organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl (2Z)-2-{[N-(2-formyl­phen­yl)-4-methyl­benzene­sulfonamido]­meth­yl}-3-(4-meth­­oxy­phen­yl)prop-2-enoate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: gunaunom@gmail.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 23 October 2015; accepted 16 December 2015; online 31 December 2015)

In the title compound, C26H25NO6S, the S atom shows a distorted tetra­hedral geometry, with O—S—O [119.46 (9)°] and N—S—C [107.16 (7)°] angles deviating from ideal tetra­hedral values, a fact attributed to the Thorpe–Ingold effect. The sulfonyl-bound phenyl ring forms dihedral angles of 41.1 (1) and 83.3 (1)°, respectively, with the formyl­phenyl and phenyl rings. The dihedral angle between formyl­phenyl and phenyl rings is 47.6 (1)°. The crystal packing features C—H⋯O hydrogen-bond inter­actions.

1. Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas et al. (1988[Korolkovas, A. (1988). Essentials ofMedicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For the anti­filarial activity of sulfonamide derivatives, see: Radembino et al. (1997[Radembino, N., Dessalles, M. C., -, C., Trouvin, J.-H., Loiseau, P. M., Gayral, P., Mahuzier, G., Rapp, M., Labarre, P., Godeneche, D., Madelmont, J.-C., Maurizis, J.-C., Veyre, A. & Chabard, J.-L. (1997). Xenobiotica, 27, 73-85.]); For related structures, see: Ranjith et al. (2009[Ranjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483.]); Madhanraj et al. (2011[Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.]). For the Thorpe–Ingold effect, see: Bassindale et al. (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H25NO6S

  • Mr = 479.53

  • Triclinic, [P \overline 1]

  • a = 8.3501 (2) Å

  • b = 8.4859 (2) Å

  • c = 17.6814 (4) Å

  • α = 84.424 (1)°

  • β = 80.952 (1)°

  • γ = 80.954 (1)°

  • V = 1218.52 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 23816 measured reflections

  • 5519 independent reflections

  • 4232 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.135

  • S = 1.02

  • 5519 reflections

  • 314 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1Bi 0.93 2.50 3.397 (7) 162
C15—H15A⋯O6 0.97 2.24 2.7322 (19) 111
C24—H24A⋯O4ii 0.96 2.52 3.341 (3) 143
Symmetry codes: (i) x-1, y, z; (ii) -x+3, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative micro-organisms, some fungi, and certain protozoa (Korolkovas et al., 1988, Mandell & Sande 1992). One of the Sulfonamide derivatives (epoxysulphonamides and ethynesulphonamides) shows anti-filarial activity (Radembino et al., 1997). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here. The molecular structure of the title compound is shown in Fig. 1.The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.4 (1)°] and N1—S1—C8 [107.1 (1)°] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect (Bassindale et al., 1984). The sum of bond angles around N1 (348.3°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 41.1 (1)° and 83.3 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 47.6 (1)°. The geometric parameters agree well with those reported for similar structures (Ranjith et al., 2009; Madhanraj et al., 2011). Crystal packing is stabilized by C19—H19···O5 and C24—H24A···O4 inter molecular hydrogen bond interaction. (Shown in Fig.2).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas et al. (1988); Mandell & Sande (1992). For antifilarial activity of sulfonamide derivatives, see: Radembino et al. (1997); For related structures, see: Ranjith et al. (2009); Madhanraj et al. (2011). For the Thorpe–Ingold effect, see: Bassindale et al. (1984).

Experimental top

A solution of N-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.275 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 min at room temperature. To this solution, methyl(2Z)-2-(bromomethyl)-3-(4-methoxyphenyl)prop-2-enoate (1.2 mmol, 0.342 g) was added dropwise till the addition was complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200mesh) using ethylacetate and hexane(1:9) as solvents. The pure title compound was obtained as a colourless solid (0.426 g, 89% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

All H atoms were fixed and refined using a riding model with C—H ranging from 0.93 to 0.97 Å. The formylphenyl O1 (O1A, O1B) and H7 (H7A, H7B) atoms appear disordered over two sites with s.o.f 0.740 (4) and 0.260 (4), respectively. O1A and O1B were refined with restraints in their anisotropic thermal parameters and C-O distances.

Structure description top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative micro-organisms, some fungi, and certain protozoa (Korolkovas et al., 1988, Mandell & Sande 1992). One of the Sulfonamide derivatives (epoxysulphonamides and ethynesulphonamides) shows anti-filarial activity (Radembino et al., 1997). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here. The molecular structure of the title compound is shown in Fig. 1.The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.4 (1)°] and N1—S1—C8 [107.1 (1)°] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect (Bassindale et al., 1984). The sum of bond angles around N1 (348.3°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 41.1 (1)° and 83.3 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 47.6 (1)°. The geometric parameters agree well with those reported for similar structures (Ranjith et al., 2009; Madhanraj et al., 2011). Crystal packing is stabilized by C19—H19···O5 and C24—H24A···O4 inter molecular hydrogen bond interaction. (Shown in Fig.2).

For background to the pharmacological uses of sulfonamides, see: Korolkovas et al. (1988); Mandell & Sande (1992). For antifilarial activity of sulfonamide derivatives, see: Radembino et al. (1997); For related structures, see: Ranjith et al. (2009); Madhanraj et al. (2011). For the Thorpe–Ingold effect, see: Bassindale et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms
[Figure 2] Fig. 2. Crystal packing diagram. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Methyl (2Z)-2-{[N-(2-formylphenyl)-4-methylbenzenesulfonamido]methyl}-3-(4-methoxyphenyl)prop-2-enoate top
Crystal data top
C26H25NO6SZ = 2
Mr = 479.53F(000) = 504
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3501 (2) ÅCell parameters from 8834 reflections
b = 8.4859 (2) Åθ = 2.6–31.2°
c = 17.6814 (4) ŵ = 0.17 mm1
α = 84.424 (1)°T = 293 K
β = 80.952 (1)°Block, colourless
γ = 80.954 (1)°0.25 × 0.20 × 0.20 mm
V = 1218.52 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5519 independent reflections
Radiation source: fine-focus sealed tube4232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1010
Tmin = 0.979, Tmax = 0.983k = 1111
23816 measured reflectionsl = 2222
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.275P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5519 reflectionsΔρmax = 0.34 e Å3
314 parametersΔρmin = 0.36 e Å3
Crystal data top
C26H25NO6Sγ = 80.954 (1)°
Mr = 479.53V = 1218.52 (5) Å3
Triclinic, P1Z = 2
a = 8.3501 (2) ÅMo Kα radiation
b = 8.4859 (2) ŵ = 0.17 mm1
c = 17.6814 (4) ÅT = 293 K
α = 84.424 (1)°0.25 × 0.20 × 0.20 mm
β = 80.952 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
4232 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.028
23816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
5519 reflectionsΔρmin = 0.36 e Å3
314 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.89631 (5)0.51292 (5)0.33325 (2)0.04835 (15)
O1A1.4384 (2)0.5552 (4)0.2246 (2)0.1151 (13)0.740 (4)
H7A1.22770.50120.22670.080*0.740 (4)
O1B1.3729 (9)0.4953 (8)0.2764 (4)0.1151 (13)0.260 (4)
H7B1.23650.54600.19460.080*0.260 (4)
O20.82045 (18)0.40111 (14)0.30104 (8)0.0609 (4)
O31.04550 (18)0.46004 (16)0.36347 (8)0.0696 (4)
O41.35510 (18)0.15273 (16)0.03718 (9)0.0700 (4)
O50.83811 (19)1.06484 (15)0.08082 (8)0.0693 (4)
O60.66997 (15)1.02738 (14)0.18898 (7)0.0565 (3)
N10.93431 (15)0.65272 (14)0.26408 (7)0.0379 (3)
C11.03147 (19)0.76893 (18)0.27928 (9)0.0396 (3)
C20.9569 (2)0.9142 (2)0.30551 (11)0.0525 (4)
H20.84320.93620.31490.063*
C31.0505 (3)1.0272 (2)0.31794 (13)0.0677 (6)
H30.99961.12530.33520.081*
C41.2173 (3)0.9952 (3)0.30501 (14)0.0720 (6)
H41.28011.07100.31390.086*
C51.2920 (2)0.8516 (3)0.27898 (12)0.0651 (5)
H51.40590.83070.27030.078*
C61.2016 (2)0.7363 (2)0.26528 (10)0.0494 (4)
C71.2889 (2)0.5845 (3)0.23465 (13)0.0674 (6)
C80.7539 (2)0.6044 (2)0.40537 (9)0.0493 (4)
C90.5901 (2)0.6237 (2)0.39958 (11)0.0587 (5)
H90.55350.58550.35880.070*
C100.4797 (3)0.7018 (3)0.45622 (13)0.0703 (6)
H100.36820.71650.45280.084*
C110.5324 (3)0.7579 (2)0.51727 (12)0.0702 (6)
C120.6966 (4)0.7339 (3)0.52188 (13)0.0793 (7)
H120.73330.76910.56340.095*
C130.8076 (3)0.6594 (3)0.46667 (11)0.0678 (6)
H130.91900.64570.47030.081*
C140.4101 (4)0.8423 (3)0.57835 (16)0.1047 (10)
H14A0.30530.86830.56080.157*
H14B0.44730.93880.58820.157*
H14C0.40020.77340.62470.157*
C150.79663 (18)0.71501 (18)0.22006 (9)0.0401 (3)
H15A0.71470.78560.25090.048*
H15B0.74550.62650.20890.048*
C160.85673 (19)0.80473 (18)0.14613 (9)0.0392 (3)
C170.9703 (2)0.74544 (19)0.08975 (9)0.0430 (4)
H170.99410.81960.04880.052*
C181.0633 (2)0.58688 (19)0.08059 (9)0.0424 (4)
C191.2034 (2)0.5730 (2)0.02594 (10)0.0524 (4)
H191.23340.66450.00270.063*
C201.2982 (2)0.4287 (2)0.01316 (12)0.0587 (5)
H201.39200.42320.02320.070*
C211.2547 (2)0.2907 (2)0.05425 (11)0.0507 (4)
C221.1149 (2)0.2998 (2)0.10759 (10)0.0521 (4)
H221.08400.20760.13510.062*
C231.0211 (2)0.4462 (2)0.12001 (10)0.0489 (4)
H230.92650.45100.15590.059*
C241.3116 (3)0.0075 (2)0.07567 (14)0.0790 (7)
H24A1.39160.08030.05800.119*
H24B1.20590.00710.06500.119*
H24C1.30800.01170.13000.119*
C250.7907 (2)0.97716 (19)0.13359 (9)0.0445 (4)
C260.6048 (3)1.1955 (2)0.18269 (14)0.0693 (6)
H26A0.51971.21900.22500.104*
H26B0.56071.22110.13530.104*
H26C0.69081.25790.18360.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0578 (3)0.0350 (2)0.0469 (2)0.00262 (17)0.00629 (19)0.00590 (16)
O1A0.0336 (12)0.118 (2)0.199 (3)0.0111 (12)0.0125 (15)0.082 (2)
O1B0.0336 (12)0.118 (2)0.199 (3)0.0111 (12)0.0125 (15)0.082 (2)
O20.0854 (10)0.0349 (6)0.0604 (8)0.0140 (6)0.0004 (7)0.0018 (5)
O30.0716 (9)0.0610 (8)0.0674 (8)0.0168 (7)0.0208 (7)0.0137 (7)
O40.0663 (9)0.0500 (7)0.0866 (10)0.0013 (6)0.0017 (8)0.0059 (7)
O50.0902 (10)0.0450 (7)0.0628 (8)0.0074 (7)0.0068 (7)0.0127 (6)
O60.0576 (8)0.0441 (6)0.0602 (8)0.0031 (5)0.0009 (6)0.0047 (6)
N10.0368 (7)0.0346 (6)0.0406 (7)0.0006 (5)0.0064 (5)0.0006 (5)
C10.0417 (8)0.0379 (7)0.0383 (8)0.0002 (6)0.0089 (6)0.0023 (6)
C20.0524 (10)0.0443 (9)0.0589 (11)0.0044 (7)0.0095 (8)0.0106 (8)
C30.0856 (16)0.0428 (10)0.0773 (14)0.0027 (9)0.0198 (12)0.0158 (9)
C40.0803 (16)0.0650 (13)0.0815 (15)0.0261 (11)0.0252 (12)0.0128 (11)
C50.0493 (11)0.0781 (14)0.0737 (13)0.0138 (10)0.0171 (10)0.0125 (11)
C60.0417 (9)0.0550 (10)0.0522 (10)0.0012 (7)0.0134 (8)0.0104 (8)
C70.0425 (10)0.0754 (13)0.0857 (15)0.0117 (9)0.0194 (10)0.0296 (11)
C80.0617 (11)0.0423 (8)0.0395 (9)0.0038 (7)0.0039 (8)0.0074 (7)
C90.0653 (12)0.0546 (10)0.0525 (10)0.0110 (9)0.0007 (9)0.0058 (8)
C100.0643 (13)0.0620 (12)0.0742 (14)0.0079 (10)0.0090 (11)0.0136 (10)
C110.0995 (18)0.0490 (10)0.0504 (11)0.0066 (11)0.0152 (11)0.0061 (9)
C120.111 (2)0.0733 (14)0.0500 (12)0.0041 (13)0.0071 (12)0.0084 (10)
C130.0805 (15)0.0700 (13)0.0512 (11)0.0029 (11)0.0138 (10)0.0026 (10)
C140.134 (2)0.0742 (16)0.0836 (17)0.0069 (16)0.0461 (17)0.0058 (14)
C150.0339 (8)0.0409 (8)0.0436 (8)0.0044 (6)0.0060 (6)0.0047 (6)
C160.0403 (8)0.0395 (8)0.0402 (8)0.0108 (6)0.0108 (7)0.0022 (6)
C170.0499 (9)0.0417 (8)0.0394 (8)0.0138 (7)0.0086 (7)0.0019 (6)
C180.0479 (9)0.0440 (8)0.0383 (8)0.0126 (7)0.0085 (7)0.0042 (6)
C190.0540 (10)0.0483 (9)0.0529 (10)0.0127 (8)0.0003 (8)0.0023 (8)
C200.0481 (10)0.0584 (11)0.0652 (12)0.0090 (8)0.0068 (9)0.0041 (9)
C210.0499 (10)0.0464 (9)0.0566 (10)0.0042 (7)0.0105 (8)0.0086 (8)
C220.0659 (12)0.0416 (8)0.0501 (10)0.0156 (8)0.0054 (8)0.0033 (7)
C230.0554 (10)0.0464 (9)0.0452 (9)0.0158 (7)0.0026 (8)0.0075 (7)
C240.0998 (18)0.0466 (11)0.0829 (15)0.0004 (11)0.0001 (13)0.0043 (10)
C250.0486 (9)0.0414 (8)0.0442 (9)0.0079 (7)0.0102 (7)0.0013 (7)
C260.0743 (14)0.0447 (10)0.0818 (14)0.0054 (9)0.0061 (11)0.0011 (9)
Geometric parameters (Å, º) top
S1—O31.4233 (14)C11—C121.368 (3)
S1—O21.4259 (14)C11—C141.515 (3)
S1—N11.6486 (13)C12—C131.365 (3)
S1—C81.7517 (18)C12—H120.9300
O1A—C71.222 (3)C13—H130.9300
O1B—C71.223 (3)C14—H14A0.9600
O4—C211.359 (2)C14—H14B0.9600
O4—C241.419 (3)C14—H14C0.9600
O5—C251.193 (2)C15—C161.504 (2)
O6—C251.339 (2)C15—H15A0.9700
O6—C261.445 (2)C15—H15B0.9700
N1—C11.440 (2)C16—C171.340 (2)
N1—C151.4891 (18)C16—C251.489 (2)
C1—C21.379 (2)C17—C181.454 (2)
C1—C61.391 (2)C17—H170.9300
C2—C31.382 (3)C18—C231.389 (2)
C2—H20.9300C18—C191.392 (2)
C3—C41.363 (3)C19—C201.368 (3)
C3—H30.9300C19—H190.9300
C4—C51.366 (3)C20—C211.384 (3)
C4—H40.9300C20—H200.9300
C5—C61.386 (3)C21—C221.377 (3)
C5—H50.9300C22—C231.378 (2)
C6—C71.483 (3)C22—H220.9300
C7—H7A0.9672C23—H230.9300
C7—H7B0.9933C24—H24A0.9600
C8—C91.371 (3)C24—H24B0.9600
C8—C131.383 (3)C24—H24C0.9600
C9—C101.392 (3)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—C111.378 (3)C26—H26C0.9600
C10—H100.9300
O3—S1—O2119.46 (9)C8—C13—H13120.1
O3—S1—N1106.81 (8)C11—C14—H14A109.5
O2—S1—N1106.18 (7)C11—C14—H14B109.5
O3—S1—C8108.18 (9)H14A—C14—H14B109.5
O2—S1—C8108.44 (9)C11—C14—H14C109.5
N1—S1—C8107.16 (7)H14A—C14—H14C109.5
C21—O4—C24117.95 (16)H14B—C14—H14C109.5
C25—O6—C26116.06 (14)N1—C15—C16110.86 (12)
C1—N1—C15116.00 (11)N1—C15—H15A109.5
C1—N1—S1116.79 (10)C16—C15—H15A109.5
C15—N1—S1115.48 (10)N1—C15—H15B109.5
C2—C1—C6119.77 (16)C16—C15—H15B109.5
C2—C1—N1120.41 (14)H15A—C15—H15B108.1
C6—C1—N1119.79 (14)C17—C16—C25115.34 (14)
C1—C2—C3120.25 (18)C17—C16—C15126.06 (14)
C1—C2—H2119.9C25—C16—C15118.56 (14)
C3—C2—H2119.9C16—C17—C18132.06 (14)
C4—C3—C2120.22 (18)C16—C17—H17114.0
C4—C3—H3119.9C18—C17—H17114.0
C2—C3—H3119.9C23—C18—C19116.85 (15)
C3—C4—C5119.86 (19)C23—C18—C17125.39 (15)
C3—C4—H4120.1C19—C18—C17117.72 (15)
C5—C4—H4120.1C20—C19—C18121.79 (16)
C4—C5—C6121.33 (19)C20—C19—H19119.1
C4—C5—H5119.3C18—C19—H19119.1
C6—C5—H5119.3C19—C20—C21120.10 (17)
C5—C6—C1118.57 (16)C19—C20—H20119.9
C5—C6—C7119.11 (17)C21—C20—H20119.9
C1—C6—C7122.31 (16)O4—C21—C22124.42 (17)
O1A—C7—C6121.8 (2)O4—C21—C20115.99 (17)
O1B—C7—C6117.2 (4)C22—C21—C20119.57 (16)
O1A—C7—H7A118.0C21—C22—C23119.62 (16)
C6—C7—H7A120.0C21—C22—H22120.2
O1B—C7—H7B123.3C23—C22—H22120.2
C6—C7—H7B114.0C22—C23—C18122.03 (16)
C9—C8—C13120.62 (18)C22—C23—H23119.0
C9—C8—S1119.52 (15)C18—C23—H23119.0
C13—C8—S1119.85 (16)O4—C24—H24A109.5
C8—C9—C10118.4 (2)O4—C24—H24B109.5
C8—C9—H9120.8H24A—C24—H24B109.5
C10—C9—H9120.8O4—C24—H24C109.5
C11—C10—C9121.3 (2)H24A—C24—H24C109.5
C11—C10—H10119.4H24B—C24—H24C109.5
C9—C10—H10119.4O5—C25—O6122.00 (15)
C12—C11—C10118.6 (2)O5—C25—C16125.15 (16)
C12—C11—C14121.0 (2)O6—C25—C16112.85 (13)
C10—C11—C14120.4 (3)O6—C26—H26A109.5
C13—C12—C11121.3 (2)O6—C26—H26B109.5
C13—C12—H12119.4H26A—C26—H26B109.5
C11—C12—H12119.4O6—C26—H26C109.5
C12—C13—C8119.7 (2)H26A—C26—H26C109.5
C12—C13—H13120.1H26B—C26—H26C109.5
O3—S1—N1—C143.28 (13)C9—C10—C11—C120.7 (3)
O2—S1—N1—C1171.79 (11)C9—C10—C11—C14179.89 (19)
C8—S1—N1—C172.47 (13)C10—C11—C12—C131.5 (3)
O3—S1—N1—C15175.04 (11)C14—C11—C12—C13179.3 (2)
O2—S1—N1—C1546.53 (13)C11—C12—C13—C81.1 (3)
C8—S1—N1—C1569.21 (13)C9—C8—C13—C120.1 (3)
C15—N1—C1—C245.8 (2)S1—C8—C13—C12178.51 (16)
S1—N1—C1—C295.71 (16)C1—N1—C15—C1654.01 (17)
C15—N1—C1—C6132.35 (15)S1—N1—C15—C16164.00 (11)
S1—N1—C1—C686.17 (16)N1—C15—C16—C1758.9 (2)
C6—C1—C2—C30.0 (3)N1—C15—C16—C25118.85 (15)
N1—C1—C2—C3178.15 (16)C25—C16—C17—C18179.51 (16)
C1—C2—C3—C40.6 (3)C15—C16—C17—C181.7 (3)
C2—C3—C4—C50.6 (4)C16—C17—C18—C2319.7 (3)
C3—C4—C5—C60.0 (4)C16—C17—C18—C19162.71 (17)
C4—C5—C6—C10.6 (3)C23—C18—C19—C202.0 (3)
C4—C5—C6—C7178.0 (2)C17—C18—C19—C20179.77 (17)
C2—C1—C6—C50.6 (3)C18—C19—C20—C210.9 (3)
N1—C1—C6—C5178.73 (16)C24—O4—C21—C221.3 (3)
C2—C1—C6—C7177.97 (18)C24—O4—C21—C20177.5 (2)
N1—C1—C6—C70.2 (3)C19—C20—C21—O4179.36 (18)
C5—C6—C7—O1A3.6 (4)C19—C20—C21—C220.5 (3)
C1—C6—C7—O1A177.9 (3)O4—C21—C22—C23179.51 (17)
C5—C6—C7—O1B66.3 (5)C20—C21—C22—C230.7 (3)
C1—C6—C7—O1B115.1 (5)C21—C22—C23—C180.4 (3)
O3—S1—C8—C9161.09 (14)C19—C18—C23—C221.7 (3)
O2—S1—C8—C930.16 (15)C17—C18—C23—C22179.32 (16)
N1—S1—C8—C984.07 (15)C26—O6—C25—O52.3 (3)
O3—S1—C8—C1320.28 (17)C26—O6—C25—C16177.19 (15)
O2—S1—C8—C13151.21 (15)C17—C16—C25—O54.8 (3)
N1—S1—C8—C1394.56 (15)C15—C16—C25—O5173.22 (17)
C13—C8—C9—C100.9 (3)C17—C16—C25—O6175.70 (14)
S1—C8—C9—C10177.74 (13)C15—C16—C25—O66.3 (2)
C8—C9—C10—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1Bi0.932.503.397 (7)162
C15—H15A···O60.972.242.7322 (19)111
C24—H24A···O4ii0.962.523.341 (3)143
Symmetry codes: (i) x1, y, z; (ii) x+3, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1Bi0.932.503.397 (7)162.2
C15—H15A···O60.972.242.7322 (19)110.6
C24—H24A···O4ii0.962.523.341 (3)143.4
Symmetry codes: (i) x1, y, z; (ii) x+3, y, z.
 

Acknowledgements

KG thanks the UGC, India, for financial support.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials ofMedicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMadhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationRadembino, N., Dessalles, M. C., -, C., Trouvin, J.-H., Loiseau, P. M., Gayral, P., Mahuzier, G., Rapp, M., Labarre, P., Godeneche, D., Madelmont, J.-C., Maurizis, J.-C., Veyre, A. & Chabard, J.-L. (1997). Xenobiotica, 27, 73–85.  CrossRef CAS PubMed Google Scholar
First citationRanjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds