −0.027 (3) |
O2 | 0.057 (3) | 0.051 (2) | 0.039 (2) | −0.0047 (18) | 0.0220 (19) | −0.0062 (16) |
O3 | 0.051 (2) | 0.0528 (19) | 0.0325 (18) | 0.0030 (17) | 0.0202 (17) | 0.0022 (15) |
C1—N2 | 1.144 (5) | C40—H40 | 0.93 |
C1—C9 | 1.455 (6) | C41—C42i | 1.388 (6) |
C9—C35 | 1.367 (6) | C41—H41 | 0.93 |
C9—C25 | 1.391 (6) | C42—C40ii | 1.379 (5) |
C10—C35 | 1.379 (5) | C42—C41ii | 1.388 (6) |
C10—C16 | 1.397 (6) | N3—Ni1 | 2.092 (3) |
C10—H10 | 0.93 | N4—Ni1 | 2.113 (3) |
C12—C22 | 1.379 (6) | O1—Ni1 | 2.104 (3) |
C12—C21 | 1.388 (5) | O1—H1A | 0.846 (10) |
C12—C42 | 1.490 (5) | O1—H1B | 0.840 (10) |
C16—C17 | 1.387 (6) | O5—Ni1 | 2.050 (3) |
C16—C30 | 1.507 (6) | O7—Ni1 | 2.088 (3) |
C17—C25 | 1.390 (5) | O7—H7A | 0.840 (10) |
C17—H17 | 0.93 | O7—H7B | 0.838 (10) |
C20—N4 | 1.339 (5) | O8—Ni1 | 2.080 (3) |
C20—C21 | 1.376 (5) | O8—H8A | 0.842 (10) |
C20—H20 | 0.93 | O8—H8B | 0.839 (10) |
C21—H21 | 0.93 | C13—C29 | 1.376 (6) |
C22—C28 | 1.370 (5) | C13—C19 | 1.381 (6) |
C22—H22 | 0.93 | C13—C31 | 1.445 (7) |
C25—H25 | 0.93 | C15—O2 | 1.262 (5) |
C26—N3 | 1.329 (5) | C15—O3 | 1.267 (5) |
C26—C40 | 1.397 (5) | C15—C23 | 1.496 (6) |
C26—H26 | 0.93 | C19—C36 | 1.396 (6) |
C28—N4 | 1.346 (5) | C19—H19 | 0.93 |
C28—H28 | 0.93 | C23—C27 | 1.384 (6) |
C30—O4 | 1.243 (5) | C23—C36 | 1.384 (6) |
C30—O5 | 1.259 (5) | C27—C29 | 1.373 (6) |
C32—N3 | 1.343 (5) | C27—H27 | 0.93 |
C32—C41 | 1.382 (6) | C29—H29 | 0.93 |
C32—H32 | 0.93 | C31—N1 | 1.141 (6) |
C35—H35 | 0.93 | C36—H36 | 0.93 |
C40—C42i | 1.379 (6) | ||
N2—C1—C9 | 176.0 (5) | C26—N3—Ni1 | 124.6 (3) |
C35—C9—C25 | 121.1 (4) | C32—N3—Ni1 | 118.9 (3) |
C35—C9—C1 | 118.6 (4) | C20—N4—C28 | 116.3 (4) |
C25—C9—C1 | 120.3 (4) | C20—N4—Ni1 | 124.2 (3) |
C35—C10—C16 | 120.5 (4) | C28—N4—Ni1 | 119.2 (3) |
C35—C10—H10 | 119.7 | Ni1—O1—H1A | 111 (3) |
C16—C10—H10 | 119.7 | Ni1—O1—H1B | 107 (4) |
C22—C12—C21 | 116.1 (4) | H1A—O1—H1B | 114 (4) |
C22—C12—C42 | 121.7 (4) | C30—O5—Ni1 | 126.5 (3) |
C21—C12—C42 | 122.2 (4) | Ni1—O7—H7A | 116 (3) |
C17—C16—C10 | 118.6 (4) | Ni1—O7—H7B | 99 (5) |
C17—C16—C30 | 121.4 (4) | H7A—O7—H7B | 110 (6) |
C10—C16—C30 | 119.9 (4) | Ni1—O8—H8A | 105 (4) |
C16—C17—C25 | 121.1 (4) | Ni1—O8—H8B | 100 (5) |
C16—C17—H17 | 119.4 | H8A—O8—H8B | 108 (5) |
C25—C17—H17 | 119.4 | O5—Ni1—O8 | 93.42 (12) |
N4—C20—C21 | 123.6 (4) | O5—Ni1—O7 | 89.81 (12) |
N4—C20—H20 | 118.2 | O8—Ni1—O7 | 88.07 (13) |
C21—C20—H20 | 118.2 | O5—Ni1—N3 | 174.58 (14) |
C20—C21—C12 | 120.1 (4) | O8—Ni1—N3 | 91.99 (14) |
C20—C21—H21 | 120 | O7—Ni1—N3 | 90.62 (13) |
C12—C21—H21 | 120 | O5—Ni1—O1 | 84.62 (12) |
C28—C22—C12 | 121.1 (4) | O8—Ni1—O1 | 175.05 (13) |
C28—C22—H22 | 119.5 | O7—Ni1—O1 | 87.38 (13) |
C12—C22—H22 | 119.5 | N3—Ni1—O1 | 90.01 (14) |
C17—C25—C9 | 118.5 (4) | O5—Ni1—N4 | 86.63 (11) |
C17—C25—H25 | 120.7 | O8—Ni1—N4 | 93.74 (14) |
C9—C25—H25 | 120.7 | O7—Ni1—N4 | 176.10 (14) |
N3—C26—C40 | 123.8 (4) | N3—Ni1—N4 | 92.78 (12) |
N3—C26—H26 | 118.1 | O1—Ni1—N4 | 90.69 (13) |
C40—C26—H26 | 118.1 | C29—C13—C19 | 121.3 (4) |
N4—C28—C22 | 122.9 (4) | C29—C13—C31 | 118.7 (5) |
N4—C28—H28 | 118.6 | C19—C13—C31 | 119.9 (5) |
C22—C28—H28 | 118.6 | O2—C15—O3 | 125.4 (4) |
O4—C30—O5 | 125.8 (4) | O2—C15—C23 | 118.1 (4) |
O4—C30—C16 | 116.8 (4) | O3—C15—C23 | 116.5 (4) |
O5—C30—C16 | 117.4 (4) | C13—C19—C36 | 118.6 (4) |
N3—C32—C41 | 123.6 (4) | C13—C19—H19 | 120.7 |
N3—C32—H32 | 118.2 | C36—C19—H19 | 120.7 |
C41—C32—H32 | 118.2 | C27—C23—C36 | 119.0 (4) |
C9—C35—C10 | 120.0 (4) | C27—C23—C15 | 120.0 (4) |
C9—C35—H35 | 120 | C36—C23—C15 | 120.9 (4) |
C10—C35—H35 | 120 | C29—C27—C23 | 121.2 (5) |
C42i—C40—C26 | 119.6 (4) | C29—C27—H27 | 119.4 |
C42i—C40—H40 | 120.2 | C23—C27—H27 | 119.4 |
C26—C40—H40 | 120.2 | C27—C29—C13 | 119.2 (5) |
C32—C41—C42i | 120.0 (4) | C27—C29—H29 | 120.4 |
C32—C41—H41 | 120 | C13—C29—H29 | 120.4 |
C42i—C41—H41 | 120 | N1—C31—C13 | 177.6 (6) |
C40ii—C42—C41ii | 116.7 (4) | C23—C36—C19 | 120.6 (5) |
C40ii—C42—C12 | 123.0 (4) | C23—C36—H36 | 119.7 |
C41ii—C42—C12 | 120.2 (4) | C19—C36—H36 | 119.7 |
C26—N3—C32 | 116.2 (4) | ||
N2—C1—C9—C35 | 52 (8) | C30—O5—Ni1—N3 | −159.1 (12) |
N2—C1—C9—C25 | −127 (8) | C30—O5—Ni1—O1 | −166.3 (3) |
C35—C10—C16—C17 | −2.0 (6) | C30—O5—Ni1—N4 | −75.3 (3) |
C35—C10—C16—C30 | 179.8 (4) | C26—N3—Ni1—O5 | −139.7 (12) |
C10—C16—C17—C25 | 1.6 (6) | C32—N3—Ni1—O5 | 34.9 (14) |
C30—C16—C17—C25 | 179.8 (4) | C26—N3—Ni1—O8 | 42.9 (4) |
N4—C20—C21—C12 | 0.9 (7) | C32—N3—Ni1—O8 | −142.5 (4) |
C22—C12—C21—C20 | −0.3 (6) | C26—N3—Ni1—O7 | −45.1 (4) |
C42—C12—C21—C20 | 177.3 (4) | C32—N3—Ni1—O7 | 129.4 (4) |
C21—C12—C22—C28 | −0.4 (6) | C26—N3—Ni1—O1 | −132.5 (4) |
C42—C12—C22—C28 | −178.0 (4) | C32—N3—Ni1—O1 | 42.0 (4) |
C16—C17—C25—C9 | 0.6 (7) | C26—N3—Ni1—N4 | 136.8 (4) |
C35—C9—C25—C17 | −2.6 (7) | C32—N3—Ni1—N4 | −48.6 (4) |
C1—C9—C25—C17 | 176.0 (4) | C20—N4—Ni1—O5 | 117.3 (3) |
C12—C22—C28—N4 | 0.6 (7) | C28—N4—Ni1—O5 | −55.9 (3) |
C17—C16—C30—O4 | −16.5 (6) | C20—N4—Ni1—O8 | 24.1 (3) |
C10—C16—C30—O4 | 161.7 (4) | C28—N4—Ni1—O8 | −149.1 (3) |
C17—C16—C30—O5 | 164.3 (4) | C20—N4—Ni1—O7 | 142 (2) |
C10—C16—C30—O5 | −17.6 (6) | C28—N4—Ni1—O7 | −32 (2) |
C25—C9—C35—C10 | 2.2 (7) | C20—N4—Ni1—N3 | −68.1 (4) |
C1—C9—C35—C10 | −176.4 (4) | C28—N4—Ni1—N3 | 118.7 (3) |
C16—C10—C35—C9 | 0.1 (6) | C20—N4—Ni1—O1 | −158.1 (3) |
N3—C26—C40—C42i | 0.2 (7) | C28—N4—Ni1—O1 | 28.7 (3) |
N3—C32—C41—C42i | 0.9 (8) | C29—C13—C19—C36 | −2.0 (7) |
C22—C12—C42—C40ii | −153.1 (4) | C31—C13—C19—C36 | 175.3 (4) |
C21—C12—C42—C40ii | 29.4 (6) | O2—C15—C23—C27 | −158.1 (4) |
C22—C12—C42—C41ii | 25.7 (6) | O3—C15—C23—C27 | 20.4 (6) |
C21—C12—C42—C41ii | −151.8 (4) | O2—C15—C23—C36 | 20.3 (6) |
C40—C26—N3—C32 | −0.9 (7) | O3—C15—C23—C36 | −161.2 (4) |
C40—C26—N3—Ni1 | 173.8 (3) | C36—C23—C27—C29 | −1.7 (7) |
C41—C32—N3—C26 | 0.4 (7) | C15—C23—C27—C29 | 176.8 (4) |
C41—C32—N3—Ni1 | −174.6 (4) | C23—C27—C29—C13 | 1.2 (8) |
C21—C20—N4—C28 | −0.7 (6) | C19—C13—C29—C27 | 0.6 (7) |
C21—C20—N4—Ni1 | −174.2 (3) | C31—C13—C29—C27 | −176.7 (5) |
C22—C28—N4—C20 | 0.0 (6) | C29—C13—C31—N1 | 100 (14) |
C22—C28—N4—Ni1 | 173.8 (3) | C19—C13—C31—N1 | −77 (14) |
O4—C30—O5—Ni1 | −19.4 (6) | C27—C23—C36—C19 | 0.3 (7) |
C16—C30—O5—Ni1 | 159.8 (3) | C15—C23—C36—C19 | −178.2 (4) |
C30—O5—Ni1—O8 | 18.3 (3) | C13—C19—C36—C23 | 1.5 (7) |
C30—O5—Ni1—O7 | 106.3 (3) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3iii | 0.85 (1) | 1.88 (1) | 2.715 (5) | 167 (4) |
O1—H1B···O2 | 0.84 (4) | 2.09 (4) | 2.882 (5) | 156 (4) |
O7—H7A···O2iii | 0.84 (2) | 1.94 (2) | 2.777 (5) | 172 (4) |
O7—H7B···O3 | 0.83 (7) | 1.97 (7) | 2.761 (5) | 157 (8) |
O8—H8A···O2iv | 0.85 (5) | 2.07 (5) | 2.901 (5) | 165 (6) |
O8—H8B···O4 | 0.84 (4) | 1.81 (5) | 2.619 (5) | 162 (7) |
C32—H32···N1v | 0.93 | 2.43 | 3.121 (8) | 131 |
C35—H35···O4vi | 0.93 | 2.42 | 3.234 (7) | 146 |
Symmetry codes: (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+1/2; (vi) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3i | 0.847 (13) | 1.883 (12) | 2.715 (5) | 167 (4) |
O1—H1B···O2 | 0.84 (4) | 2.09 (4) | 2.882 (5) | 156 (4) |
O7—H7A···O2i | 0.841 (18) | 1.941 (17) | 2.777 (5) | 172 (4) |
O7—H7B···O3 | 0.83 (7) | 1.97 (7) | 2.761 (5) | 157 (8) |
O8—H8A···O2ii | 0.85 (5) | 2.07 (5) | 2.901 (5) | 165 (6) |
O8—H8B···O4 | 0.84 (4) | 1.81 (5) | 2.619 (5) | 162 (7) |
C32—H32···N1iii | 0.93 | 2.43 | 3.121 (8) | 131 |
C35—H35···O4iv | 0.93 | 2.42 | 3.234 (7) | 146 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+2, y+1/2, −z+1/2; (iv) x+1, y, z. |
Acknowledgements
The authors acknowledge financial support from Universidad Veracruzana and the Centro de Investigación y de Estudios Avanzados.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Biradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492–495. CrossRef CAS Google Scholar
Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003). Acta Cryst. E59, m333–m335. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174–o176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Peña-Rodríguez, R., Rivera, J. M., Colorado-Peralta, R., Duarte-Hernández, A. M. & Flores-Parra, A. (2014). Acta Cryst. E70, m21–m22. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 1241–1252. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of metal-organic frameworks is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Peña-Rodríguez et al., 2014; Song et al. 2009). In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and three dimensional coordination polymers with potential applications as functional materials. The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Biradha et al. 1999). 4-cyanobenzoic acid has been used to develop fluorescent materials (He & Zhu 2003a,b).
4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic frameworks due to its various coordinative modes with metal ions. Currently all the metal-organic coordination compounds obtained with cyanobenzoic acid and 4,4'-bipyridine contain the cyanobenzoato group as mono- or bidentate ligand, the title compound is the first example of a polymeric structure with cyanobenzoate as a counter ion.
The title compound is a nickel(II) polymeric complex cation (Fig. 1) together with four cyanobenzoate counter ions in the unit cell. Each nickel(II) ion displays a distorted octahedral coordination geometry being surrounded by three O-donor molecules of water, one O-donor molecule of 4-cyanobenzoato and two N-donor molecules trans-disposed of 4,4'-bipyridyl. The dihedral angle between the aromatic rings of the 4,4'-bipyridine ligand is 24.9 (6)° (ligand containing N3 and N4).
In the crystal, the uncoordinate 4-cyanobenzoate anions link with the complex cations via O—H···O hydrogen bonds into the three dimensional supramolecular architecture. Weak C—H···O, C—H···N and π-π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.