organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the adduct (4-chloro­phen­yl)(4-hy­dr­oxy­piperidin-1-yl)methanone–(4-chloro­phen­yl)(piperidin-1-yl)methanone (0.75/0.25)

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, cSCRI, Anna Hospital Campus, Chennai-106, Tamilnadu, India, and dAnna Siddha Medical College, Chennai-106, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 24 September 2015; accepted 27 October 2015; online 31 October 2015)

In the title compound, 0.75C12H14ClNO2·0.25C12H14ClNO, which is an adduct comprising 0.75 4-hy­droxy­piperidin-1-yl or 0.25 4-piperidin-1-yl substituents on a common (4-chloro­phen­yl)methanone component; the dihedral angles between the benzene ring and the two piperidine rings are 51.6 (3) and 89.5 (7)°, respectively. The hy­droxy­piperidine ring is in a bis­ectional oriention (bi) with the phenyl ring. In the crystal, inter­molecular O—H⋯O hydrogen bonds between the hy­droxy­piperidine group and the keto O atom lead to the formation of chains extending along the c- axis direction.

1. Related literature

For the synthesis, see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]). For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]); Sargent & May (1970[Sargent, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061-1063.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.]). For related structures, see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]); Prathebha et al. (2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 0.75C12H14ClNO2·0.25C12H14ClNO

  • Mr = 235.69

  • Orthorhombic, P c a 21

  • a = 24.312 (4) Å

  • b = 6.1628 (10) Å

  • c = 7.9654 (11) Å

  • V = 1193.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.941

  • 17321 measured reflections

  • 2356 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.02

  • 2356 reflections

  • 200 parameters

  • 121 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack x determined using 583 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 2.05 2.693 (7) 135
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Bruno et al., 2002[Bruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. A Polym. Chem. 40, 1468-1475.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Piperidine is very important pharmacophore because of its presence in numerous alkaloids, pharmaceuticals, agrochemicals and as synthetic intermediates. Biologically active alkaloids with substituted piperidine ring systems have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased dosages. In addition, the nucleus also possesses analgesic, ganglionic blocking and anesthetic properties as well (Sargent & May, 1970; Rubiralta et al., 1991).

In the title compound, 0.75(C12H14NO2Cl) . 0.25(C12H14NOCl), which is an adduct comprising 0.75(4-hydroxypiperidin-1-yl) or 0.25(4-piperidin-1-yl) substituents on a common (4-chlorophenyl)methanone component, the dihedral angles between the benzene ring and the two piperidine rings defined by N1–C12 and N1'–C12' are 51.6 (3) and 89.5 (7)°, respectively (Figs. 1, 2). The C—C distances in the hydroxypiperidine ring and the benzene ring are in the range [1.472 (9)–1.529 (8)Å and 1.346 (7)–1.390 (8)Å], respectively and are in good agreement with literature values (Allen et al., 1987). The C—N distances are in the range [1.346 (7)Å - 1.465 (7)Å] and are in good agreement with values in a similar reported structure (Revathi et al., 2015). The C—O distance [1.223 (6)Å] indicates double bond character and is comparable with the value reported previously (Prathebha et al., 2015). The hydroxypiperdine ring is in a bisectional oriention (bi) with the phenyl ring. The sum of the bond angle around the N1 atom is [359.9 (5)°], showing sp2 hybridization of the atoms. The torsion angle C8—N1—C7—O1 [12.3 (10)°], indicates that the keto group is in a +syn-periplanar (+sp) orientation with the hydroxy piperidine ring. The hydroxypiperidine ring adopts a chair conformation with puckering parameters of q2 = 0.029Å, phi2 = -173.57° q3 = -0.555Å, QT = 0.555Å and theta2 = 176.95°.

In the crystal, molecules are linked by O2—H···O1i hydrogen bonds (Table 1), forming one-dimensional chains extending along c (Fig. 3). Present also are very weak inter-chain C12'—H···Cl1ii interactions [3.63 (2) Å]. For symmetry code (ii) -x + 3/2, -y + 1, z - 1.

Related literature top

For the synthesis, see: Revathi et al. (2015). For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Sargent & May (1970); Rubiralta et al. (1991). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015).

Experimental top

The title compound was synthesized by utilizing a reported procedure (Revathi et al., 2015). In a 250 ml round-bottomed flask, 130 ml of ethylmethylketone was added to 4-hydroxypiperidiene (0.04 mol) and stirred well. Triethylamine (0.04 mol) was then added and the mixture was stirred for 10 min. 4-Chlorobenzoyl chloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for about 2 hr. A white precipitate of triethylammonium chloride was produced, which was filtered and the filtrate was evaporated to obtain the crude product, crystallization from ethylmethylketone gave colourless block-like crystals of the unexpected title adduct (yield: 88%).

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distances of 0.93–0.98 Å, an O—H distance of 0.82 Å, with Uiso(H)= 1.5 Ueq(C-methyl), Uiso(H)= 1.2Ueq(C,O) for other H atoms. The value of the absolute structure parameter (Parsons et al., 2013), although of no relevance for the present structure was determined as 0.03 (3) using 583 quotients [(I+)-(I-)]/[(I+)+(I-)].

Structure description top

Piperidine is very important pharmacophore because of its presence in numerous alkaloids, pharmaceuticals, agrochemicals and as synthetic intermediates. Biologically active alkaloids with substituted piperidine ring systems have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased dosages. In addition, the nucleus also possesses analgesic, ganglionic blocking and anesthetic properties as well (Sargent & May, 1970; Rubiralta et al., 1991).

In the title compound, 0.75(C12H14NO2Cl) . 0.25(C12H14NOCl), which is an adduct comprising 0.75(4-hydroxypiperidin-1-yl) or 0.25(4-piperidin-1-yl) substituents on a common (4-chlorophenyl)methanone component, the dihedral angles between the benzene ring and the two piperidine rings defined by N1–C12 and N1'–C12' are 51.6 (3) and 89.5 (7)°, respectively (Figs. 1, 2). The C—C distances in the hydroxypiperidine ring and the benzene ring are in the range [1.472 (9)–1.529 (8)Å and 1.346 (7)–1.390 (8)Å], respectively and are in good agreement with literature values (Allen et al., 1987). The C—N distances are in the range [1.346 (7)Å - 1.465 (7)Å] and are in good agreement with values in a similar reported structure (Revathi et al., 2015). The C—O distance [1.223 (6)Å] indicates double bond character and is comparable with the value reported previously (Prathebha et al., 2015). The hydroxypiperdine ring is in a bisectional oriention (bi) with the phenyl ring. The sum of the bond angle around the N1 atom is [359.9 (5)°], showing sp2 hybridization of the atoms. The torsion angle C8—N1—C7—O1 [12.3 (10)°], indicates that the keto group is in a +syn-periplanar (+sp) orientation with the hydroxy piperidine ring. The hydroxypiperidine ring adopts a chair conformation with puckering parameters of q2 = 0.029Å, phi2 = -173.57° q3 = -0.555Å, QT = 0.555Å and theta2 = 176.95°.

In the crystal, molecules are linked by O2—H···O1i hydrogen bonds (Table 1), forming one-dimensional chains extending along c (Fig. 3). Present also are very weak inter-chain C12'—H···Cl1ii interactions [3.63 (2) Å]. For symmetry code (ii) -x + 3/2, -y + 1, z - 1.

For the synthesis, see: Revathi et al. (2015). For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Sargent & May (1970); Rubiralta et al. (1991). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the major (73%) 4-hydroxypiperidin-1-yl substituted component of the title adduct, showing atom numbering, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the minor (25%) piperidin-1-yl substituted component of the title adduct, showing atom numbering, with displacement ellipsoids drawn at the 30% probability level. The bonds for the minor-occupancy piperidinyl group are shown as dashed lines
[Figure 3] Fig. 3. The packing of the molecules in the crystal structure. The dashed lines indicate the O—H···O hydrogen bonds and weak inter-chain C—H···Cl interactions.
(4-Chlorophenyl)(4-hydroxypiperidin-1-yl)methanone–(4-chlorophenyl)(piperidin-1-yl)methanone (0.75/0.25) top
Crystal data top
0.75C12H14ClNO2·0.25C12H14ClNODx = 1.312 Mg m3
Mr = 235.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 3452 reflections
a = 24.312 (4) Åθ = 2.8–23.2°
b = 6.1628 (10) ŵ = 0.30 mm1
c = 7.9654 (11) ÅT = 293 K
V = 1193.5 (3) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
F(000) = 496
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1539 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.031
ω and φ scanθmax = 26.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3030
Tmin = 0.930, Tmax = 0.941k = 77
17321 measured reflectionsl = 99
2356 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.3379P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2356 reflectionsΔρmax = 0.31 e Å3
200 parametersΔρmin = 0.22 e Å3
121 restraintsAbsolute structure: Flack x determined using 583 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
0.75C12H14ClNO2·0.25C12H14ClNOV = 1193.5 (3) Å3
Mr = 235.69Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.312 (4) ŵ = 0.30 mm1
b = 6.1628 (10) ÅT = 293 K
c = 7.9654 (11) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2356 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1539 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.941Rint = 0.031
17321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.31 e Å3
S = 1.02Δρmin = 0.22 e Å3
2356 reflectionsAbsolute structure: Flack x determined using 583 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
200 parametersAbsolute structure parameter: 0.03 (3)
121 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.73230 (19)0.1884 (8)0.7580 (6)0.0743 (13)
C20.7397 (2)0.3762 (10)0.6747 (8)0.0909 (16)
H20.77480.41910.64160.109*
C30.6943 (2)0.5050 (9)0.6390 (7)0.0832 (15)
H30.69910.63530.58190.100*
C40.64254 (19)0.4423 (8)0.6867 (5)0.0656 (12)
C50.63637 (19)0.2510 (8)0.7729 (8)0.0811 (14)
H50.60160.20760.80820.097*
C60.6815 (2)0.1230 (8)0.8074 (8)0.0890 (16)
H60.67710.00760.86430.107*
C70.5944 (2)0.5838 (9)0.6575 (6)0.0773 (14)
C80.5243 (3)0.7357 (12)0.4730 (9)0.0749 (18)0.75
H8A0.51550.81650.57390.090*0.75
H8B0.49180.65650.43810.090*0.75
C90.5419 (3)0.8877 (11)0.3372 (9)0.0681 (17)0.75
H9A0.57270.97410.37660.082*0.75
H9B0.51190.98550.31090.082*0.75
C100.5587 (3)0.7668 (13)0.1804 (9)0.0711 (19)0.75
H100.52630.68970.13750.085*0.75
C110.6028 (3)0.5988 (12)0.2233 (8)0.0690 (16)0.75
H11A0.61020.51090.12490.083*0.75
H11B0.63650.67320.25370.083*0.75
C120.5859 (3)0.4567 (10)0.3627 (8)0.0640 (14)0.75
H12A0.55540.36600.32690.077*0.75
H12B0.61620.36270.39350.077*0.75
N10.5694 (2)0.5841 (9)0.5067 (6)0.0659 (14)0.75
O20.5746 (2)0.8993 (9)0.0685 (7)0.0870 (14)0.75
H2A0.59240.83390.00300.105 (17)*0.75
C8'0.5628 (8)0.863 (3)0.454 (3)0.069 (4)0.25
H8'10.58500.97580.40310.083*0.25
H8'20.54660.92030.55560.083*0.25
C9'0.5169 (8)0.795 (4)0.331 (2)0.072 (5)0.25
H9'10.49390.92100.31070.087*0.25
H9'20.49420.68720.38650.087*0.25
C10'0.5350 (9)0.703 (4)0.160 (2)0.077 (6)0.25
H10A0.55590.80730.09530.093*0.25
H10B0.50400.65100.09460.093*0.25
C11'0.5714 (8)0.515 (3)0.226 (3)0.069 (5)0.25
H11C0.54750.41280.28380.082*0.25
H11D0.58640.43960.12950.082*0.25
C12'0.6196 (7)0.568 (3)0.345 (2)0.057 (4)0.25
H12C0.63830.43500.37750.069*0.25
H12D0.64580.66100.28870.069*0.25
N1'0.5977 (6)0.677 (2)0.4953 (15)0.053 (3)0.25
O10.57385 (17)0.6828 (7)0.7749 (5)0.1119 (14)
Cl10.78823 (7)0.0274 (3)0.7998 (3)0.1274 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (3)0.080 (3)0.076 (3)0.011 (2)0.016 (2)0.004 (3)
C20.070 (3)0.098 (4)0.104 (4)0.010 (3)0.001 (3)0.003 (4)
C30.091 (4)0.076 (3)0.083 (4)0.003 (3)0.002 (3)0.018 (3)
C40.073 (3)0.071 (3)0.053 (2)0.012 (2)0.002 (2)0.010 (2)
C50.066 (3)0.080 (3)0.097 (3)0.007 (3)0.011 (3)0.019 (3)
C60.092 (4)0.072 (3)0.103 (4)0.017 (3)0.001 (3)0.023 (3)
C70.090 (3)0.082 (3)0.061 (2)0.029 (3)0.005 (2)0.006 (2)
C80.074 (4)0.076 (4)0.075 (4)0.031 (3)0.005 (3)0.011 (3)
C90.080 (5)0.057 (3)0.068 (4)0.018 (3)0.012 (3)0.004 (3)
C100.067 (4)0.081 (4)0.066 (3)0.020 (3)0.018 (3)0.003 (3)
C110.067 (4)0.082 (4)0.058 (4)0.020 (3)0.004 (3)0.004 (3)
C120.063 (3)0.056 (3)0.074 (3)0.017 (3)0.010 (3)0.008 (3)
N10.072 (3)0.064 (3)0.062 (3)0.023 (3)0.001 (2)0.006 (2)
O20.097 (4)0.088 (3)0.076 (3)0.017 (3)0.004 (3)0.004 (3)
C8'0.079 (9)0.064 (8)0.064 (9)0.032 (7)0.003 (8)0.001 (6)
C9'0.067 (9)0.080 (12)0.071 (9)0.034 (8)0.001 (7)0.007 (9)
C10'0.057 (11)0.085 (12)0.090 (9)0.012 (9)0.012 (7)0.020 (8)
C11'0.054 (8)0.079 (10)0.073 (9)0.006 (7)0.002 (7)0.023 (7)
C12'0.050 (7)0.059 (9)0.062 (7)0.009 (7)0.001 (6)0.008 (6)
N1'0.051 (7)0.052 (6)0.055 (4)0.012 (5)0.004 (4)0.004 (4)
O10.121 (3)0.147 (3)0.067 (2)0.057 (3)0.008 (2)0.004 (3)
Cl10.0952 (10)0.1290 (13)0.1579 (17)0.0462 (9)0.0304 (12)0.0134 (14)
Geometric parameters (Å, º) top
C1—C21.346 (7)C10—H100.9800
C1—C61.358 (7)C11—C121.472 (9)
C1—Cl11.716 (5)C11—H11A0.9700
C2—C31.390 (8)C11—H11B0.9700
C2—H20.9300C12—N11.447 (8)
C3—C41.370 (7)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.373 (7)O2—H2A0.8200
C4—C71.478 (7)C8'—N1'1.460 (16)
C5—C61.378 (6)C8'—C9'1.54 (2)
C5—H50.9300C8'—H8'10.9700
C6—H60.9300C8'—H8'20.9700
C7—O11.223 (6)C9'—C10'1.540 (12)
C7—N11.346 (7)C9'—H9'10.9700
C7—N1'1.417 (13)C9'—H9'20.9700
C8—N11.465 (7)C10'—C11'1.552 (12)
C8—C91.494 (9)C10'—H10A0.9700
C8—H8A0.9700C10'—H10B0.9700
C8—H8B0.9700C11'—C12'1.542 (19)
C9—C101.510 (9)C11'—H11C0.9700
C9—H9A0.9700C11'—H11D0.9700
C9—H9B0.9700C12'—N1'1.474 (16)
C10—O21.269 (9)C12'—H12C0.9700
C10—C111.529 (8)C12'—H12D0.9700
C2—C1—C6121.4 (5)C10—C11—H11B109.2
C2—C1—Cl1119.1 (4)H11A—C11—H11B107.9
C6—C1—Cl1119.5 (4)N1—C12—C11110.6 (5)
C1—C2—C3119.0 (5)N1—C12—H12A109.5
C1—C2—H2120.5C11—C12—H12A109.5
C3—C2—H2120.5N1—C12—H12B109.5
C4—C3—C2120.8 (5)C11—C12—H12B109.5
C4—C3—H3119.6H12A—C12—H12B108.1
C2—C3—H3119.6C7—N1—C12125.6 (5)
C3—C4—C5118.8 (4)C7—N1—C8120.2 (5)
C3—C4—C7121.1 (4)C12—N1—C8114.1 (5)
C5—C4—C7119.9 (4)C10—O2—H2A109.5
C4—C5—C6120.3 (5)N1'—C8'—C9'110.8 (15)
C4—C5—H5119.9N1'—C8'—H8'1109.5
C6—C5—H5119.9C9'—C8'—H8'1109.5
C1—C6—C5119.7 (5)N1'—C8'—H8'2109.5
C1—C6—H6120.1C9'—C8'—H8'2109.5
C5—C6—H6120.1H8'1—C8'—H8'2108.1
O1—C7—N1119.8 (5)C8'—C9'—C10'116.9 (17)
O1—C7—N1'121.2 (6)C8'—C9'—H9'1108.1
O1—C7—C4119.8 (4)C10'—C9'—H9'1108.1
N1—C7—C4119.9 (5)C8'—C9'—H9'2108.1
N1'—C7—C4109.8 (6)C10'—C9'—H9'2108.1
N1—C8—C9108.5 (6)H9'1—C9'—H9'2107.3
N1—C8—H8A110.0C9'—C10'—C11'98.0 (15)
C9—C8—H8A110.0C9'—C10'—H10A112.2
N1—C8—H8B110.0C11'—C10'—H10A112.2
C9—C8—H8B110.0C9'—C10'—H10B112.2
H8A—C8—H8B108.4C11'—C10'—H10B112.2
C8—C9—C10111.5 (6)H10A—C10'—H10B109.8
C8—C9—H9A109.3C12'—C11'—C10'118.9 (17)
C10—C9—H9A109.3C12'—C11'—H11C107.6
C8—C9—H9B109.3C10'—C11'—H11C107.6
C10—C9—H9B109.3C12'—C11'—H11D107.6
H9A—C9—H9B108.0C10'—C11'—H11D107.6
O2—C10—C9110.2 (6)H11C—C11'—H11D107.0
O2—C10—C11112.2 (6)N1'—C12'—C11'108.7 (13)
C9—C10—C11109.8 (5)N1'—C12'—H12C109.9
O2—C10—H10108.2C11'—C12'—H12C109.9
C9—C10—H10108.2N1'—C12'—H12D109.9
C11—C10—H10108.2C11'—C12'—H12D109.9
C12—C11—C10112.0 (6)H12C—C12'—H12D108.3
C12—C11—H11A109.2C7—N1'—C8'119.5 (12)
C10—C11—H11A109.2C7—N1'—C12'125.0 (12)
C12—C11—H11B109.2C8'—N1'—C12'112.7 (13)
C6—C1—C2—C30.0 (8)C10—C11—C12—N153.4 (9)
Cl1—C1—C2—C3179.1 (5)O1—C7—N1—C12173.2 (6)
C1—C2—C3—C40.3 (8)C4—C7—N1—C121.0 (10)
C2—C3—C4—C50.9 (8)O1—C7—N1—C812.3 (10)
C2—C3—C4—C7176.6 (5)C4—C7—N1—C8175.4 (6)
C3—C4—C5—C61.3 (8)C11—C12—N1—C7116.7 (7)
C7—C4—C5—C6177.0 (5)C11—C12—N1—C858.0 (9)
C2—C1—C6—C50.3 (9)C9—C8—N1—C7115.9 (7)
Cl1—C1—C6—C5179.5 (5)C9—C8—N1—C1259.2 (9)
C4—C5—C6—C11.0 (9)N1'—C8'—C9'—C10'60 (3)
C3—C4—C7—O1104.8 (7)C8'—C9'—C10'—C11'56 (2)
C5—C4—C7—O170.8 (7)C9'—C10'—C11'—C12'57 (2)
C3—C4—C7—N182.9 (7)C10'—C11'—C12'—N1'59 (2)
C5—C4—C7—N1101.4 (6)O1—C7—N1'—C8'18.1 (18)
C3—C4—C7—N1'42.4 (9)C4—C7—N1'—C8'164.8 (13)
C5—C4—C7—N1'142.0 (8)O1—C7—N1'—C12'177.3 (12)
N1—C8—C9—C1056.9 (9)C4—C7—N1'—C12'36.0 (17)
C8—C9—C10—O2178.5 (7)C9'—C8'—N1'—C7108.1 (19)
C8—C9—C10—C1154.4 (9)C9'—C8'—N1'—C12'54 (2)
O2—C10—C11—C12175.3 (7)C11'—C12'—N1'—C7108.5 (19)
C9—C10—C11—C1252.4 (9)C11'—C12'—N1'—C8'52 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.052.693 (7)135
C12—H12D···Cl1ii0.972.773.63 (2)148
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.052.693 (7)135
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank DST–FIST, sponsored Central Instrumentation Facility, Queen Mary's College (A), Chennai-4, for the computing facility and SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. A Polym. Chem. 40, 1468–1475.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.  Google Scholar
First citationSargent, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061–1063.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds