organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxo-N′-phenyl-2H-chromene-3-carbohydrazide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 20 November 2015; accepted 24 November 2015; online 28 November 2015)

In the title compound, C16H12N2O3, the 2H-chromene moiety is essentially planar, with an r.m.s. deviation of the nine constituent atoms from the mean plane of 0.0093 Å, and makes a dihedral angle of 76.84 (3)° with the pendant phenyl ring. An intra­molecular N—H⋯O hydrogen bond helps to determine the conformation of the side chain. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules, forming [100] chains.

1. Related literature

For synthesis and bio-activity of coumarin scaffold compounds, see: Shivashankar et al. (2008a[Shivashankar, K., Shastri, L. A., Kulkarni, M. V., Rasal, V. P. & Rajendra, S. V. (2008a). Phosphorus Sulfur Silicon Relat. Elem. 183, 56-68.],b[Shivashankar, K., Shastri, L. A., Kulkarni, M. V., Rasal, V. P. & Saindane, D. M. (2008b). J. Indian Chem. Soc. 85, 1163-1168.], 2009[Shivashankar, K., Shastri, L. A., Kulkarni, M. V. & Saindane, D. M. (2009). J. Indian Chem. Soc. 86, 265-271.]); Bansal et al. (2013[Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049-3060.]); Jacquot et al. (2007[Jacquot, Y., Laïos, I., Cleeren, A., Nonclercq, D., Bermont, L., Refouvelet, B., Boubekeur, K., Xicluna, A., Leclercq, G. & Laurent, G. (2007). Bioorg. Med. Chem. 15, 2269-2282.]); Bhavsar et al. (2011[Bhavsar, D., Trivedi, J., Parekh, S., Savant, M., Thakrar, S., Bavishi, A., Radadiya, A., Vala, H., Lunagariya, J., Parmar, M., Paresh, L., Loddo, R. & Shah, A. (2011). Bioorg. Med. Chem. Lett. 21, 3443-3446.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12N2O3

  • Mr = 280.28

  • Triclinic, [P \overline 1]

  • a = 6.6508 (2) Å

  • b = 8.3906 (3) Å

  • c = 11.6388 (4) Å

  • α = 96.504 (2)°

  • β = 95.614 (2)°

  • γ = 94.757 (2)°

  • V = 639.31 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 150 K

  • 0.19 × 0.13 × 0.05 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.96

  • 4865 measured reflections

  • 2371 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.06

  • 2371 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.896 (18) 2.327 (18) 3.0498 (14) 137.7 (15)
N1—H1N⋯O2 0.896 (18) 2.112 (18) 2.7544 (13) 127.8 (15)
N2—H2N⋯O2ii 0.911 (17) 2.243 (17) 3.1358 (14) 166.3 (14)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coumarins are known to be biologically versatile compounds possessing several biological properties. Numerous research reports have indicated the coumarin nucleus as a potential candidate for development of anti-inflammatory (Shivashankar et al., 2008a,b; Bansal et al., 2013), antibacterial (Shivashankar et al., 2008b), antifungal (Shivashankar et al., 2009), anti-cancer (Jacquot et al., 2007) and anti-HIV (Bhavsar et al., 2011) agents. In light of such facts, we report in this study the synthesis and crystal structure of the title compound.

The 2H-chromene moiety is essentially planar with an r.m.s. deviation of the nine constituent atoms from the mean plane of 0.0093 Å. The dihedral angle between this plane and that of the pendant phenyl ring is 76.84 (3)°. The conformation of the hydrazide side-chain is partially determined by an intramolecular N1—H1N···O2 hydrogen bond (Fig. 1 and Table 1). The packing is assisted by intermolecular N2—H2N···O2i (i: x - 1, y, z) and N1—H1N···N2ii (ii: -x + 1, -y + 1, -z) hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For synthesis and bio-activity of coumarin scaffold compounds, see: Shivashankar et al. (2008a,b, 2009); Bansal et al. (2013); Jacquot et al. (2007); Bhavsar et al. (2011).

Experimental top

The title compound was obtained as an unexpected product from the reaction of 1-phenylpyrazolidine-3,5-dione (176 mg, 1 mmol), 2-hydroxybenzaldehyde (122 mg, 1 mmol) and o-toluidine (107 mg, 1 mmol). The reaction mixture was refluxed in 20 mL ethanol and monitored by TLC till completion. On cooling, the solid product was deposited, filtered off under vacuum and recrystallized from ethanol to afford colourless crystals in a sufficient quality for x-ray diffraction. Mp 471-473 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Structure description top

Coumarins are known to be biologically versatile compounds possessing several biological properties. Numerous research reports have indicated the coumarin nucleus as a potential candidate for development of anti-inflammatory (Shivashankar et al., 2008a,b; Bansal et al., 2013), antibacterial (Shivashankar et al., 2008b), antifungal (Shivashankar et al., 2009), anti-cancer (Jacquot et al., 2007) and anti-HIV (Bhavsar et al., 2011) agents. In light of such facts, we report in this study the synthesis and crystal structure of the title compound.

The 2H-chromene moiety is essentially planar with an r.m.s. deviation of the nine constituent atoms from the mean plane of 0.0093 Å. The dihedral angle between this plane and that of the pendant phenyl ring is 76.84 (3)°. The conformation of the hydrazide side-chain is partially determined by an intramolecular N1—H1N···O2 hydrogen bond (Fig. 1 and Table 1). The packing is assisted by intermolecular N2—H2N···O2i (i: x - 1, y, z) and N1—H1N···N2ii (ii: -x + 1, -y + 1, -z) hydrogen bonds (Fig. 2 and Table 1).

For synthesis and bio-activity of coumarin scaffold compounds, see: Shivashankar et al. (2008a,b, 2009); Bansal et al. (2013); Jacquot et al. (2007); Bhavsar et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids. The intramolecular N—H···O hydrogen bond is shown by a dotted line.
[Figure 2] Fig. 2. Packing viewed towards (110) with intermolecular N—H···O and N—H···N hydrogen bonds shown, respectively, as blue and purple dotted lines.
2-Oxo-N'-phenyl-2H-chromene-3-carbohydrazide top
Crystal data top
C16H12N2O3Z = 2
Mr = 280.28F(000) = 292
Triclinic, P1Dx = 1.456 Mg m3
a = 6.6508 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.3906 (3) ÅCell parameters from 3784 reflections
c = 11.6388 (4) Åθ = 3.9–72.2°
α = 96.504 (2)°µ = 0.85 mm1
β = 95.614 (2)°T = 150 K
γ = 94.757 (2)°Tablet, colourless
V = 639.31 (4) Å30.19 × 0.13 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2371 independent reflections
Radiation source: INCOATEC IµS micro–focus source2121 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.9°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 910
Tmin = 0.88, Tmax = 0.96l = 1414
4865 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2371 reflectionsΔρmax = 0.22 e Å3
199 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0129 (16)
Crystal data top
C16H12N2O3γ = 94.757 (2)°
Mr = 280.28V = 639.31 (4) Å3
Triclinic, P1Z = 2
a = 6.6508 (2) ÅCu Kα radiation
b = 8.3906 (3) ŵ = 0.85 mm1
c = 11.6388 (4) ÅT = 150 K
α = 96.504 (2)°0.19 × 0.13 × 0.05 mm
β = 95.614 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
2121 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.96Rint = 0.023
4865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
2371 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05849 (13)0.30993 (11)0.29083 (7)0.0271 (2)
O20.92419 (13)0.42696 (12)0.14651 (7)0.0299 (2)
O30.43044 (13)0.53972 (11)0.33020 (7)0.0292 (2)
N10.52900 (16)0.50161 (13)0.14932 (9)0.0256 (3)
N20.35679 (16)0.56386 (13)0.09797 (9)0.0245 (3)
C10.73626 (18)0.41687 (14)0.31115 (10)0.0220 (3)
C20.74197 (18)0.37498 (14)0.42062 (10)0.0233 (3)
H20.63380.39780.46560.028*
C30.90772 (18)0.29704 (14)0.46963 (10)0.0240 (3)
C40.9195 (2)0.24825 (16)0.58159 (11)0.0275 (3)
H40.81420.26700.62960.033*
C51.0850 (2)0.17297 (16)0.62133 (11)0.0300 (3)
H51.09260.13910.69670.036*
C61.2410 (2)0.14627 (16)0.55202 (11)0.0305 (3)
H61.35500.09600.58120.037*
C71.2321 (2)0.19208 (16)0.44109 (11)0.0295 (3)
H71.33770.17300.39340.035*
C81.06438 (19)0.26654 (15)0.40167 (10)0.0243 (3)
C90.90475 (18)0.38814 (15)0.24263 (10)0.0236 (3)
C100.55367 (18)0.49380 (14)0.26524 (10)0.0229 (3)
C110.35631 (19)0.73381 (15)0.11707 (9)0.0246 (3)
C120.5353 (2)0.83552 (17)0.13527 (11)0.0324 (3)
H120.66260.79160.13900.039*
C130.5280 (2)1.00138 (18)0.14802 (13)0.0401 (4)
H130.65091.07030.16080.048*
C140.3449 (2)1.06733 (18)0.14238 (12)0.0390 (4)
H140.34101.18100.15180.047*
C150.1668 (2)0.96594 (18)0.12283 (12)0.0367 (3)
H150.04001.01060.11850.044*
C160.1711 (2)0.80054 (16)0.10956 (11)0.0300 (3)
H160.04780.73230.09530.036*
H2N0.242 (3)0.5112 (19)0.1179 (14)0.033 (4)*
H1N0.621 (3)0.472 (2)0.1014 (16)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (5)0.0348 (5)0.0226 (4)0.0082 (4)0.0054 (3)0.0060 (4)
O20.0274 (5)0.0422 (6)0.0222 (4)0.0063 (4)0.0070 (3)0.0075 (4)
O30.0284 (5)0.0393 (5)0.0221 (4)0.0101 (4)0.0069 (4)0.0040 (4)
N10.0259 (5)0.0337 (6)0.0194 (5)0.0111 (4)0.0041 (4)0.0048 (4)
N20.0230 (5)0.0297 (6)0.0218 (5)0.0067 (4)0.0027 (4)0.0048 (4)
C10.0234 (6)0.0217 (6)0.0207 (6)0.0020 (4)0.0035 (5)0.0012 (4)
C20.0247 (6)0.0240 (6)0.0210 (6)0.0021 (4)0.0037 (5)0.0012 (4)
C30.0264 (6)0.0227 (6)0.0222 (6)0.0016 (5)0.0014 (5)0.0014 (5)
C40.0308 (7)0.0289 (7)0.0232 (6)0.0030 (5)0.0036 (5)0.0043 (5)
C50.0358 (7)0.0296 (7)0.0243 (6)0.0027 (5)0.0012 (5)0.0065 (5)
C60.0301 (7)0.0295 (7)0.0317 (7)0.0061 (5)0.0029 (5)0.0056 (5)
C70.0274 (7)0.0318 (7)0.0299 (6)0.0068 (5)0.0031 (5)0.0030 (5)
C80.0274 (6)0.0240 (6)0.0211 (6)0.0015 (5)0.0011 (5)0.0029 (4)
C90.0244 (6)0.0246 (6)0.0215 (6)0.0022 (4)0.0020 (5)0.0020 (4)
C100.0250 (6)0.0239 (6)0.0200 (6)0.0026 (4)0.0043 (5)0.0022 (4)
C110.0297 (6)0.0299 (7)0.0156 (5)0.0065 (5)0.0048 (4)0.0038 (4)
C120.0299 (7)0.0364 (8)0.0307 (7)0.0051 (5)0.0025 (5)0.0025 (5)
C130.0423 (8)0.0360 (8)0.0409 (8)0.0017 (6)0.0064 (6)0.0015 (6)
C140.0562 (9)0.0290 (7)0.0345 (7)0.0098 (6)0.0128 (7)0.0044 (5)
C150.0423 (8)0.0398 (8)0.0325 (7)0.0181 (6)0.0097 (6)0.0079 (6)
C160.0292 (7)0.0354 (7)0.0272 (6)0.0086 (5)0.0051 (5)0.0054 (5)
Geometric parameters (Å, º) top
O1—C91.3687 (14)C5—C61.3921 (19)
O1—C81.3774 (14)C5—H50.9500
O2—C91.2158 (15)C6—C71.3854 (18)
O3—C101.2245 (15)C6—H60.9500
N1—C101.3528 (15)C7—C81.3874 (18)
N1—N21.4064 (14)C7—H70.9500
N1—H1N0.896 (18)C11—C121.3899 (19)
N2—C111.4184 (16)C11—C161.3939 (17)
N2—H2N0.911 (17)C12—C131.388 (2)
C1—C21.3573 (16)C12—H120.9500
C1—C91.4581 (17)C13—C141.378 (2)
C1—C101.5027 (16)C13—H130.9500
C2—C31.4315 (17)C14—C151.384 (2)
C2—H20.9500C14—H140.9500
C3—C81.3915 (18)C15—C161.382 (2)
C3—C41.4064 (17)C15—H150.9500
C4—C51.3809 (18)C16—H160.9500
C4—H40.9500
C9—O1—C8122.88 (10)O1—C8—C7116.96 (11)
C10—N1—N2120.49 (10)O1—C8—C3120.67 (11)
C10—N1—H1N123.5 (11)C7—C8—C3122.37 (11)
N2—N1—H1N116.0 (11)O2—C9—O1115.97 (10)
N1—N2—C11115.52 (10)O2—C9—C1126.82 (11)
N1—N2—H2N109.7 (10)O1—C9—C1117.20 (10)
C11—N2—H2N112.6 (10)O3—C10—N1122.64 (11)
C2—C1—C9119.98 (11)O3—C10—C1120.63 (11)
C2—C1—C10117.83 (11)N1—C10—C1116.64 (10)
C9—C1—C10122.18 (10)C12—C11—C16119.18 (12)
C1—C2—C3121.33 (11)C12—C11—N2121.77 (11)
C1—C2—H2119.3C16—C11—N2118.90 (12)
C3—C2—H2119.3C13—C12—C11119.95 (13)
C8—C3—C4118.47 (11)C13—C12—H12120.0
C8—C3—C2117.82 (11)C11—C12—H12120.0
C4—C3—C2123.71 (11)C14—C13—C12120.85 (14)
C5—C4—C3119.62 (12)C14—C13—H13119.6
C5—C4—H4120.2C12—C13—H13119.6
C3—C4—H4120.2C13—C14—C15119.14 (13)
C4—C5—C6120.62 (12)C13—C14—H14120.4
C4—C5—H5119.7C15—C14—H14120.4
C6—C5—H5119.7C16—C15—C14120.81 (13)
C7—C6—C5120.82 (12)C16—C15—H15119.6
C7—C6—H6119.6C14—C15—H15119.6
C5—C6—H6119.6C15—C16—C11120.04 (13)
C6—C7—C8118.10 (12)C15—C16—H16120.0
C6—C7—H7121.0C11—C16—H16120.0
C8—C7—H7121.0
C10—N1—N2—C1174.99 (14)C2—C1—C9—O2175.93 (12)
C9—C1—C2—C32.32 (18)C10—C1—C9—O23.5 (2)
C10—C1—C2—C3178.22 (10)C2—C1—C9—O13.79 (17)
C1—C2—C3—C80.51 (18)C10—C1—C9—O1176.78 (10)
C1—C2—C3—C4178.72 (11)N2—N1—C10—O30.14 (19)
C8—C3—C4—C50.41 (19)N2—N1—C10—C1176.63 (10)
C2—C3—C4—C5179.64 (12)C2—C1—C10—O311.13 (18)
C3—C4—C5—C60.6 (2)C9—C1—C10—O3168.32 (11)
C4—C5—C6—C71.1 (2)C2—C1—C10—N1165.71 (11)
C5—C6—C7—C80.6 (2)C9—C1—C10—N114.85 (17)
C9—O1—C8—C7178.13 (11)N1—N2—C11—C1228.34 (15)
C9—O1—C8—C31.88 (18)N1—N2—C11—C16156.03 (11)
C6—C7—C8—O1179.58 (11)C16—C11—C12—C131.27 (19)
C6—C7—C8—C30.4 (2)N2—C11—C12—C13176.89 (11)
C4—C3—C8—O1179.08 (11)C11—C12—C13—C140.3 (2)
C2—C3—C8—O10.19 (18)C12—C13—C14—C150.5 (2)
C4—C3—C8—C70.91 (19)C13—C14—C15—C160.3 (2)
C2—C3—C8—C7179.82 (11)C14—C15—C16—C110.7 (2)
C8—O1—C9—O2176.16 (10)C12—C11—C16—C151.48 (18)
C8—O1—C9—C13.59 (17)N2—C11—C16—C15177.22 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.896 (18)2.327 (18)3.0498 (14)137.7 (15)
N1—H1N···O20.896 (18)2.112 (18)2.7544 (13)127.8 (15)
N2—H2N···O2ii0.911 (17)2.243 (17)3.1358 (14)166.3 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.896 (18)2.327 (18)3.0498 (14)137.7 (15)
N1—H1N···O20.896 (18)2.112 (18)2.7544 (13)127.8 (15)
N2—H2N···O2ii0.911 (17)2.243 (17)3.1358 (14)166.3 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060.  Web of Science CrossRef CAS Google Scholar
First citationBhavsar, D., Trivedi, J., Parekh, S., Savant, M., Thakrar, S., Bavishi, A., Radadiya, A., Vala, H., Lunagariya, J., Parmar, M., Paresh, L., Loddo, R. & Shah, A. (2011). Bioorg. Med. Chem. Lett. 21, 3443–3446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJacquot, Y., Laïos, I., Cleeren, A., Nonclercq, D., Bermont, L., Refouvelet, B., Boubekeur, K., Xicluna, A., Leclercq, G. & Laurent, G. (2007). Bioorg. Med. Chem. 15, 2269–2282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShivashankar, K., Shastri, L. A., Kulkarni, M. V., Rasal, V. P. & Rajendra, S. V. (2008a). Phosphorus Sulfur Silicon Relat. Elem. 183, 56–68.  Web of Science CrossRef CAS Google Scholar
First citationShivashankar, K., Shastri, L. A., Kulkarni, M. V., Rasal, V. P. & Saindane, D. M. (2008b). J. Indian Chem. Soc. 85, 1163–1168.  CAS Google Scholar
First citationShivashankar, K., Shastri, L. A., Kulkarni, M. V. & Saindane, D. M. (2009). J. Indian Chem. Soc. 86, 265–271.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds