organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,4-di­meth­­oxy­phenol

aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 20 November 2015; accepted 29 November 2015; online 6 December 2015)

The title compound, C8H10O3, has two planar mol­ecules in the asymmetric unit possessing mean deviations from planarity of 0.051 and 0.071 Å. In the crystal, there are two distinct infinite chains, both along [010]. The chains are formed by O—H⋯O inter­actions between the phenol and both the 3-meth­oxy and the 4-meth­oxy groups.

1. Related literature

For the crystal structure of the related 4-[(2,3-di­methyl­but-3-en-2-yl)­oxy]-3-meth­oxy­phenol, see: Yamamoto et al. (2014[Yamamoto, H., Ohkubo, K., Akimoto, S., Fukuzumi, S. & Tsuda, A. (2014). Org. Biomol. Chem. 12, 7004-7017.]). For the crystal structure of 3,4,5-tri­meth­oxy­phenol, see: Jia et al. (2012[Jia, X.-C., Li, J., Yu, Z.-R., Zhang, H. & Zhou, L. (2012). Acta Cryst. E68, o3160.]). For background and crystal structures solved during the study, see: McDonald et al. (2015[McDonald, K. J., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o406.]); Nguyen et al. (2015[Nguyen, D. M., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o533.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H10O3

  • Mr = 154.16

  • Orthorhombic, P b c a

  • a = 8.7477 (4) Å

  • b = 13.8218 (7) Å

  • c = 26.6422 (13) Å

  • V = 3221.3 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.5 × 0.4 × 0.4 mm

2.2. Data collection

  • Bruker Venture D8 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.746

  • 29914 measured reflections

  • 3996 independent reflections

  • 3360 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 3996 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (1) 2.25 (1) 2.9663 (12) 141 (2)
O1—H1⋯O3i 0.86 (1) 2.13 (1) 2.8834 (13) 145 (2)
O4—H4⋯O5i 0.86 (1) 2.15 (2) 2.8384 (13) 137 (2)
O4—H4⋯O6i 0.86 (1) 2.37 (1) 3.1107 (14) 145 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In a continuing collaborative study of the solid state structure of aromatic alcohols between UMass Dartmouth and Massasoit Community College (McDonald et al., 2015; Nguyen et al., 2015), we report herein the structure of 3,4-di­meth­oxy­phenol. A similar 3,4-di­alk­oxy­phenol complex has been structurally characterized (Yamamoto et al., 2014) and demonstrates tip-to-tail hydrogen bonding with the 4-alk­oxy group. The structure of the tris­ubstituted 3,4,5-tri­meth­oxy­phenol demonstrates a similar inter­action, with just the 4-meth­oxy group involved in hydrogen bonding (Jia et al., 2012). In contrast, the title compound exhibits hydrogen bonding chains with inter­actions involving the meth­oxy groups at both the 3 and 4 positions.

The molecular structure of the title compound is shown in Figure 1 .There are two molecules in the asymmetric unit, with non-hydrogen atoms possessing mean deviations from the plane of 0.051 Å and 0.071 Å. There are two distinct hydrogen bonding chains which both propagate along [010]. One is formed by O1–H1···O2 and O1–H1···O3 inter­actions, and the other by O4–H4···O5 and O4–H4···O6 inter­actions. The packing of the title compound indicating hydrogen bonding is shown in Figure 2.

Experimental top

A commercial sample (Aldrich) was used for crystallization. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of a methyl­ene chloride solution.

Refinement top

All non-hydrogen atoms were refined anisotropically (Olex2) by full matrix least squares on F2. Hydrogen atoms H1 and H4 were found from a Fourier difference map, and refined with a fixed distance of 0.86 (0.005) Å and isotropic displacement parameters of 1.50 times Ueq of the parent O atoms. The remaining hydrogen atoms were placed in calculated positions and then refined with a riding model with C–H lengths of 0.95 Å (sp2) and 0.98 Å (sp3) with isotropic displacement parameters set to 1.20 (sp2) and 1.50 (sp3) times Ueq of the parent C atom.

Related literature top

For the crystal structure of the related 4-[(2,3-dimethylbut-3-en-2-yl)oxy]-3-methoxyphenol, see: Yamamoto et al. (2014). For the crystal structure of 3,4,5-trimethoxyphenol, see: Jia et al. (2012). For background and crystal structures solved during the study, see: McDonald et al. (2015); Nguyen et al. (2015).

Structure description top

In a continuing collaborative study of the solid state structure of aromatic alcohols between UMass Dartmouth and Massasoit Community College (McDonald et al., 2015; Nguyen et al., 2015), we report herein the structure of 3,4-di­meth­oxy­phenol. A similar 3,4-di­alk­oxy­phenol complex has been structurally characterized (Yamamoto et al., 2014) and demonstrates tip-to-tail hydrogen bonding with the 4-alk­oxy group. The structure of the tris­ubstituted 3,4,5-tri­meth­oxy­phenol demonstrates a similar inter­action, with just the 4-meth­oxy group involved in hydrogen bonding (Jia et al., 2012). In contrast, the title compound exhibits hydrogen bonding chains with inter­actions involving the meth­oxy groups at both the 3 and 4 positions.

The molecular structure of the title compound is shown in Figure 1 .There are two molecules in the asymmetric unit, with non-hydrogen atoms possessing mean deviations from the plane of 0.051 Å and 0.071 Å. There are two distinct hydrogen bonding chains which both propagate along [010]. One is formed by O1–H1···O2 and O1–H1···O3 inter­actions, and the other by O4–H4···O5 and O4–H4···O6 inter­actions. The packing of the title compound indicating hydrogen bonding is shown in Figure 2.

A commercial sample (Aldrich) was used for crystallization. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of a methyl­ene chloride solution.

For the crystal structure of the related 4-[(2,3-dimethylbut-3-en-2-yl)oxy]-3-methoxyphenol, see: Yamamoto et al. (2014). For the crystal structure of 3,4,5-trimethoxyphenol, see: Jia et al. (2012). For background and crystal structures solved during the study, see: McDonald et al. (2015); Nguyen et al. (2015).

Refinement details top

All non-hydrogen atoms were refined anisotropically (Olex2) by full matrix least squares on F2. Hydrogen atoms H1 and H4 were found from a Fourier difference map, and refined with a fixed distance of 0.86 (0.005) Å and isotropic displacement parameters of 1.50 times Ueq of the parent O atoms. The remaining hydrogen atoms were placed in calculated positions and then refined with a riding model with C–H lengths of 0.95 Å (sp2) and 0.98 Å (sp3) with isotropic displacement parameters set to 1.20 (sp2) and 1.50 (sp3) times Ueq of the parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3,4-Dimethoxyphenol top
Crystal data top
C8H10O3F(000) = 1312
Mr = 154.16Dx = 1.271 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9890 reflections
a = 8.7477 (4) Åθ = 3.0–28.3°
b = 13.8218 (7) ŵ = 0.10 mm1
c = 26.6422 (13) ÅT = 120 K
V = 3221.3 (3) Å3Block, brown
Z = 160.5 × 0.4 × 0.4 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
3996 independent reflections
Radiation source: Mo3360 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.032
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1110
Tmin = 0.700, Tmax = 0.746k = 1818
29914 measured reflectionsl = 3534
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.1413P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3996 reflectionsΔρmax = 0.25 e Å3
205 parametersΔρmin = 0.25 e Å3
Crystal data top
C8H10O3V = 3221.3 (3) Å3
Mr = 154.16Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 8.7477 (4) ŵ = 0.10 mm1
b = 13.8218 (7) ÅT = 120 K
c = 26.6422 (13) Å0.5 × 0.4 × 0.4 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
3996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3360 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.746Rint = 0.032
29914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3996 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0791 before and 0.0531 after correction. The Ratio of minimum to maximum transmission is 0.9391. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31642 (12)0.55792 (6)0.46341 (4)0.0364 (2)
H10.2656 (18)0.6010 (10)0.4472 (6)0.055*
O20.41171 (10)0.21648 (5)0.45901 (3)0.0274 (2)
O30.23732 (11)0.19341 (6)0.38304 (3)0.0322 (2)
C10.29128 (13)0.46989 (8)0.44100 (4)0.0244 (2)
C20.36772 (12)0.39078 (7)0.46188 (4)0.0215 (2)
H20.43370.39940.48990.026*
C30.34642 (12)0.29982 (7)0.44142 (4)0.0198 (2)
C40.25063 (13)0.28729 (8)0.39961 (4)0.0224 (2)
C50.17669 (14)0.36617 (8)0.37932 (4)0.0267 (2)
H50.11230.35790.35090.032*
C60.19567 (14)0.45826 (8)0.40017 (5)0.0280 (3)
H60.14330.51230.38640.034*
C70.49570 (17)0.22270 (9)0.50473 (5)0.0374 (3)
H7A0.53650.15880.51330.056*
H7B0.58030.26850.50060.056*
H7C0.42800.24510.53170.056*
C80.1208 (2)0.17531 (11)0.34658 (6)0.0538 (5)
H8A0.12140.10660.33750.081*
H8B0.02090.19240.36070.081*
H8C0.14020.21450.31660.081*
O40.27270 (14)0.84893 (7)0.72098 (4)0.0463 (3)
H40.319 (2)0.8911 (12)0.7029 (7)0.069*
O50.06921 (10)0.52789 (6)0.71498 (3)0.0313 (2)
O60.20065 (12)0.49211 (7)0.63132 (3)0.0370 (2)
C90.26184 (15)0.76288 (9)0.69618 (5)0.0313 (3)
C100.17021 (14)0.69220 (9)0.71881 (5)0.0288 (3)
H100.11980.70550.74960.035*
C110.15354 (13)0.60291 (8)0.69608 (4)0.0250 (2)
C120.22572 (14)0.58329 (9)0.65010 (4)0.0278 (3)
C130.31638 (15)0.65389 (10)0.62848 (5)0.0337 (3)
H130.36600.64110.59750.040*
C140.33589 (15)0.74365 (10)0.65161 (5)0.0346 (3)
H140.39980.79120.63670.042*
C150.01260 (18)0.53863 (10)0.76497 (5)0.0403 (3)
H15A0.04560.48080.77440.060*
H15B0.09860.54690.78810.060*
H15C0.05400.59550.76670.060*
C160.2624 (2)0.47148 (13)0.58306 (6)0.0560 (5)
H16A0.23740.40480.57370.084*
H16B0.21870.51610.55830.084*
H16C0.37370.47940.58390.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (6)0.0169 (4)0.0450 (5)0.0030 (4)0.0158 (4)0.0031 (4)
O20.0317 (4)0.0177 (4)0.0326 (4)0.0028 (3)0.0104 (3)0.0003 (3)
O30.0436 (5)0.0208 (4)0.0322 (4)0.0027 (4)0.0134 (4)0.0036 (3)
C10.0267 (5)0.0170 (5)0.0295 (6)0.0015 (4)0.0012 (4)0.0002 (4)
C20.0210 (5)0.0201 (5)0.0234 (5)0.0016 (4)0.0024 (4)0.0003 (4)
C30.0189 (5)0.0179 (5)0.0227 (5)0.0003 (4)0.0007 (4)0.0030 (4)
C40.0248 (5)0.0195 (5)0.0229 (5)0.0038 (4)0.0008 (4)0.0002 (4)
C50.0282 (6)0.0260 (5)0.0260 (5)0.0040 (5)0.0078 (4)0.0042 (4)
C60.0292 (6)0.0212 (5)0.0337 (6)0.0008 (4)0.0067 (5)0.0070 (4)
C70.0450 (7)0.0256 (6)0.0416 (7)0.0050 (5)0.0209 (6)0.0027 (5)
C80.0796 (12)0.0334 (7)0.0484 (9)0.0055 (8)0.0363 (8)0.0082 (6)
O40.0618 (7)0.0258 (5)0.0513 (6)0.0033 (5)0.0108 (5)0.0018 (4)
O50.0317 (4)0.0287 (4)0.0335 (5)0.0021 (3)0.0081 (4)0.0079 (3)
O60.0491 (6)0.0340 (5)0.0279 (4)0.0052 (4)0.0066 (4)0.0012 (4)
C90.0318 (6)0.0236 (5)0.0385 (6)0.0032 (5)0.0006 (5)0.0063 (5)
C100.0289 (6)0.0269 (6)0.0306 (6)0.0062 (5)0.0052 (5)0.0065 (4)
C110.0207 (5)0.0261 (5)0.0283 (6)0.0021 (4)0.0008 (4)0.0097 (4)
C120.0277 (6)0.0288 (6)0.0269 (6)0.0013 (5)0.0000 (4)0.0056 (5)
C130.0346 (7)0.0366 (6)0.0300 (6)0.0012 (5)0.0094 (5)0.0081 (5)
C140.0313 (6)0.0311 (6)0.0413 (7)0.0012 (5)0.0077 (5)0.0124 (5)
C150.0448 (8)0.0339 (6)0.0421 (7)0.0050 (6)0.0214 (6)0.0106 (6)
C160.0853 (13)0.0480 (9)0.0348 (7)0.0094 (9)0.0195 (8)0.0073 (7)
Geometric parameters (Å, º) top
O1—H10.859 (5)O4—H40.860 (5)
O1—C11.3731 (13)O4—C91.3638 (16)
O2—C31.3684 (12)O5—C111.3686 (14)
O2—C71.4251 (14)O5—C151.4285 (15)
O3—C41.3754 (13)O6—C121.3735 (15)
O3—C81.4302 (16)O6—C161.4236 (17)
C1—C21.3971 (15)C9—C101.4002 (17)
C1—C61.3816 (16)C9—C141.3786 (18)
C2—H20.9500C10—H100.9500
C2—C31.3829 (14)C10—C111.3824 (17)
C3—C41.4048 (15)C11—C121.4045 (16)
C4—C51.3781 (16)C12—C131.3831 (17)
C5—H50.9500C13—H130.9500
C5—C61.3986 (16)C13—C141.3957 (19)
C6—H60.9500C14—H140.9500
C7—H7A0.9800C15—H15A0.9800
C7—H7B0.9800C15—H15B0.9800
C7—H7C0.9800C15—H15C0.9800
C8—H8A0.9800C16—H16A0.9800
C8—H8B0.9800C16—H16B0.9800
C8—H8C0.9800C16—H16C0.9800
C1—O1—H1108.2 (13)C9—O4—H4110.7 (14)
C3—O2—C7117.19 (9)C11—O5—C15116.82 (10)
C4—O3—C8116.31 (10)C12—O6—C16116.88 (11)
O1—C1—C2116.34 (10)O4—C9—C10116.09 (11)
O1—C1—C6122.85 (10)O4—C9—C14123.55 (12)
C6—C1—C2120.81 (10)C14—C9—C10120.35 (12)
C1—C2—H2120.3C9—C10—H10120.2
C3—C2—C1119.35 (10)C11—C10—C9119.65 (11)
C3—C2—H2120.3C11—C10—H10120.2
O2—C3—C2125.04 (9)O5—C11—C10124.89 (11)
O2—C3—C4114.63 (9)O5—C11—C12114.65 (10)
C2—C3—C4120.33 (9)C10—C11—C12120.47 (11)
O3—C4—C3114.92 (9)O6—C12—C11115.02 (10)
O3—C4—C5125.51 (10)O6—C12—C13125.96 (11)
C5—C4—C3119.56 (10)C13—C12—C11119.00 (11)
C4—C5—H5119.7C12—C13—H13119.6
C4—C5—C6120.57 (10)C12—C13—C14120.89 (12)
C6—C5—H5119.7C14—C13—H13119.6
C1—C6—C5119.37 (10)C9—C14—C13119.62 (11)
C1—C6—H6120.3C9—C14—H14120.2
C5—C6—H6120.3C13—C14—H14120.2
O2—C7—H7A109.5O5—C15—H15A109.5
O2—C7—H7B109.5O5—C15—H15B109.5
O2—C7—H7C109.5O5—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15B109.5
H7A—C7—H7C109.5H15A—C15—H15C109.5
H7B—C7—H7C109.5H15B—C15—H15C109.5
O3—C8—H8A109.5O6—C16—H16A109.5
O3—C8—H8B109.5O6—C16—H16B109.5
O3—C8—H8C109.5O6—C16—H16C109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
O1—C1—C2—C3179.40 (10)O4—C9—C10—C11179.88 (11)
O1—C1—C6—C5179.69 (11)O4—C9—C14—C13179.08 (12)
O2—C3—C4—O30.15 (14)O5—C11—C12—O60.06 (15)
O2—C3—C4—C5178.86 (10)O5—C11—C12—C13178.59 (11)
O3—C4—C5—C6178.24 (11)O6—C12—C13—C14178.68 (12)
C1—C2—C3—O2178.48 (10)C9—C10—C11—O5178.92 (11)
C1—C2—C3—C40.94 (16)C9—C10—C11—C121.08 (17)
C2—C1—C6—C50.61 (18)C10—C9—C14—C131.42 (19)
C2—C3—C4—O3179.33 (10)C10—C11—C12—O6179.94 (11)
C2—C3—C4—C50.62 (16)C10—C11—C12—C131.41 (17)
C3—C4—C5—C60.32 (18)C11—C12—C13—C140.32 (19)
C4—C5—C6—C10.93 (18)C12—C13—C14—C91.1 (2)
C6—C1—C2—C30.32 (17)C14—C9—C10—C110.34 (19)
C7—O2—C3—C26.52 (16)C15—O5—C11—C109.16 (17)
C7—O2—C3—C4172.93 (11)C15—O5—C11—C12170.84 (11)
C8—O3—C4—C3169.24 (12)C16—O6—C12—C11175.56 (13)
C8—O3—C4—C59.38 (18)C16—O6—C12—C136.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (1)2.25 (1)2.9663 (12)141 (2)
O1—H1···O3i0.86 (1)2.13 (1)2.8834 (13)145 (2)
O4—H4···O5i0.86 (1)2.15 (2)2.8384 (13)137 (2)
O4—H4···O6i0.86 (1)2.37 (1)3.1107 (14)145 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.859 (5)2.248 (12)2.9663 (12)141.1 (16)
O1—H1···O3i0.859 (5)2.134 (11)2.8834 (13)145.4 (16)
O4—H4···O5i0.860 (5)2.151 (15)2.8384 (13)136.6 (18)
O4—H4···O6i0.860 (5)2.369 (13)3.1107 (14)144.7 (18)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJia, X.-C., Li, J., Yu, Z.-R., Zhang, H. & Zhou, L. (2012). Acta Cryst. E68, o3160.  CSD CrossRef IUCr Journals Google Scholar
First citationMcDonald, K. J., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o406.  CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, D. M., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o533.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, H., Ohkubo, K., Akimoto, S., Fukuzumi, S. & Tsuda, A. (2014). Org. Biomol. Chem. 12, 7004–7017.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds