metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1-(3-eth­­oxy-2-oxido­benzyl­­idene-κO2)-4-phenyl­thio­semicarbazidato-κ2N1,S](tri­phenylphosphane-κP)nickel(II)

aDepartment of Chemistry, St.Michael College of Engineering & Technology, Kalayarkoil 630 551, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 29 October 2015; accepted 15 November 2015; online 21 November 2015)

In the title complex, [Ni(C16H15N3O2S)(C18H15P)], the NiII atom has a distorted tetra­hedral coordination geometry, comprised of N, S, O and P atoms of the tridentate thiosemicarbazide ligand and the P atom of the triphenylphosphane ligand. The benzene ring makes a dihedral angle of 53.08 (11)° with the phenyl ring of the phenyl­thio­semicarbazide moiety and dihedral angles of 73.69 (11), 20.38 (11) and 71.30 (11)° with the phenyl rings of tri­phenyl­phosphane ligand. A pair of N—H⋯N hydrogen bonds generates an R22(8) ring graph-set motif. The eth­oxy group is disordered over two positions, with site occupancies of 0.631 (9) and 0.369 (9). The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond. In the crystal, weak N—H⋯N and C—H⋯π inter­actions connect the mol­ecules, forming a three-dimensional network.

1. Related literature

For biological activities of thio­semicarbazones and their transition metal complexes, see: Hu et al. (2006[Hu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]); Banerjee et al. (2011[Banerjee, D., Yogeeswari, P., Bhat, P., Thomas, A., Srividya, M. & Sriram, D. (2011). Eur. J. Med. Chem. 46, 106-121.]); Pitucha et al. (2010[Pitucha, M., Polak, B., Swatko-Ossor, M., Popiolek, L. & Ginalskac, G. (2010). Croat. Chem. Acta, 83, 299-306.]). For reported similar structures, see: Islam et al. (2014[Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]); Zhang et al. (2004[Zhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromma, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596-602.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C16H15N3O2S)(C18H15P)]

  • Mr = 634.35

  • Triclinic, [P \overline 1]

  • a = 9.7290 (2) Å

  • b = 12.9770 (3) Å

  • c = 14.0120 (2) Å

  • α = 62.958 (1)°

  • β = 73.756 (2)°

  • γ = 71.654 (1)°

  • V = 1475.91 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.853

  • 32169 measured reflections

  • 7289 independent reflections

  • 6002 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.03

  • 7289 reflections

  • 411 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.93 2.46 3.314 (7) 154
C12—H12⋯O2 0.93 2.35 3.113 (2) 139
N3—H3A⋯N2i 0.87 (1) 2.22 (1) 3.0811 (19) 170 (2)
C33A—H33DCg7ii 0.97 2.79 3.279 (10) 112
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones and their transition metal complexes have revealed wide spectrum of activities such as anticancer (Hu et al., 2006), anti-HIV (Banerjee et al., 2011) and antitubercular (Pitucha et al., 2010). We herein, report the crystal structure of the title compound (I), (Fig. 1). In the complex, the Ni1—S1, Ni1–N1, Ni1—P1 and Ni1—O2 bond distances are of 2.1355 (4), 1.8766 (12), 2.2291 (4) and 1.8676 (10)Å, respectively. These geometric parameters of the title compound are comparable to the reported structures (Islam, et al., 2014; Zhang, et al., 2004) and literature values.

The ethoxy group is disordered over two positions, with site occupancies of 0.631 (9) and 0.369 (9). The benzene ring (C27—C32) make the dihedral angle of 53.08 (11)° with the phenyl ring (C19—C24) of phenylthiosemicarbazide moiety. The dihedral angles between the benzene ring (C27—C32) and the phenyl rings (C1—C6), (C7—C12) and (C13—C18) of triphenyl phosphine moiety are 73.69 (11), 20.38 (11) and 71.30 (11)°, respectively. The intermolecular N3-H3A···N2 hydrogen bond generates R22(8) ring-set motif.

The molecular structure is stabilized by a weak intramolecular C—H···O hydrogen bonds (Table 1) and the crystal structure is controlled by weak intermolecular N—H···N and C—H···π (Fig.2 & Table 1) interactions to form a three dimensional network.

Related literature top

For biological activities of thiosemicarbazones and their transition metal complexes, see: Hu et al. (2006); Banerjee et al. (2011); Pitucha et al. (2010). For reported similar structures, see: Islam et al. (2014); Zhang et al. (2004).

Experimental top

About 218 mg of the metal nickel triphenyl phosphine was dissolved in 5 ml of ethanol and the ligand 100 mg was dissolved in 3 ml of dichloromethane. Then the mixture was refluxed for 3 to 4 h in cool ice bath condition, since dichlomethane has a very low boiling point. The red colour solution was allowed to stand for about 5 days at room temperature. After this period of time, the resulting dark-red solids were collected by filtration, washed with 10 ml on n-hexane and dried in vacuo over anhydrous CaCl2. A single red colour crystal suitable for the X-ray diffraction was obtained by slow evaporation of a solution in acetonitrile.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. H atom N atom is fixed from Fourier map and refined freely with distance restraint 0.88 (1) Å. The bond distances C29—O1, C29—O1A, O1—C33, and O1A—C33A were restraint to 1.40 (1) Å and the bond distances C33—C34 and C33A—C34A distances were restraint to 1.55 (1) Å with DFIX command in SHELXL97 (Sheldrick, 2008).

Structure description top

Thiosemicarbazones and their transition metal complexes have revealed wide spectrum of activities such as anticancer (Hu et al., 2006), anti-HIV (Banerjee et al., 2011) and antitubercular (Pitucha et al., 2010). We herein, report the crystal structure of the title compound (I), (Fig. 1). In the complex, the Ni1—S1, Ni1–N1, Ni1—P1 and Ni1—O2 bond distances are of 2.1355 (4), 1.8766 (12), 2.2291 (4) and 1.8676 (10)Å, respectively. These geometric parameters of the title compound are comparable to the reported structures (Islam, et al., 2014; Zhang, et al., 2004) and literature values.

The ethoxy group is disordered over two positions, with site occupancies of 0.631 (9) and 0.369 (9). The benzene ring (C27—C32) make the dihedral angle of 53.08 (11)° with the phenyl ring (C19—C24) of phenylthiosemicarbazide moiety. The dihedral angles between the benzene ring (C27—C32) and the phenyl rings (C1—C6), (C7—C12) and (C13—C18) of triphenyl phosphine moiety are 73.69 (11), 20.38 (11) and 71.30 (11)°, respectively. The intermolecular N3-H3A···N2 hydrogen bond generates R22(8) ring-set motif.

The molecular structure is stabilized by a weak intramolecular C—H···O hydrogen bonds (Table 1) and the crystal structure is controlled by weak intermolecular N—H···N and C—H···π (Fig.2 & Table 1) interactions to form a three dimensional network.

For biological activities of thiosemicarbazones and their transition metal complexes, see: Hu et al. (2006); Banerjee et al. (2011); Pitucha et al. (2010). For reported similar structures, see: Islam et al. (2014); Zhang et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. The partial crystal packing of the title compound, showing the ring set-motif viewed along the b axis. The hydrogen bonds are shown as dashed lines.
[1-(3-Ethoxy-2-oxidobenzylidene-κO2)-4-phenylthiosemicarbazidato-κ2N1,S](triphenylphosphane-κP)nickel(II) top
Crystal data top
[Ni(C16H15N3O2S)(C18H15P)]Z = 2
Mr = 634.35F(000) = 660
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7290 (2) ÅCell parameters from 2018 reflections
b = 12.9770 (3) Åθ = 2.2–28.3°
c = 14.0120 (2) ŵ = 0.82 mm1
α = 62.958 (1)°T = 295 K
β = 73.756 (2)°Block, red
γ = 71.654 (1)°0.28 × 0.24 × 0.20 mm
V = 1475.91 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7289 independent reflections
Radiation source: fine-focus sealed tube6002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.803, Tmax = 0.853k = 1717
32169 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.3532P]
where P = (Fo2 + 2Fc2)/3
7289 reflections(Δ/σ)max < 0.001
411 parametersΔρmax = 0.30 e Å3
7 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C16H15N3O2S)(C18H15P)]γ = 71.654 (1)°
Mr = 634.35V = 1475.91 (5) Å3
Triclinic, P1Z = 2
a = 9.7290 (2) ÅMo Kα radiation
b = 12.9770 (3) ŵ = 0.82 mm1
c = 14.0120 (2) ÅT = 295 K
α = 62.958 (1)°0.28 × 0.24 × 0.20 mm
β = 73.756 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6002 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.853Rint = 0.030
32169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0307 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
7289 reflectionsΔρmin = 0.25 e Å3
411 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.75160 (16)0.24179 (14)0.08641 (12)0.0334 (3)
C20.75713 (19)0.35814 (16)0.15930 (14)0.0447 (4)
H20.72840.41810.13420.054*
C30.8053 (2)0.38465 (19)0.26897 (15)0.0558 (5)
H30.80740.46260.31740.067*
C40.8499 (2)0.2962 (2)0.30648 (15)0.0571 (5)
H40.88170.31430.38020.068*
C50.8475 (2)0.18102 (19)0.23501 (15)0.0517 (5)
H50.87920.12110.26040.062*
C60.79814 (18)0.15360 (15)0.12535 (13)0.0400 (4)
H60.79620.07540.07750.048*
C70.85493 (17)0.19942 (14)0.10147 (13)0.0356 (3)
C80.98860 (19)0.20072 (18)0.03254 (15)0.0494 (4)
H80.99250.21490.03940.059*
C91.1160 (2)0.18122 (19)0.06923 (18)0.0564 (5)
H91.20490.18210.02210.068*
C101.1116 (2)0.16066 (18)0.17405 (18)0.0556 (5)
H101.19770.14620.19910.067*
C110.9801 (2)0.1613 (2)0.24270 (19)0.0672 (6)
H110.97720.14840.31410.081*
C120.8509 (2)0.1808 (2)0.20701 (16)0.0551 (5)
H120.76200.18130.25420.066*
C130.66787 (17)0.05795 (14)0.11644 (12)0.0343 (3)
C140.77810 (19)0.03890 (15)0.15956 (14)0.0432 (4)
H140.86660.02710.16150.052*
C150.7578 (2)0.15257 (16)0.19954 (15)0.0526 (5)
H150.83280.21690.22780.063*
C160.6282 (3)0.17131 (18)0.19790 (17)0.0588 (5)
H160.61450.24810.22560.071*
C170.5187 (3)0.0763 (2)0.1552 (2)0.0688 (6)
H170.43070.08880.15320.083*
C180.5376 (2)0.03834 (17)0.11517 (18)0.0549 (5)
H180.46200.10230.08730.066*
C190.1463 (2)0.46798 (16)0.26655 (15)0.0473 (4)
H190.06890.43120.22480.057*
C200.1925 (3)0.4802 (2)0.37291 (18)0.0632 (6)
H200.14560.45230.40280.076*
C210.3073 (3)0.5336 (2)0.43442 (17)0.0679 (6)
H210.33880.54160.50600.081*
C220.3756 (2)0.5751 (2)0.39001 (16)0.0631 (6)
H220.45430.61040.43160.076*
C230.3288 (2)0.56516 (17)0.28433 (14)0.0491 (4)
H230.37390.59540.25530.059*
C240.21437 (17)0.50998 (14)0.22197 (13)0.0386 (4)
C250.24291 (16)0.44610 (14)0.03268 (12)0.0359 (3)
C260.20003 (18)0.34640 (15)0.23944 (13)0.0424 (4)
H260.09870.37390.24780.051*
C270.2624 (2)0.28071 (16)0.33618 (13)0.0454 (4)
C280.41423 (18)0.23648 (15)0.33456 (12)0.0390 (4)
C290.4640 (2)0.17511 (18)0.43723 (14)0.0511 (4)
C300.3662 (3)0.1579 (2)0.53196 (16)0.0761 (7)
H300.40050.11630.59800.091*
C310.2168 (3)0.2014 (3)0.53072 (17)0.0930 (10)
H310.15180.18900.59580.112*
C320.1649 (2)0.2618 (2)0.43560 (16)0.0752 (7)
H320.06450.29100.43550.090*
N10.26909 (13)0.37212 (11)0.14090 (10)0.0336 (3)
N20.17568 (14)0.43889 (12)0.06343 (10)0.0379 (3)
N30.16198 (15)0.49892 (14)0.11384 (11)0.0455 (4)
O20.50937 (12)0.24802 (10)0.24580 (8)0.0406 (3)
P10.68938 (4)0.21048 (3)0.05755 (3)0.03082 (9)
Ni10.46961 (2)0.312000 (17)0.104547 (14)0.03154 (7)
S10.42853 (4)0.38465 (4)0.05808 (3)0.04352 (11)
O10.6109 (6)0.1463 (8)0.4341 (6)0.0517 (16)0.631 (9)
C330.6533 (5)0.0936 (6)0.5392 (4)0.0681 (16)0.631 (9)
H33A0.62870.01650.58130.082*0.631 (9)
H33B0.60460.14380.57860.082*0.631 (9)
C340.8162 (6)0.0818 (6)0.5175 (4)0.107 (2)0.631 (9)
H34A0.85210.04750.58510.161*0.631 (9)
H34B0.83850.15870.47470.161*0.631 (9)
H34C0.86240.03160.47870.161*0.631 (9)
O1A0.6128 (11)0.1203 (14)0.4277 (10)0.057 (3)0.369 (9)
C33A0.6898 (11)0.0516 (7)0.5191 (7)0.060 (2)0.369 (9)
H33C0.77940.00180.49780.072*0.369 (9)
H33D0.62960.00030.57700.072*0.369 (9)
C34A0.7290 (13)0.1242 (7)0.5628 (7)0.087 (3)0.369 (9)
H34D0.77410.07220.62610.130*0.369 (9)
H34E0.64160.17610.58170.130*0.369 (9)
H34F0.79620.17050.50830.130*0.369 (9)
H3A0.0681 (11)0.5085 (18)0.0919 (16)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (7)0.0430 (8)0.0337 (7)0.0043 (6)0.0051 (6)0.0172 (6)
C20.0395 (9)0.0455 (9)0.0439 (9)0.0078 (7)0.0038 (7)0.0164 (7)
C30.0497 (11)0.0589 (11)0.0420 (10)0.0141 (9)0.0041 (8)0.0066 (8)
C40.0474 (11)0.0840 (14)0.0335 (9)0.0116 (10)0.0029 (8)0.0222 (9)
C50.0455 (10)0.0719 (13)0.0458 (10)0.0077 (9)0.0050 (8)0.0353 (10)
C60.0343 (8)0.0480 (9)0.0399 (8)0.0059 (7)0.0067 (7)0.0212 (7)
C70.0288 (8)0.0389 (8)0.0429 (8)0.0033 (6)0.0097 (6)0.0200 (7)
C80.0319 (9)0.0725 (12)0.0460 (10)0.0156 (8)0.0056 (7)0.0235 (9)
C90.0309 (9)0.0746 (13)0.0663 (12)0.0147 (9)0.0067 (8)0.0290 (11)
C100.0381 (10)0.0664 (12)0.0773 (14)0.0041 (9)0.0240 (9)0.0378 (11)
C110.0471 (12)0.1075 (18)0.0641 (13)0.0034 (11)0.0207 (10)0.0510 (13)
C120.0348 (9)0.0864 (14)0.0531 (11)0.0015 (9)0.0105 (8)0.0412 (11)
C130.0309 (8)0.0397 (8)0.0312 (7)0.0064 (6)0.0040 (6)0.0148 (6)
C140.0361 (9)0.0445 (9)0.0463 (9)0.0049 (7)0.0116 (7)0.0156 (7)
C150.0587 (12)0.0414 (9)0.0512 (10)0.0034 (8)0.0156 (9)0.0142 (8)
C160.0711 (14)0.0466 (10)0.0579 (12)0.0218 (10)0.0081 (10)0.0158 (9)
C170.0556 (13)0.0652 (13)0.0933 (17)0.0274 (11)0.0178 (12)0.0259 (12)
C180.0357 (10)0.0527 (10)0.0757 (13)0.0089 (8)0.0180 (9)0.0206 (10)
C190.0393 (9)0.0474 (9)0.0520 (10)0.0008 (7)0.0124 (8)0.0212 (8)
C200.0630 (14)0.0726 (14)0.0646 (13)0.0086 (11)0.0259 (11)0.0430 (11)
C210.0651 (14)0.0838 (15)0.0405 (10)0.0083 (12)0.0080 (10)0.0293 (11)
C220.0523 (12)0.0723 (14)0.0430 (10)0.0078 (10)0.0011 (9)0.0138 (10)
C230.0444 (10)0.0543 (10)0.0421 (9)0.0076 (8)0.0074 (8)0.0157 (8)
C240.0307 (8)0.0403 (8)0.0354 (8)0.0055 (6)0.0098 (6)0.0133 (6)
C250.0272 (7)0.0390 (8)0.0362 (8)0.0001 (6)0.0079 (6)0.0139 (6)
C260.0307 (8)0.0497 (9)0.0385 (8)0.0036 (7)0.0039 (6)0.0199 (7)
C270.0404 (9)0.0537 (10)0.0322 (8)0.0009 (7)0.0029 (7)0.0167 (7)
C280.0400 (9)0.0438 (9)0.0316 (8)0.0042 (7)0.0070 (6)0.0163 (7)
C290.0499 (11)0.0627 (11)0.0359 (9)0.0055 (9)0.0121 (8)0.0175 (8)
C300.0683 (15)0.1077 (19)0.0312 (9)0.0042 (13)0.0108 (9)0.0184 (11)
C310.0641 (15)0.142 (3)0.0324 (10)0.0011 (15)0.0044 (10)0.0219 (13)
C320.0480 (12)0.1078 (19)0.0403 (10)0.0043 (12)0.0015 (9)0.0239 (11)
N10.0260 (6)0.0373 (6)0.0337 (6)0.0022 (5)0.0076 (5)0.0155 (5)
N20.0270 (6)0.0443 (7)0.0340 (7)0.0042 (5)0.0079 (5)0.0149 (6)
N30.0255 (7)0.0641 (9)0.0348 (7)0.0038 (6)0.0075 (6)0.0171 (7)
O20.0304 (6)0.0562 (7)0.0309 (5)0.0018 (5)0.0072 (4)0.0176 (5)
P10.02285 (18)0.0374 (2)0.03196 (19)0.00183 (14)0.00561 (14)0.01614 (15)
Ni10.02392 (10)0.03883 (11)0.02941 (10)0.00097 (7)0.00641 (7)0.01555 (8)
S10.02623 (19)0.0627 (3)0.03223 (19)0.00587 (17)0.00726 (15)0.01987 (18)
O10.0459 (19)0.071 (4)0.0370 (16)0.0052 (15)0.0166 (13)0.0200 (17)
C330.063 (3)0.095 (4)0.040 (2)0.002 (3)0.024 (2)0.022 (2)
C340.071 (3)0.164 (6)0.070 (3)0.011 (3)0.042 (3)0.039 (3)
O1A0.060 (4)0.067 (6)0.044 (3)0.006 (3)0.031 (3)0.016 (3)
C33A0.067 (5)0.063 (5)0.043 (4)0.001 (3)0.025 (4)0.015 (3)
C34A0.098 (8)0.093 (6)0.071 (5)0.023 (5)0.038 (5)0.020 (4)
Geometric parameters (Å, º) top
C1—C61.384 (2)C22—C231.379 (3)
C1—C21.394 (2)C22—H220.9300
C1—P11.8240 (15)C23—C241.380 (2)
C2—C31.385 (3)C23—H230.9300
C2—H20.9300C24—N31.411 (2)
C3—C41.375 (3)C25—N21.297 (2)
C3—H30.9300C25—N31.355 (2)
C4—C51.373 (3)C25—S11.7367 (15)
C4—H40.9300C26—N11.293 (2)
C5—C61.384 (2)C26—C271.420 (2)
C5—H50.9300C26—H260.9300
C6—H60.9300C27—C281.404 (2)
C7—C121.377 (2)C27—C321.413 (3)
C7—C81.386 (2)C28—O21.3038 (19)
C7—P11.8227 (16)C28—C291.430 (2)
C8—C91.380 (2)C29—O11.351 (6)
C8—H80.9300C29—C301.370 (3)
C9—C101.359 (3)C29—O1A1.396 (9)
C9—H90.9300C30—C311.386 (3)
C10—C111.369 (3)C30—H300.9300
C10—H100.9300C31—C321.350 (3)
C11—C121.389 (3)C31—H310.9300
C11—H110.9300C32—H320.9300
C12—H120.9300N1—N21.3986 (17)
C13—C181.375 (2)N1—Ni11.8766 (12)
C13—C141.385 (2)N3—H3A0.867 (9)
C13—P11.8226 (16)O2—Ni11.8676 (10)
C14—C151.378 (3)P1—Ni12.2291 (4)
C14—H140.9300Ni1—S12.1355 (4)
C15—C161.365 (3)O1—C331.433 (6)
C15—H150.9300C33—C341.499 (6)
C16—C171.368 (3)C33—H33A0.9700
C16—H160.9300C33—H33B0.9700
C17—C181.384 (3)C34—H34A0.9600
C17—H170.9300C34—H34B0.9600
C18—H180.9300C34—H34C0.9600
C19—C241.376 (2)O1A—C33A1.440 (8)
C19—C201.380 (3)C33A—C34A1.514 (8)
C19—H190.9300C33A—H33C0.9700
C20—C211.370 (3)C33A—H33D0.9700
C20—H200.9300C34A—H34D0.9600
C21—C221.371 (3)C34A—H34E0.9600
C21—H210.9300C34A—H34F0.9600
C6—C1—C2118.85 (15)N2—C25—S1122.28 (12)
C6—C1—P1122.34 (12)N3—C25—S1119.85 (12)
C2—C1—P1118.77 (12)N1—C26—C27126.96 (15)
C3—C2—C1120.20 (17)N1—C26—H26116.5
C3—C2—H2119.9C27—C26—H26116.5
C1—C2—H2119.9C28—C27—C32120.72 (17)
C4—C3—C2120.22 (18)C28—C27—C26122.12 (15)
C4—C3—H3119.9C32—C27—C26117.16 (17)
C2—C3—H3119.9O2—C28—C27123.68 (14)
C5—C4—C3119.97 (17)O2—C28—C29119.47 (15)
C5—C4—H4120.0C27—C28—C29116.85 (15)
C3—C4—H4120.0O1—C29—C30122.8 (3)
C4—C5—C6120.34 (18)C30—C29—O1A126.1 (6)
C4—C5—H5119.8O1—C29—C28116.2 (3)
C6—C5—H5119.8C30—C29—C28120.74 (18)
C1—C6—C5120.41 (17)O1A—C29—C28112.1 (5)
C1—C6—H6119.8C29—C30—C31120.92 (19)
C5—C6—H6119.8C29—C30—H30119.5
C12—C7—C8118.72 (16)C31—C30—H30119.5
C12—C7—P1120.03 (13)C32—C31—C30120.4 (2)
C8—C7—P1121.08 (13)C32—C31—H31119.8
C9—C8—C7120.85 (17)C30—C31—H31119.8
C9—C8—H8119.6C31—C32—C27120.4 (2)
C7—C8—H8119.6C31—C32—H32119.8
C10—C9—C8120.13 (18)C27—C32—H32119.8
C10—C9—H9119.9C26—N1—N2112.89 (13)
C8—C9—H9119.9C26—N1—Ni1124.00 (11)
C9—C10—C11119.76 (18)N2—N1—Ni1122.73 (10)
C9—C10—H10120.1C25—N2—N1111.59 (12)
C11—C10—H10120.1C25—N3—C24125.84 (14)
C10—C11—C12120.80 (19)C25—N3—H3A114.2 (14)
C10—C11—H11119.6C24—N3—H3A117.7 (14)
C12—C11—H11119.6C28—O2—Ni1127.12 (10)
C7—C12—C11119.71 (18)C13—P1—C7104.13 (7)
C7—C12—H12120.1C13—P1—C1103.46 (7)
C11—C12—H12120.1C7—P1—C1102.25 (7)
C18—C13—C14118.68 (16)C13—P1—Ni1104.28 (5)
C18—C13—P1118.34 (13)C7—P1—Ni1122.93 (5)
C14—C13—P1122.96 (12)C1—P1—Ni1117.52 (5)
C15—C14—C13120.54 (17)O2—Ni1—N194.98 (5)
C15—C14—H14119.7O2—Ni1—S1178.91 (4)
C13—C14—H14119.7N1—Ni1—S186.08 (4)
C16—C15—C14120.43 (18)O2—Ni1—P188.98 (4)
C16—C15—H15119.8N1—Ni1—P1166.97 (4)
C14—C15—H15119.8S1—Ni1—P190.029 (15)
C15—C16—C17119.51 (18)C25—S1—Ni197.19 (5)
C15—C16—H16120.2C29—O1—C33113.5 (5)
C17—C16—H16120.2O1—C33—C34105.1 (4)
C16—C17—C18120.6 (2)O1—C33—H33A110.7
C16—C17—H17119.7C34—C33—H33A110.7
C18—C17—H17119.7O1—C33—H33B110.7
C13—C18—C17120.25 (18)C34—C33—H33B110.7
C13—C18—H18119.9H33A—C33—H33B108.8
C17—C18—H18119.9C33—C34—H34A109.5
C24—C19—C20120.34 (19)C33—C34—H34B109.5
C24—C19—H19119.8H34A—C34—H34B109.5
C20—C19—H19119.8C33—C34—H34C109.5
C21—C20—C19120.0 (2)H34A—C34—H34C109.5
C21—C20—H20120.0H34B—C34—H34C109.5
C19—C20—H20120.0C29—O1A—C33A123.3 (10)
C20—C21—C22119.76 (19)O1A—C33A—C34A114.7 (9)
C20—C21—H21120.1O1A—C33A—H33C108.6
C22—C21—H21120.1C34A—C33A—H33C108.6
C21—C22—C23120.7 (2)O1A—C33A—H33D108.6
C21—C22—H22119.6C34A—C33A—H33D108.6
C23—C22—H22119.6H33C—C33A—H33D107.6
C22—C23—C24119.45 (19)C33A—C34A—H34D109.5
C22—C23—H23120.3C33A—C34A—H34E109.5
C24—C23—H23120.3H34D—C34A—H34E109.5
C19—C24—C23119.70 (16)C33A—C34A—H34F109.5
C19—C24—N3118.93 (16)H34D—C34A—H34F109.5
C23—C24—N3121.33 (16)H34E—C34A—H34F109.5
N2—C25—N3117.79 (14)
C6—C1—C2—C31.5 (3)C26—N1—N2—C25168.96 (15)
P1—C1—C2—C3179.34 (14)Ni1—N1—N2—C254.26 (19)
C1—C2—C3—C40.9 (3)N2—C25—N3—C24176.89 (16)
C2—C3—C4—C50.3 (3)S1—C25—N3—C240.0 (3)
C3—C4—C5—C61.0 (3)C19—C24—N3—C25124.94 (19)
C2—C1—C6—C50.8 (2)C23—C24—N3—C2557.1 (3)
P1—C1—C6—C5178.58 (13)C27—C28—O2—Ni15.5 (3)
C4—C5—C6—C10.4 (3)C29—C28—O2—Ni1174.13 (13)
C12—C7—C8—C91.4 (3)C18—C13—P1—C7168.08 (15)
P1—C7—C8—C9173.88 (16)C14—C13—P1—C713.76 (16)
C7—C8—C9—C100.2 (3)C18—C13—P1—C185.35 (15)
C8—C9—C10—C111.1 (3)C14—C13—P1—C192.81 (14)
C9—C10—C11—C121.0 (4)C18—C13—P1—Ni138.09 (15)
C8—C7—C12—C111.4 (3)C14—C13—P1—Ni1143.74 (13)
P1—C7—C12—C11173.92 (17)C12—C7—P1—C1375.24 (16)
C10—C11—C12—C70.2 (4)C8—C7—P1—C1399.97 (15)
C18—C13—C14—C150.5 (3)C12—C7—P1—C1177.28 (15)
P1—C13—C14—C15177.64 (14)C8—C7—P1—C17.50 (16)
C13—C14—C15—C160.5 (3)C12—C7—P1—Ni142.54 (17)
C14—C15—C16—C170.6 (3)C8—C7—P1—Ni1142.24 (13)
C15—C16—C17—C180.8 (4)C6—C1—P1—C1312.23 (15)
C14—C13—C18—C170.7 (3)C2—C1—P1—C13169.99 (13)
P1—C13—C18—C17177.52 (17)C6—C1—P1—C795.76 (14)
C16—C17—C18—C130.9 (4)C2—C1—P1—C782.02 (14)
C24—C19—C20—C210.5 (3)C6—C1—P1—Ni1126.48 (12)
C19—C20—C21—C220.3 (3)C2—C1—P1—Ni155.74 (14)
C20—C21—C22—C230.8 (3)C28—O2—Ni1—N110.45 (14)
C21—C22—C23—C241.7 (3)C28—O2—Ni1—P1157.11 (14)
C20—C19—C24—C230.4 (3)C26—N1—Ni1—O211.00 (15)
C20—C19—C24—N3178.31 (16)N2—N1—Ni1—O2176.53 (12)
C22—C23—C24—C191.4 (3)C26—N1—Ni1—S1169.23 (14)
C22—C23—C24—N3179.34 (17)N2—N1—Ni1—S13.23 (11)
N1—C26—C27—C281.4 (3)C26—N1—Ni1—P196.3 (2)
N1—C26—C27—C32179.0 (2)N2—N1—Ni1—P176.2 (2)
C32—C27—C28—O2178.0 (2)C13—P1—Ni1—O274.61 (6)
C26—C27—C28—O22.4 (3)C7—P1—Ni1—O243.10 (7)
C32—C27—C28—C291.6 (3)C1—P1—Ni1—O2171.60 (7)
C26—C27—C28—C29177.97 (17)C13—P1—Ni1—N133.36 (18)
O2—C28—C29—O18.5 (5)C7—P1—Ni1—N1151.07 (18)
C27—C28—C29—O1171.9 (5)C1—P1—Ni1—N180.43 (19)
O2—C28—C29—C30177.6 (2)C13—P1—Ni1—S1105.85 (5)
C27—C28—C29—C302.0 (3)C7—P1—Ni1—S1136.44 (7)
O2—C28—C29—O1A8.3 (8)C1—P1—Ni1—S17.95 (6)
C27—C28—C29—O1A171.3 (8)N2—C25—S1—Ni10.68 (15)
O1—C29—C30—C31172.2 (6)N3—C25—S1—Ni1176.12 (13)
O1A—C29—C30—C31169.0 (9)N1—Ni1—S1—C251.20 (7)
C28—C29—C30—C311.3 (4)P1—Ni1—S1—C25168.75 (6)
C29—C30—C31—C320.1 (5)C30—C29—O1—C331.5 (9)
C30—C31—C32—C270.3 (5)O1A—C29—O1—C33106 (4)
C28—C27—C32—C310.5 (4)C28—C29—O1—C33175.3 (5)
C26—C27—C32—C31179.1 (3)C29—O1—C33—C34173.6 (8)
C27—C26—N1—N2179.63 (17)O1—C29—O1A—C33A73 (3)
C27—C26—N1—Ni17.3 (3)C30—C29—O1A—C33A10.7 (19)
N3—C25—N2—N1173.97 (14)C28—C29—O1A—C33A179.3 (11)
S1—C25—N2—N12.9 (2)C29—O1A—C33A—C34A76.9 (19)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.463.314 (7)154
C12—H12···O20.932.353.113 (2)139
N3—H3A···N2i0.87 (1)2.22 (1)3.0811 (19)170 (2)
C33A—H33D···Cg7ii0.972.793.279 (10)112
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.463.314 (7)154
C12—H12···O20.932.353.113 (2)139
N3—H3A···N2i0.867 (9)2.224 (10)3.0811 (19)169.9 (19)
C33A—H33D···Cg7ii0.972.793.279 (10)112
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBanerjee, D., Yogeeswari, P., Bhat, P., Thomas, A., Srividya, M. & Sriram, D. (2011). Eur. J. Med. Chem. 46, 106–121.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIslam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationPitucha, M., Polak, B., Swatko-Ossor, M., Popiolek, L. & Ginalskac, G. (2010). Croat. Chem. Acta, 83, 299–306.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromma, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596–602.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds