metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(quinolin-1-ium) tetra­chlorido­ferrate(III) chloride

aFaculté des Sciences Exactes et Informatique, Département de Chimie, Université de Jijel, 18000 Jijel, Algeria, bLaboratoire des Structures, Propriétés et Interactions InterAtomiques, Université de Khenchela, 40000 Khenchela, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and dDépartement Sciences de la Matière, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: karim.bouchouit@laposte.net

Edited by A. M. Chippindale, University of Reading, England (Received 19 November 2015; accepted 21 December 2015; online 31 December 2015)

The asymmetric unit of the title hybrid compound, (C9H8N)[FeCl4]Cl, comprises a tetra­hedral tetra­chlorido­ferrate(III) anion, [FeCl4], a Cl anion and two quinolinium cations. There are N—H⋯Cl hydrogen-bonding inter­actions between the protonated N atoms of the quinolinium cations and the chloride anion, which together with ππ stacking between adjacent quinolinium rings [centroid-to-centroid distances between C6 and C5N rings in adjacent stacked quinolinium cations of 3.609 (2) and 3.802 (2) Å] serve to hold the structure together.

1. Related literature

For non-linear optical properties of hybrid compounds, see: Bouchouit et al. (2008[Bouchouit, K., Essaidi, Z., Abed, S., Migalska-Zalas, A., Derkowska, B., Benali-cherif, N., Mihaly, M., Meghea, A. & Sahraoui, B. (2008). Chem. Phys. Lett. 455, 270-274.], 2010[Bouchouit, K., Bendeif, E. E., EL Ouazzani, H., Dahaoui, S., Lecomte, C., Benali-cherif, N. & Sahraoui, B. (2010). Chem. Phys. 375, 1-7.], 2015[Bouchouit, K., Bougharraf, H., Derkowska-Zielinska, B., Benali-cherif, N. & Sahraoui, B. (2015). Opt. Mater. 48, 215-221.]); Jayalakshmi & Kumar (2006[Jayalakshmi, D. & Kumar, J. (2006). Cryst. Res. Technol. 41, 37-40.]); Sankar et al. (2007[Sankar, R., Raghavan, C. M. & Jayavel, R. (2007). Cryst. Growth Des. 7, 501-505.]). For similar structures containing the [FeCl4] anion, see: Khadri et al. (2013[Khadri, A., Bouchene, R., Bouacida, S., Merazig, H. & Roisnel, T. (2013). Acta Cryst. E69, m190.]); Chen & Huang (2010[Chen, L.-Z. & Huang, M.-N. (2010). Acta Cryst. E66, m377.]); Prommon et al. (2012[Prommon, P., Promseenong, P. & Chainok, K. (2012). Acta Cryst. E68, m211-m212.]); Kruszynski et al. (2007[Kruszynski, R., Wyrzykowski, D., Styczeń, E. & Chmurzyński, L. (2007). Acta Cryst. E63, m2279-m2280.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C9H8N)2[FeCl4]Cl

  • Mr = 493.43

  • Triclinic, [P \overline 1]

  • a = 8.424 (2) Å

  • b = 10.435 (3) Å

  • c = 13.022 (4) Å

  • α = 109.626 (18)°

  • β = 100.197 (19)°

  • γ = 90.893 (19)°

  • V = 1057.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 295 K

  • 0.12 × 0.05 × 0.04 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.922

  • 9378 measured reflections

  • 3738 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.01

  • 3738 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl5i 0.86 2.16 3.014 (3) 174
N1B—H1B⋯Cl5 0.86 2.21 3.043 (3) 163
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hybrid compounds are one of the important categories of materials. They have received much attention in research areas including nonlinear optics, second harmonic generation (SHG), third harmonic generation (THG) and optical switching [Bouchouit et al. (2008); Bouchouit, et al. (2010); Jayalakshmi et al. (2006); Sankar et al. (2007); Bouchouit et al. (2015)]. A considerable number of hybrid organic/inorganic compounds have been extensively studied for their promising properties. Crystals of many of these materials can be grown from aqueous solution (Khadri et al. (2013); Chen et al. (2010); Prommon et al. (2012); Kruszynski et al. (2007)]. In the present work, a mixture of water and acetonitrile is used as solvent for the reaction of quinoline with iron (III) chloride and leads to the generation of crystals of bis(quinolinium)tetrachloroferrate(III) chloride.

The asymmetric unit of the title hybrid compound consists of a tetrachloroferrate anion, (FeCl4)-, a chloride Cl- anion and two quinolinium cations, (C9H8N)+ (Fig. 1). The iron atom lies at the centre of a regular tetrahedron and it is coordinated to four Cl atoms with Fe—Cl bond lengths in the range 2.1862 (10) to 2.2013 (10)Å. The lengths of the C–C and C-N bonds in the two independent quinolinium cations are comparable to the related distances found in the literature. The quinolium cations stack on top of each other, held together by ππ interactions. The centroid to centroid distances between C6 and C5N rings in adjacent stacked quinolinium cations are 3.609 (2) and 3.802 (2)Å.

The projection of the structure onto the a-c plane (Fig. 2) shows the N—H···Cl hydrogen bonding interactions between the N—H groups of the quinolium cations and the Cl- anions which, together with the ππ interactions, serve to stabilise the structure.

Related literature top

For non-linear optical properties of hybrid compounds, see: Bouchouit et al. (2008, 2010, 2015); Jayalakshmi & Kumar (2006); Sankar et al. (2007). For similar structures containing the [FeCl4]- anion, see: Khadri et al. (2013); Chen & Huang (2010); Prommon et al. (2012); Kruszynski et al. (2007).

Experimental top

Quinoline, C9H7N, (0.2 mmol) and iron (III) chloride, FeCl3, (0.1 mmol) were dissolved in a mixture of water (10 ml) and acetonitrile (10 ml) at ambient temperature over a period of approximately 30 minutes. After this period, a brown precipitate appeared which was removed by filtration. The filtrate was then left at room temperature until brown crystals appeared.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C and N) with C-H = 0.93 Å and N-H = 0.86 Å with Uiso(H) = 1.2 Ueq

Structure description top

Hybrid compounds are one of the important categories of materials. They have received much attention in research areas including nonlinear optics, second harmonic generation (SHG), third harmonic generation (THG) and optical switching [Bouchouit et al. (2008); Bouchouit, et al. (2010); Jayalakshmi et al. (2006); Sankar et al. (2007); Bouchouit et al. (2015)]. A considerable number of hybrid organic/inorganic compounds have been extensively studied for their promising properties. Crystals of many of these materials can be grown from aqueous solution (Khadri et al. (2013); Chen et al. (2010); Prommon et al. (2012); Kruszynski et al. (2007)]. In the present work, a mixture of water and acetonitrile is used as solvent for the reaction of quinoline with iron (III) chloride and leads to the generation of crystals of bis(quinolinium)tetrachloroferrate(III) chloride.

The asymmetric unit of the title hybrid compound consists of a tetrachloroferrate anion, (FeCl4)-, a chloride Cl- anion and two quinolinium cations, (C9H8N)+ (Fig. 1). The iron atom lies at the centre of a regular tetrahedron and it is coordinated to four Cl atoms with Fe—Cl bond lengths in the range 2.1862 (10) to 2.2013 (10)Å. The lengths of the C–C and C-N bonds in the two independent quinolinium cations are comparable to the related distances found in the literature. The quinolium cations stack on top of each other, held together by ππ interactions. The centroid to centroid distances between C6 and C5N rings in adjacent stacked quinolinium cations are 3.609 (2) and 3.802 (2)Å.

The projection of the structure onto the a-c plane (Fig. 2) shows the N—H···Cl hydrogen bonding interactions between the N—H groups of the quinolium cations and the Cl- anions which, together with the ππ interactions, serve to stabilise the structure.

For non-linear optical properties of hybrid compounds, see: Bouchouit et al. (2008, 2010, 2015); Jayalakshmi & Kumar (2006); Sankar et al. (2007). For similar structures containing the [FeCl4]- anion, see: Khadri et al. (2013); Chen & Huang (2010); Prommon et al. (2012); Kruszynski et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) plot of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis, showing the N—H···Cl hydrogen bonds as dashed lines.
Bis(quinolin-1-ium) tetrachloridoferrate(III) chloride top
Crystal data top
(C9H8N)2[FeCl4]ClZ = 2
Mr = 493.43F(000) = 498
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.424 (2) ÅCell parameters from 2434 reflections
b = 10.435 (3) Åθ = 2.5–24.9°
c = 13.022 (4) ŵ = 1.35 mm1
α = 109.626 (18)°T = 295 K
β = 100.197 (19)°Prism, brown
γ = 90.893 (19)°0.12 × 0.05 × 0.04 mm
V = 1057.7 (5) Å3
Data collection top
Bruker APEXII
diffractometer
2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
CCD rotation images, thin slices scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 109
Tmin = 0.899, Tmax = 0.922k = 1212
9378 measured reflectionsl = 1515
3738 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.0315P]
where P = (Fo2 + 2Fc2)/3
3738 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
(C9H8N)2[FeCl4]Clγ = 90.893 (19)°
Mr = 493.43V = 1057.7 (5) Å3
Triclinic, P1Z = 2
a = 8.424 (2) ÅMo Kα radiation
b = 10.435 (3) ŵ = 1.35 mm1
c = 13.022 (4) ÅT = 295 K
α = 109.626 (18)°0.12 × 0.05 × 0.04 mm
β = 100.197 (19)°
Data collection top
Bruker APEXII
diffractometer
3738 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2927 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.922Rint = 0.043
9378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3738 reflectionsΔρmin = 0.31 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.11617 (5)0.18619 (4)0.64487 (3)0.02192 (12)
Cl40.29503 (9)0.33664 (7)0.60671 (6)0.03500 (19)
Cl30.12466 (8)0.28089 (7)0.55023 (6)0.02990 (18)
Cl10.17477 (8)0.00943 (7)0.59992 (6)0.02792 (17)
Cl50.40919 (9)0.25683 (8)1.05985 (6)0.0361 (2)
Cl20.11071 (11)0.11756 (8)0.82228 (6)0.0407 (2)
N1A0.8158 (3)0.5396 (2)0.83436 (18)0.0227 (5)
H1A0.75650.59920.86890.027*
N1B0.4922 (3)0.1123 (2)0.83299 (18)0.0263 (5)
H1B0.44860.14290.89060.032*
C4A0.9484 (3)0.3350 (3)0.8123 (2)0.0209 (6)
C3B0.6376 (3)0.0137 (3)0.6543 (2)0.0286 (7)
H3B0.6890.02020.59410.034*
C3A1.0018 (3)0.3528 (3)0.7215 (2)0.0256 (6)
H3A1.06390.28860.68160.031*
C8B0.4286 (3)0.3164 (3)0.7925 (2)0.0269 (6)
H8B0.37930.3480.85390.032*
C9A0.8504 (3)0.4318 (3)0.8695 (2)0.0214 (6)
C2B0.6258 (3)0.0606 (3)0.7210 (2)0.0317 (7)
H2B0.66710.14570.70610.038*
C6A0.9269 (3)0.2136 (3)0.9376 (2)0.0312 (7)
H6A0.95390.14160.96250.037*
C7A0.8267 (3)0.3101 (3)0.9917 (2)0.0282 (7)
H7A0.78590.29961.05050.034*
C7B0.4349 (3)0.3917 (3)0.7256 (2)0.0310 (7)
H7B0.39010.47540.74180.037*
C4B0.5727 (3)0.1417 (3)0.6753 (2)0.0211 (6)
C9B0.4972 (3)0.1909 (3)0.7676 (2)0.0217 (6)
C5A0.9848 (3)0.2239 (3)0.8496 (2)0.0277 (6)
H5A1.04860.15790.81370.033*
C1B0.5514 (3)0.0082 (3)0.8115 (2)0.0319 (7)
H1B10.54310.05850.85760.038*
C5B0.5761 (3)0.2235 (3)0.6085 (2)0.0274 (7)
H5B0.62580.19420.54710.033*
C8A0.7892 (3)0.4185 (3)0.9588 (2)0.0244 (6)
H8A0.7240.48260.99510.029*
C1A0.8687 (3)0.5569 (3)0.7502 (2)0.0274 (7)
H1A10.84230.63260.73020.033*
C2A0.9637 (3)0.4630 (3)0.6912 (2)0.0282 (7)
H2A1.00070.47520.63170.034*
C6B0.5079 (3)0.3445 (3)0.6328 (2)0.0309 (7)
H6B0.50970.39650.58730.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0269 (2)0.0194 (2)0.0219 (2)0.00239 (16)0.00657 (17)0.00933 (17)
Cl40.0363 (4)0.0294 (4)0.0470 (5)0.0126 (3)0.0145 (4)0.0193 (4)
Cl30.0271 (4)0.0295 (4)0.0319 (4)0.0008 (3)0.0076 (3)0.0082 (3)
Cl10.0317 (4)0.0243 (4)0.0322 (4)0.0010 (3)0.0065 (3)0.0154 (3)
Cl50.0490 (5)0.0359 (4)0.0313 (4)0.0214 (4)0.0196 (4)0.0149 (3)
Cl20.0691 (6)0.0341 (4)0.0230 (4)0.0088 (4)0.0136 (4)0.0126 (3)
N1A0.0248 (12)0.0170 (12)0.0259 (13)0.0046 (9)0.0097 (10)0.0043 (10)
N1B0.0307 (13)0.0301 (14)0.0209 (12)0.0049 (11)0.0092 (11)0.0101 (11)
C4A0.0192 (13)0.0188 (14)0.0216 (14)0.0011 (11)0.0015 (11)0.0042 (12)
C3B0.0278 (15)0.0293 (17)0.0266 (16)0.0024 (13)0.0097 (13)0.0046 (13)
C3A0.0248 (15)0.0246 (16)0.0260 (15)0.0023 (12)0.0104 (12)0.0043 (13)
C8B0.0255 (15)0.0257 (16)0.0272 (16)0.0052 (12)0.0086 (13)0.0041 (13)
C9A0.0180 (13)0.0197 (15)0.0228 (14)0.0033 (11)0.0016 (12)0.0041 (12)
C2B0.0358 (17)0.0210 (16)0.0387 (18)0.0083 (13)0.0113 (15)0.0085 (14)
C6A0.0361 (17)0.0306 (17)0.0308 (17)0.0038 (14)0.0027 (14)0.0175 (14)
C7A0.0302 (16)0.0335 (17)0.0215 (15)0.0024 (13)0.0030 (13)0.0116 (13)
C7B0.0296 (16)0.0240 (16)0.0372 (18)0.0035 (13)0.0004 (14)0.0108 (14)
C4B0.0190 (14)0.0234 (15)0.0186 (14)0.0006 (11)0.0030 (11)0.0048 (12)
C9B0.0186 (14)0.0222 (15)0.0217 (14)0.0022 (11)0.0011 (12)0.0059 (12)
C5A0.0278 (15)0.0238 (16)0.0315 (16)0.0070 (12)0.0041 (13)0.0101 (13)
C1B0.0357 (17)0.0297 (17)0.0359 (18)0.0046 (14)0.0097 (14)0.0170 (14)
C5B0.0268 (15)0.0330 (17)0.0223 (15)0.0012 (13)0.0042 (13)0.0099 (13)
C8A0.0236 (14)0.0273 (16)0.0197 (14)0.0036 (12)0.0059 (12)0.0039 (12)
C1A0.0300 (16)0.0217 (15)0.0345 (17)0.0011 (12)0.0081 (14)0.0138 (13)
C2A0.0302 (16)0.0298 (17)0.0296 (16)0.0002 (13)0.0135 (13)0.0127 (14)
C6B0.0298 (16)0.0327 (18)0.0319 (17)0.0022 (13)0.0007 (14)0.0169 (14)
Geometric parameters (Å, º) top
Fe1—Cl22.1862 (10)C9A—C8A1.399 (4)
Fe1—Cl12.1880 (9)C2B—C1B1.386 (4)
Fe1—Cl42.1901 (10)C2B—H2B0.93
Fe1—Cl32.2013 (10)C6A—C5A1.356 (4)
N1A—C1A1.317 (3)C6A—C7A1.408 (4)
N1A—C9A1.367 (3)C6A—H6A0.93
N1A—H1A0.86C7A—C8A1.360 (4)
N1B—C1B1.319 (4)C7A—H7A0.93
N1B—C9B1.370 (3)C7B—C6B1.398 (4)
N1B—H1B0.86C7B—H7B0.93
C4A—C3A1.404 (4)C4B—C9B1.407 (4)
C4A—C9A1.412 (4)C4B—C5B1.411 (4)
C4A—C5A1.419 (4)C5A—H5A0.93
C3B—C2B1.359 (4)C1B—H1B10.93
C3B—C4B1.410 (4)C5B—C6B1.358 (4)
C3B—H3B0.93C5B—H5B0.93
C3A—C2A1.362 (4)C8A—H8A0.93
C3A—H3A0.93C1A—C2A1.388 (4)
C8B—C7B1.361 (4)C1A—H1A10.93
C8B—C9B1.400 (4)C2A—H2A0.93
C8B—H8B0.93C6B—H6B0.93
Cl2—Fe1—Cl1108.97 (4)C8A—C7A—C6A120.6 (3)
Cl2—Fe1—Cl4110.06 (4)C8A—C7A—H7A119.7
Cl1—Fe1—Cl4110.70 (4)C6A—C7A—H7A119.7
Cl2—Fe1—Cl3108.87 (4)C8B—C7B—C6B120.7 (3)
Cl1—Fe1—Cl3109.03 (4)C8B—C7B—H7B119.6
Cl4—Fe1—Cl3109.18 (4)C6B—C7B—H7B119.6
C1A—N1A—C9A123.3 (2)C9B—C4B—C3B118.3 (2)
C1A—N1A—H1A118.3C9B—C4B—C5B117.5 (2)
C9A—N1A—H1A118.3C3B—C4B—C5B124.2 (2)
C1B—N1B—C9B122.9 (2)N1B—C9B—C8B120.6 (2)
C1B—N1B—H1B118.5N1B—C9B—C4B118.2 (2)
C9B—N1B—H1B118.5C8B—C9B—C4B121.2 (2)
C3A—C4A—C9A118.6 (2)C6A—C5A—C4A120.1 (3)
C3A—C4A—C5A123.9 (3)C6A—C5A—H5A119.9
C9A—C4A—C5A117.6 (2)C4A—C5A—H5A119.9
C2B—C3B—C4B120.7 (3)N1B—C1B—C2B120.6 (3)
C2B—C3B—H3B119.7N1B—C1B—H1B1119.7
C4B—C3B—H3B119.7C2B—C1B—H1B1119.7
C2A—C3A—C4A120.6 (3)C6B—C5B—C4B120.8 (3)
C2A—C3A—H3A119.7C6B—C5B—H5B119.6
C4A—C3A—H3A119.7C4B—C5B—H5B119.6
C7B—C8B—C9B119.1 (3)C7A—C8A—C9A118.9 (3)
C7B—C8B—H8B120.4C7A—C8A—H8A120.5
C9B—C8B—H8B120.4C9A—C8A—H8A120.5
N1A—C9A—C8A120.6 (2)N1A—C1A—C2A120.5 (3)
N1A—C9A—C4A117.8 (2)N1A—C1A—H1A1119.7
C8A—C9A—C4A121.6 (2)C2A—C1A—H1A1119.7
C3B—C2B—C1B119.3 (3)C3A—C2A—C1A119.2 (3)
C3B—C2B—H2B120.4C3A—C2A—H2A120.4
C1B—C2B—H2B120.4C1A—C2A—H2A120.4
C5A—C6A—C7A121.1 (3)C5B—C6B—C7B120.6 (3)
C5A—C6A—H6A119.4C5B—C6B—H6B119.7
C7A—C6A—H6A119.4C7B—C6B—H6B119.7
C9A—C4A—C3A—C2A1.8 (4)C5B—C4B—C9B—N1B179.7 (2)
C5A—C4A—C3A—C2A179.2 (3)C3B—C4B—C9B—C8B179.3 (2)
C1A—N1A—C9A—C8A179.4 (2)C5B—C4B—C9B—C8B0.2 (4)
C1A—N1A—C9A—C4A0.2 (4)C7A—C6A—C5A—C4A1.6 (4)
C3A—C4A—C9A—N1A1.4 (4)C3A—C4A—C5A—C6A179.3 (3)
C5A—C4A—C9A—N1A179.6 (2)C9A—C4A—C5A—C6A0.3 (4)
C3A—C4A—C9A—C8A178.2 (2)C9B—N1B—C1B—C2B1.3 (4)
C5A—C4A—C9A—C8A0.8 (4)C3B—C2B—C1B—N1B0.1 (4)
C4B—C3B—C2B—C1B1.1 (4)C9B—C4B—C5B—C6B0.4 (4)
C5A—C6A—C7A—C8A1.8 (4)C3B—C4B—C5B—C6B178.6 (3)
C9B—C8B—C7B—C6B0.4 (4)C6A—C7A—C8A—C9A0.7 (4)
C2B—C3B—C4B—C9B0.7 (4)N1A—C9A—C8A—C7A179.8 (2)
C2B—C3B—C4B—C5B178.3 (3)C4A—C9A—C8A—C7A0.6 (4)
C1B—N1B—C9B—C8B178.2 (3)C9A—N1A—C1A—C2A0.6 (4)
C1B—N1B—C9B—C4B1.7 (4)C4A—C3A—C2A—C1A1.0 (4)
C7B—C8B—C9B—N1B179.7 (2)N1A—C1A—C2A—C3A0.1 (4)
C7B—C8B—C9B—C4B0.2 (4)C4B—C5B—C6B—C7B1.0 (4)
C3B—C4B—C9B—N1B0.6 (4)C8B—C7B—C6B—C5B1.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl5i0.862.163.014 (3)174
N1B—H1B···Cl50.862.213.043 (3)163
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl5i0.86002.16003.014 (3)174.00
N1B—H1B···Cl50.86002.21003.043 (3)163.00
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) are thanked for financial support.

References

First citationBouchouit, K., Bendeif, E. E., EL Ouazzani, H., Dahaoui, S., Lecomte, C., Benali-cherif, N. & Sahraoui, B. (2010). Chem. Phys. 375, 1–7.  CrossRef CAS Google Scholar
First citationBouchouit, K., Bougharraf, H., Derkowska-Zielinska, B., Benali-cherif, N. & Sahraoui, B. (2015). Opt. Mater. 48, 215–221.  CrossRef CAS Google Scholar
First citationBouchouit, K., Essaidi, Z., Abed, S., Migalska-Zalas, A., Derkowska, B., Benali-cherif, N., Mihaly, M., Meghea, A. & Sahraoui, B. (2008). Chem. Phys. Lett. 455, 270–274.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, L.-Z. & Huang, M.-N. (2010). Acta Cryst. E66, m377.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayalakshmi, D. & Kumar, J. (2006). Cryst. Res. Technol. 41, 37–40.  CrossRef CAS Google Scholar
First citationKhadri, A., Bouchene, R., Bouacida, S., Merazig, H. & Roisnel, T. (2013). Acta Cryst. E69, m190.  CSD CrossRef IUCr Journals Google Scholar
First citationKruszynski, R., Wyrzykowski, D., Styczeń, E. & Chmurzyński, L. (2007). Acta Cryst. E63, m2279–m2280.  CrossRef IUCr Journals Google Scholar
First citationPrommon, P., Promseenong, P. & Chainok, K. (2012). Acta Cryst. E68, m211–m212.  CrossRef IUCr Journals Google Scholar
First citationSankar, R., Raghavan, C. M. & Jayavel, R. (2007). Cryst. Growth Des. 7, 501–505.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds