metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[tri­aqua­(4-cyano­benzoato-κO)nickel(II)]-μ-4,4′-bi­pyridine-κ2N:N′] 4-cyano­benzoate]

aFacultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Oriente 6, No. 1009, Colonia Rafael Alvarado, CP 94340, Orizaba, Veracruz, Mexico, and bDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, México, D.F., Mexico
*Correspondence e-mail: chemax7@yahoo.com.mx

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 September 2015; accepted 30 September 2015; online 17 October 2015)

In the title polymeric complex salt, {[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)}n, the NiII cation is coordinated by a 4-cyano­benzoate anion, two 4,4′-bi­pyridine ligands and three water mol­ecules in a distorted N2O4 octa­hedral geometry. The 4,4′-bi­pyridine ligands bridge the NiII cations to form polymeric chains of the title complex cations, propagating along the c-axis direction. The dihedral angle between the pyridine rings of the 4,4′-bi­pyridine ligand is 24.9 (6)°. In the crystal, the uncoordinating 4-cyano­benzoate anions link with the complex cations via O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture. Weak C—H⋯O, C—H⋯N inter­actions and ππ stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.

1. Related literature

For polymer structures reported with monodentate 4-cyano­benzoate and 4,4′-bipyridyl ligands coordinating to cobalt(II) and copper(II), see: He et al. (2003[He, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003). Acta Cryst. E59, m333-m335.]); He & Zhu (2003[He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174-o176.]). For metal–organic structures with monodentate benzoato and 4,4′-bipyridyl ligands coordinating to nickel(II), see: Biradha et al. (1999[Biradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492-495.]); Song et al. (2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]). For potential applications of the title compound, see: Peña-Rodríguez et al. (2014[Peña-Rodríguez, R., Rivera, J. M., Colorado-Peralta, R., Duarte-Hernández, A. M. & Flores-Parra, A. (2014). Acta Cryst. E70, m21-m22.]); Song et al. (2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)

  • Mr = 561.19

  • Monoclinic, P 21 /c

  • a = 7.176 (5) Å

  • b = 21.373 (9) Å

  • c = 17.032 (9) Å

  • β = 110.32 (3)°

  • V = 2450 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.05 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.872, Tmax = 0.969

  • 19002 measured reflections

  • 5632 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.143

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.126

  • S = 0.97

  • 5632 reflections

  • 367 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.85 (1) 1.88 (1) 2.715 (5) 167 (4)
O1—H1B⋯O2 0.84 (4) 2.09 (4) 2.882 (5) 156 (4)
O7—H7A⋯O2i 0.84 (2) 1.94 (2) 2.777 (5) 172 (4)
O7—H7B⋯O3 0.83 (7) 1.97 (7) 2.761 (5) 157 (8)
O8—H8A⋯O2ii 0.85 (5) 2.07 (5) 2.901 (5) 165 (6)
O8—H8B⋯O4 0.84 (4) 1.81 (5) 2.619 (5) 162 (7)
C32—H32⋯N1iii 0.93 2.43 3.121 (8) 131
C35—H35⋯O4iv 0.93 2.42 3.234 (7) 146
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design of metal-organic frameworks is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Peña-Rodríguez et al., 2014; Song et al. 2009). In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and three dimensional coordination polymers with potential applications as functional materials. The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Biradha et al. 1999). 4-cyanobenzoic acid has been used to develop fluorescent materials (He & Zhu 2003a,b).

4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic frameworks due to its various coordinative modes with metal ions. Currently all the metal-organic coordination compounds obtained with cyanobenzoic acid and 4,4'-bipyridine contain the cyanobenzoato group as mono- or bidentate ligand, the title compound is the first example of a polymeric structure with cyanobenzoate as a counter ion.

The title compound is a nickel(II) polymeric complex cation (Fig. 1) together with four cyanobenzoate counter ions in the unit cell. Each nickel(II) ion displays a distorted octahedral coordination geometry being surrounded by three O-donor molecules of water, one O-donor molecule of 4-cyanobenzoato and two N-donor molecules trans-disposed of 4,4'-bipyridyl. The dihedral angle between the aromatic rings of the 4,4'-bipyridine ligand is 24.9 (6)° (ligand containing N3 and N4).

In the crystal, the uncoordinate 4-cyanobenzoate anions link with the complex cations via O—H···O hydrogen bonds into the three dimensional supramolecular architecture. Weak C—H···O, C—H···N and π-π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.

Related literature top

For polymer structures reported with monodentate 4-cyanobenzoate and 4,4'-bipyridyl ligands coordinating to cobalt(II) and copper(II), see: He et al. (2003); He & Zhu (2003). For metal–organic structures with monodentate benzoato and 4,4'-bipyridyl ligands coordinating to nickel(II), see: Biradha et al. (1999); Song et al. (2009). For potential applications of the title compound, see: Peña-Rodríguez et al. (2014); Song et al. (2009).

Experimental top

A solution of nickel(II) nitrate hexahydrate (62.1 mg, 0.21 mmol) in 5 mL of deionized water was added dropwise to 5 mL of a methanol solution of 4,4'-bipyridine (50 mg, 0.32 mmol), the reaction mixture was refluxed for two hours; after which a solution of 4-cyanobenzoic acid (62.8 mg, 0.42 mmol) in 5 mL of DMF was slowly added at room temperature, the reaction mixture was refluxed for five hours. The solid was crystallized from the solution giving blue crystals of the title compound which were suitable for X-ray crystal structure analysis and fully characterized by standard analytical methods. M.p. > 350°C.

Refinement top

The water H atoms were located in a difference Fourier map and refined with a distance restraint O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model approximation with distance C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Structure description top

The design of metal-organic frameworks is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Peña-Rodríguez et al., 2014; Song et al. 2009). In the field of crystal engineering, 4,4'-bipyridine has been extensively used to construct novel one-, two-, and three dimensional coordination polymers with potential applications as functional materials. The combination of 4,4'-bipyridine and carboxylic acid is largely directed toward interesting topologies (Biradha et al. 1999). 4-cyanobenzoic acid has been used to develop fluorescent materials (He & Zhu 2003a,b).

4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic frameworks due to its various coordinative modes with metal ions. Currently all the metal-organic coordination compounds obtained with cyanobenzoic acid and 4,4'-bipyridine contain the cyanobenzoato group as mono- or bidentate ligand, the title compound is the first example of a polymeric structure with cyanobenzoate as a counter ion.

The title compound is a nickel(II) polymeric complex cation (Fig. 1) together with four cyanobenzoate counter ions in the unit cell. Each nickel(II) ion displays a distorted octahedral coordination geometry being surrounded by three O-donor molecules of water, one O-donor molecule of 4-cyanobenzoato and two N-donor molecules trans-disposed of 4,4'-bipyridyl. The dihedral angle between the aromatic rings of the 4,4'-bipyridine ligand is 24.9 (6)° (ligand containing N3 and N4).

In the crystal, the uncoordinate 4-cyanobenzoate anions link with the complex cations via O—H···O hydrogen bonds into the three dimensional supramolecular architecture. Weak C—H···O, C—H···N and π-π stacking [centroid-to-centroid distances = 3.566 (4) and 3.885 (4) Å] are also observed in the crystal.

For polymer structures reported with monodentate 4-cyanobenzoate and 4,4'-bipyridyl ligands coordinating to cobalt(II) and copper(II), see: He et al. (2003); He & Zhu (2003). For metal–organic structures with monodentate benzoato and 4,4'-bipyridyl ligands coordinating to nickel(II), see: Biradha et al. (1999); Song et al. (2009). For potential applications of the title compound, see: Peña-Rodríguez et al. (2014); Song et al. (2009).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are omitted for clarity.
catena-Poly[[[triaqua(4-cyanobenzoato-κO)nickel(II)]-µ-4,4'-bipyridine-κ2N:N'] 4-cyanobenzoate] top
Crystal data top
[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)F(000) = 1160
Mr = 561.19Dx = 1.521 Mg m3
Monoclinic, P21/cMelting point: 350 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.176 (5) ÅCell parameters from 10938 reflections
b = 21.373 (9) Åθ = 2.9–27.5°
c = 17.032 (9) ŵ = 0.85 mm1
β = 110.32 (3)°T = 293 K
V = 2450 (2) Å3Needle, blue
Z = 40.1 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
5632 independent reflections
Radiation source: Enraf Nonius FR5902419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 3.2°
CCD rotation images, thick slices scansh = 99
Absorption correction: multi-scan
(North et al., 1968)
k = 2724
Tmin = 0.872, Tmax = 0.969l = 2218
19002 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0333P)2]
where P = (Fo2 + 2Fc2)/3
5632 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C8H4NO2)(C10H8N2)(H2O)3](C8H4NO2)V = 2450 (2) Å3
Mr = 561.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.176 (5) ŵ = 0.85 mm1
b = 21.373 (9) ÅT = 293 K
c = 17.032 (9) Å0.1 × 0.05 × 0.05 mm
β = 110.32 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5632 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
2419 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.969Rint = 0.143
19002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0626 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.38 e Å3
5632 reflectionsΔρmin = 0.38 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8802 (7)0.3998 (2)0.0400 (3)0.0443 (13)
C90.7907 (7)0.42600 (19)0.0174 (3)0.0360 (11)
C100.8269 (7)0.48622 (18)0.1392 (3)0.0353 (12)
H100.90420.51180.18240.042*
C120.5875 (7)0.73382 (18)0.1336 (3)0.0317 (11)
C160.6335 (7)0.47103 (18)0.1338 (3)0.0318 (11)
C170.5189 (7)0.43439 (19)0.0674 (3)0.0386 (12)
H170.38880.42480.06230.046*
C200.4377 (7)0.68161 (19)0.2211 (3)0.0400 (12)
H200.32640.67580.23630.048*
C210.4258 (7)0.72438 (18)0.1591 (3)0.0362 (11)
H210.30940.7470.13430.043*
C220.7544 (7)0.69861 (19)0.1740 (3)0.0393 (12)
H220.86650.7030.1590.047*
C250.5952 (7)0.41170 (19)0.0083 (3)0.0407 (12)
H250.51720.38750.03650.049*
C260.4655 (7)0.63031 (18)0.4810 (3)0.0367 (12)
H260.38310.59540.46910.044*
C280.7576 (7)0.65723 (19)0.2359 (3)0.0411 (12)
H280.87330.63460.26210.049*
C300.5515 (8)0.49599 (19)0.1980 (3)0.0346 (11)
C320.6965 (8)0.6908 (2)0.4545 (3)0.0463 (14)
H320.7790.69860.42390.056*
C350.9040 (7)0.46355 (19)0.0811 (3)0.0387 (12)
H351.0330.47380.08520.046*
C400.4596 (7)0.67016 (18)0.5451 (3)0.0369 (12)
H400.37540.66150.57470.044*
C410.6984 (8)0.7328 (2)0.5164 (3)0.0472 (14)
H410.77950.7680.52610.057*
C420.5795 (7)0.77749 (18)0.0643 (3)0.0333 (11)
N20.9595 (7)0.3780 (2)0.0811 (3)0.0675 (14)
N30.5819 (6)0.63939 (14)0.4361 (2)0.0325 (9)
N40.6007 (6)0.64792 (14)0.2606 (2)0.0309 (9)
O10.9251 (5)0.58567 (15)0.40016 (19)0.0365 (8)
O40.3679 (6)0.49516 (16)0.1789 (2)0.0592 (10)
O50.6741 (4)0.51639 (12)0.26558 (18)0.0354 (8)
O70.6401 (5)0.50203 (15)0.4306 (2)0.0378 (8)
O80.3102 (5)0.55901 (15)0.2997 (2)0.0384 (8)
Ni10.61430 (9)0.57627 (2)0.34785 (3)0.02972 (18)
C130.9693 (8)0.3155 (2)0.1751 (3)0.0431 (13)
C151.0418 (7)0.4313 (2)0.3870 (3)0.0391 (12)
C191.1431 (8)0.3493 (2)0.2086 (3)0.0467 (13)
H191.24230.34690.18530.056*
C231.0206 (8)0.3895 (2)0.3140 (3)0.0392 (12)
C270.8511 (8)0.3536 (2)0.2800 (3)0.0495 (14)
H270.75410.35410.30460.059*
C290.8237 (8)0.3171 (2)0.2105 (3)0.0530 (14)
H290.7080.29380.18760.064*
C310.9341 (8)0.2797 (2)0.0993 (3)0.0526 (14)
C361.1666 (7)0.3871 (2)0.2782 (3)0.0431 (12)
H361.28130.4110.30070.052*
N10.9046 (7)0.2533 (2)0.0379 (3)0.0686 (14)
O21.1613 (5)0.47669 (14)0.39992 (19)0.0476 (9)
O30.9334 (5)0.41867 (13)0.42993 (18)0.0440 (8)
H1A0.963 (6)0.5900 (19)0.4528 (7)0.048 (15)*
H1B0.974 (7)0.5543 (14)0.385 (3)0.065 (18)*
H7A0.691 (6)0.5104 (19)0.4819 (9)0.048 (15)*
H7B0.716 (9)0.479 (3)0.416 (5)0.16 (3)*
H8A0.287 (9)0.536 (2)0.336 (3)0.10 (2)*
H8B0.303 (10)0.537 (2)0.258 (2)0.11 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (4)0.045 (3)0.040 (3)0.005 (2)0.012 (3)0.001 (2)
C90.044 (3)0.035 (2)0.033 (3)0.007 (2)0.018 (2)0.003 (2)
C100.039 (3)0.036 (3)0.029 (3)0.002 (2)0.009 (3)0.006 (2)
C120.039 (3)0.033 (2)0.025 (3)0.004 (2)0.014 (2)0.0022 (19)
C160.034 (3)0.030 (2)0.030 (3)0.001 (2)0.010 (2)0.0001 (19)
C170.039 (3)0.045 (3)0.034 (3)0.004 (2)0.015 (2)0.006 (2)
C200.038 (3)0.044 (3)0.041 (3)0.005 (2)0.018 (3)0.007 (2)
C210.043 (3)0.034 (2)0.034 (3)0.004 (2)0.016 (3)0.010 (2)
C220.041 (3)0.047 (3)0.035 (3)0.003 (2)0.020 (3)0.007 (2)
C250.046 (4)0.039 (3)0.034 (3)0.004 (2)0.010 (3)0.013 (2)
C260.044 (3)0.030 (2)0.040 (3)0.009 (2)0.019 (3)0.004 (2)
C280.038 (3)0.045 (3)0.039 (3)0.006 (2)0.012 (3)0.008 (2)
C300.032 (3)0.040 (3)0.034 (3)0.002 (2)0.015 (3)0.000 (2)
C320.059 (4)0.046 (3)0.046 (3)0.019 (3)0.034 (3)0.014 (2)
C350.039 (3)0.043 (3)0.034 (3)0.001 (2)0.013 (3)0.004 (2)
C400.041 (3)0.043 (3)0.031 (3)0.006 (2)0.019 (3)0.004 (2)
C410.066 (4)0.040 (3)0.045 (3)0.021 (2)0.032 (3)0.013 (2)
C420.036 (3)0.030 (2)0.034 (3)0.003 (2)0.011 (2)0.003 (2)
N20.075 (4)0.069 (3)0.078 (4)0.002 (3)0.050 (3)0.022 (3)
N30.043 (3)0.030 (2)0.028 (2)0.0065 (18)0.017 (2)0.0009 (16)
N40.038 (3)0.029 (2)0.028 (2)0.0038 (18)0.014 (2)0.0007 (16)
O10.039 (2)0.042 (2)0.026 (2)0.0005 (16)0.0079 (17)0.0057 (15)
O40.042 (3)0.095 (3)0.045 (2)0.013 (2)0.020 (2)0.0303 (19)
O50.036 (2)0.0409 (17)0.0245 (18)0.0034 (14)0.0047 (16)0.0058 (14)
O70.048 (2)0.0384 (19)0.028 (2)0.0040 (17)0.0141 (19)0.0000 (15)
O80.038 (2)0.047 (2)0.033 (2)0.0018 (16)0.0160 (18)0.0056 (17)
Ni10.0363 (4)0.0297 (3)0.0249 (3)0.0020 (3)0.0128 (3)0.0014 (3)
C130.057 (4)0.035 (3)0.039 (3)0.005 (3)0.018 (3)0.000 (2)
C150.041 (3)0.047 (3)0.028 (3)0.012 (3)0.010 (2)0.007 (2)
C190.047 (4)0.049 (3)0.050 (3)0.005 (3)0.025 (3)0.000 (3)
C230.050 (4)0.041 (3)0.027 (3)0.006 (3)0.014 (3)0.006 (2)
C270.057 (4)0.055 (3)0.043 (3)0.011 (3)0.025 (3)0.005 (3)
C290.064 (4)0.050 (3)0.044 (3)0.011 (3)0.017 (3)0.007 (2)
C310.045 (4)0.057 (3)0.050 (4)0.009 (3)0.009 (3)0.004 (3)
C360.040 (4)0.044 (3)0.040 (3)0.004 (2)0.007 (3)0.000 (2)
N10.060 (4)0.080 (3)0.064 (3)0.006 (3)0.019 (3)0.027 (3)
O20.057 (3)0.051 (2)0.039 (2)0.0047 (18)0.0220 (19)0.0062 (16)
O30.051 (2)0.0528 (19)0.0325 (18)0.0030 (17)0.0202 (17)0.0022 (15)
Geometric parameters (Å, º) top
C1—N21.144 (5)C40—H400.93
C1—C91.455 (6)C41—C42i1.388 (6)
C9—C351.367 (6)C41—H410.93
C9—C251.391 (6)C42—C40ii1.379 (5)
C10—C351.379 (5)C42—C41ii1.388 (6)
C10—C161.397 (6)N3—Ni12.092 (3)
C10—H100.93N4—Ni12.113 (3)
C12—C221.379 (6)O1—Ni12.104 (3)
C12—C211.388 (5)O1—H1A0.846 (10)
C12—C421.490 (5)O1—H1B0.840 (10)
C16—C171.387 (6)O5—Ni12.050 (3)
C16—C301.507 (6)O7—Ni12.088 (3)
C17—C251.390 (5)O7—H7A0.840 (10)
C17—H170.93O7—H7B0.838 (10)
C20—N41.339 (5)O8—Ni12.080 (3)
C20—C211.376 (5)O8—H8A0.842 (10)
C20—H200.93O8—H8B0.839 (10)
C21—H210.93C13—C291.376 (6)
C22—C281.370 (5)C13—C191.381 (6)
C22—H220.93C13—C311.445 (7)
C25—H250.93C15—O21.262 (5)
C26—N31.329 (5)C15—O31.267 (5)
C26—C401.397 (5)C15—C231.496 (6)
C26—H260.93C19—C361.396 (6)
C28—N41.346 (5)C19—H190.93
C28—H280.93C23—C271.384 (6)
C30—O41.243 (5)C23—C361.384 (6)
C30—O51.259 (5)C27—C291.373 (6)
C32—N31.343 (5)C27—H270.93
C32—C411.382 (6)C29—H290.93
C32—H320.93C31—N11.141 (6)
C35—H350.93C36—H360.93
C40—C42i1.379 (6)
N2—C1—C9176.0 (5)C26—N3—Ni1124.6 (3)
C35—C9—C25121.1 (4)C32—N3—Ni1118.9 (3)
C35—C9—C1118.6 (4)C20—N4—C28116.3 (4)
C25—C9—C1120.3 (4)C20—N4—Ni1124.2 (3)
C35—C10—C16120.5 (4)C28—N4—Ni1119.2 (3)
C35—C10—H10119.7Ni1—O1—H1A111 (3)
C16—C10—H10119.7Ni1—O1—H1B107 (4)
C22—C12—C21116.1 (4)H1A—O1—H1B114 (4)
C22—C12—C42121.7 (4)C30—O5—Ni1126.5 (3)
C21—C12—C42122.2 (4)Ni1—O7—H7A116 (3)
C17—C16—C10118.6 (4)Ni1—O7—H7B99 (5)
C17—C16—C30121.4 (4)H7A—O7—H7B110 (6)
C10—C16—C30119.9 (4)Ni1—O8—H8A105 (4)
C16—C17—C25121.1 (4)Ni1—O8—H8B100 (5)
C16—C17—H17119.4H8A—O8—H8B108 (5)
C25—C17—H17119.4O5—Ni1—O893.42 (12)
N4—C20—C21123.6 (4)O5—Ni1—O789.81 (12)
N4—C20—H20118.2O8—Ni1—O788.07 (13)
C21—C20—H20118.2O5—Ni1—N3174.58 (14)
C20—C21—C12120.1 (4)O8—Ni1—N391.99 (14)
C20—C21—H21120O7—Ni1—N390.62 (13)
C12—C21—H21120O5—Ni1—O184.62 (12)
C28—C22—C12121.1 (4)O8—Ni1—O1175.05 (13)
C28—C22—H22119.5O7—Ni1—O187.38 (13)
C12—C22—H22119.5N3—Ni1—O190.01 (14)
C17—C25—C9118.5 (4)O5—Ni1—N486.63 (11)
C17—C25—H25120.7O8—Ni1—N493.74 (14)
C9—C25—H25120.7O7—Ni1—N4176.10 (14)
N3—C26—C40123.8 (4)N3—Ni1—N492.78 (12)
N3—C26—H26118.1O1—Ni1—N490.69 (13)
C40—C26—H26118.1C29—C13—C19121.3 (4)
N4—C28—C22122.9 (4)C29—C13—C31118.7 (5)
N4—C28—H28118.6C19—C13—C31119.9 (5)
C22—C28—H28118.6O2—C15—O3125.4 (4)
O4—C30—O5125.8 (4)O2—C15—C23118.1 (4)
O4—C30—C16116.8 (4)O3—C15—C23116.5 (4)
O5—C30—C16117.4 (4)C13—C19—C36118.6 (4)
N3—C32—C41123.6 (4)C13—C19—H19120.7
N3—C32—H32118.2C36—C19—H19120.7
C41—C32—H32118.2C27—C23—C36119.0 (4)
C9—C35—C10120.0 (4)C27—C23—C15120.0 (4)
C9—C35—H35120C36—C23—C15120.9 (4)
C10—C35—H35120C29—C27—C23121.2 (5)
C42i—C40—C26119.6 (4)C29—C27—H27119.4
C42i—C40—H40120.2C23—C27—H27119.4
C26—C40—H40120.2C27—C29—C13119.2 (5)
C32—C41—C42i120.0 (4)C27—C29—H29120.4
C32—C41—H41120C13—C29—H29120.4
C42i—C41—H41120N1—C31—C13177.6 (6)
C40ii—C42—C41ii116.7 (4)C23—C36—C19120.6 (5)
C40ii—C42—C12123.0 (4)C23—C36—H36119.7
C41ii—C42—C12120.2 (4)C19—C36—H36119.7
C26—N3—C32116.2 (4)
N2—C1—C9—C3552 (8)C30—O5—Ni1—N3159.1 (12)
N2—C1—C9—C25127 (8)C30—O5—Ni1—O1166.3 (3)
C35—C10—C16—C172.0 (6)C30—O5—Ni1—N475.3 (3)
C35—C10—C16—C30179.8 (4)C26—N3—Ni1—O5139.7 (12)
C10—C16—C17—C251.6 (6)C32—N3—Ni1—O534.9 (14)
C30—C16—C17—C25179.8 (4)C26—N3—Ni1—O842.9 (4)
N4—C20—C21—C120.9 (7)C32—N3—Ni1—O8142.5 (4)
C22—C12—C21—C200.3 (6)C26—N3—Ni1—O745.1 (4)
C42—C12—C21—C20177.3 (4)C32—N3—Ni1—O7129.4 (4)
C21—C12—C22—C280.4 (6)C26—N3—Ni1—O1132.5 (4)
C42—C12—C22—C28178.0 (4)C32—N3—Ni1—O142.0 (4)
C16—C17—C25—C90.6 (7)C26—N3—Ni1—N4136.8 (4)
C35—C9—C25—C172.6 (7)C32—N3—Ni1—N448.6 (4)
C1—C9—C25—C17176.0 (4)C20—N4—Ni1—O5117.3 (3)
C12—C22—C28—N40.6 (7)C28—N4—Ni1—O555.9 (3)
C17—C16—C30—O416.5 (6)C20—N4—Ni1—O824.1 (3)
C10—C16—C30—O4161.7 (4)C28—N4—Ni1—O8149.1 (3)
C17—C16—C30—O5164.3 (4)C20—N4—Ni1—O7142 (2)
C10—C16—C30—O517.6 (6)C28—N4—Ni1—O732 (2)
C25—C9—C35—C102.2 (7)C20—N4—Ni1—N368.1 (4)
C1—C9—C35—C10176.4 (4)C28—N4—Ni1—N3118.7 (3)
C16—C10—C35—C90.1 (6)C20—N4—Ni1—O1158.1 (3)
N3—C26—C40—C42i0.2 (7)C28—N4—Ni1—O128.7 (3)
N3—C32—C41—C42i0.9 (8)C29—C13—C19—C362.0 (7)
C22—C12—C42—C40ii153.1 (4)C31—C13—C19—C36175.3 (4)
C21—C12—C42—C40ii29.4 (6)O2—C15—C23—C27158.1 (4)
C22—C12—C42—C41ii25.7 (6)O3—C15—C23—C2720.4 (6)
C21—C12—C42—C41ii151.8 (4)O2—C15—C23—C3620.3 (6)
C40—C26—N3—C320.9 (7)O3—C15—C23—C36161.2 (4)
C40—C26—N3—Ni1173.8 (3)C36—C23—C27—C291.7 (7)
C41—C32—N3—C260.4 (7)C15—C23—C27—C29176.8 (4)
C41—C32—N3—Ni1174.6 (4)C23—C27—C29—C131.2 (8)
C21—C20—N4—C280.7 (6)C19—C13—C29—C270.6 (7)
C21—C20—N4—Ni1174.2 (3)C31—C13—C29—C27176.7 (5)
C22—C28—N4—C200.0 (6)C29—C13—C31—N1100 (14)
C22—C28—N4—Ni1173.8 (3)C19—C13—C31—N177 (14)
O4—C30—O5—Ni119.4 (6)C27—C23—C36—C190.3 (7)
C16—C30—O5—Ni1159.8 (3)C15—C23—C36—C19178.2 (4)
C30—O5—Ni1—O818.3 (3)C13—C19—C36—C231.5 (7)
C30—O5—Ni1—O7106.3 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3iii0.85 (1)1.88 (1)2.715 (5)167 (4)
O1—H1B···O20.84 (4)2.09 (4)2.882 (5)156 (4)
O7—H7A···O2iii0.84 (2)1.94 (2)2.777 (5)172 (4)
O7—H7B···O30.83 (7)1.97 (7)2.761 (5)157 (8)
O8—H8A···O2iv0.85 (5)2.07 (5)2.901 (5)165 (6)
O8—H8B···O40.84 (4)1.81 (5)2.619 (5)162 (7)
C32—H32···N1v0.932.433.121 (8)131
C35—H35···O4vi0.932.423.234 (7)146
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+2, y+1/2, z+1/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.847 (13)1.883 (12)2.715 (5)167 (4)
O1—H1B···O20.84 (4)2.09 (4)2.882 (5)156 (4)
O7—H7A···O2i0.841 (18)1.941 (17)2.777 (5)172 (4)
O7—H7B···O30.83 (7)1.97 (7)2.761 (5)157 (8)
O8—H8A···O2ii0.85 (5)2.07 (5)2.901 (5)165 (6)
O8—H8B···O40.84 (4)1.81 (5)2.619 (5)162 (7)
C32—H32···N1iii0.932.433.121 (8)131
C35—H35···O4iv0.932.423.234 (7)146
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from Universidad Veracruzana and the Centro de Investigación y de Estudios Avanzados.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492–495.  CrossRef CAS Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, H.-Y., Ma, A.-Q. & Zhu, L.-G. (2003). Acta Cryst. E59, m333–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, o174–o176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPeña-Rodríguez, R., Rivera, J. M., Colorado-Peralta, R., Duarte-Hernández, A. M. & Flores-Parra, A. (2014). Acta Cryst. E70, m21–m22.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 1241–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds