research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[(1S,2S)-2-amino­cyclo­hex­yl]-2,4,6-tri­methyl­benzene­sulfonamide

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 7 October 2015; accepted 17 November 2015; online 21 November 2015)

The title compound, C15H24N2O2S, was synthesized via a substitution reaction between the enanti­opure (1S,2S)-(+)-1,2-di­amino­cyclo­hexane and 2,4,6-tri­methyl­benzene-1-sulfonyl chloride. The cyclo­hexyl and phenyl substituents are oriented gauche around the sulfonamide S—N bond. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains propagating along [100].

1. Chemical context

Many sulfonamides have been reported as anti­cancer, anti-inflammatory, and anti­viral agents (Navia, 2000[Navia, M. A. (2000). Science, 288, 2132-2133.]; Yan et al., 2006[Yan, L., Bertarelli, D. C., Hayallah, A. M., Meyer, H., Klotz, K. N. & Müller, C. E. (2006). J. Med. Chem. 49, 4384-4391.]; Palakurthy & Mandal, 2011[Palakurthy, N. B. & Mandal, B. (2011). Tetrahedron Lett. 52, 7132-7134.]). The use of sulfonamides as catalysts in asymmetric synthesis has also been reported (Lao et al., 2009[Lao, J., Zhang, X., Wang, J., Li, X., Yan, M. & Luo, H. (2009). Tetrahedron Asymmetry, 20, 2818-2822.]; Feng et al., 2010[Feng, Y., Xiaomin, S., Zhichao, J., Shiganag, W., Xinmiao, L. & Jinxing, Y. (2010). Chem Commun. pp. 4589-4590.]; Jin et al., 2010[Jin, W., Li, X., Huang, Y., Wu, F. & Wan, B. (2010). Chem. Eur. J. 16, 8259-8261.]). Through explicit hydrogen-bonding inter­actions with specific functional groups, the electrophilicity and stereoselectivity of a given substrate is enhanced.

Conjugate addition reactions of aldehydes and ketones to nitro­alkenes, catalyzed by chiral primary amines, have been reported (Huang & Jacobsen, 2006[Huang, H. & Jacobsen, E. N. (2006). J. Am. Chem. Soc. 128, 7170-7171.]; Rabalakos & Wulff, 2008[Rabalakos, C. & Wulff, W. D. (2008). J. Am. Chem. Soc. 130, 13524-13525.]; Lao et al., 2009[Lao, J., Zhang, X., Wang, J., Li, X., Yan, M. & Luo, H. (2009). Tetrahedron Asymmetry, 20, 2818-2822.]; Sun et al., 2012[Sun, Z. W., Peng, F. Z., Li, Z. Q., Zou, L. W., Zhang, S. X., Li, X. & Shao, Z. H. (2012). J. Org. Chem. 77, 4103-4110.]; Zhou et al., 2014[Zhou, Z., Feng, X., Yin, X. & Chen, Y. C. (2014). Org. Lett. 16, 2370-2373.]; Ruiz-Olalla et al., 2015[Ruiz-Olalla, A., Retamosa, M. de G. & Cossío, F. P. (2015). J. Org. Chem. 80, 5588-5599.]; Yang et al., 2015[Yang, D., Li, D., Wang, L., Zhao, D. & Wang, R. (2015). J. Org. Chem. 80, 4336-4348.]). The catalytic activity of chiral primary amine organocatalysts with particular emphasis on the role of the N—H acidity and hydrogen bonding has also been investigated (Lao et al., 2009[Lao, J., Zhang, X., Wang, J., Li, X., Yan, M. & Luo, H. (2009). Tetrahedron Asymmetry, 20, 2818-2822.]). Although the N—H acidity and hydrogen-bonding modes could have an effect on the catalytic activity of the organocatalysts, the nature of the substrate and reaction conditions could be more important. Asymmetric conjugate addition reactions of aldehydes to nitro­alkenes have also been reported as a convenient synthesis of γ-amino acids (Horne & Gellman, 2008[Horne, W. S. & Gellman, S. H. (2008). Acc. Chem. Res. 41, 1399-1408.]; Wiesner et al., 2008[Wiesner, M., Revell, J. D., Tonazzi, S. & Wennemers, H. (2008). J. Am. Chem. Soc. 130, 5610-5611.]; Chi et al., 2008[Chi, Y., Guo, L., Kopf, N. A. & Gellman, S. H. (2008). J. Am. Chem. Soc. 130, 5608-5609.]).

[Scheme 1]

In line with our research inter­est in the synthesis of heterogeneous foldamers (Hayen et al., 2004[Hayen, A., Schmitt, M. N., Ngassa, F. N., Thomasson, K. A. & Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505-510.]), we synthesized the title compound as a chiral organocatalyst for conjugate addition. This conjugate addition was then applied for the synthesis of γ-amino acids, which have been shown to be inter­esting foldamer building blocks (Horne & Gellman, 2008[Horne, W. S. & Gellman, S. H. (2008). Acc. Chem. Res. 41, 1399-1408.]). Therefore, as the title compound is of inter­est in our ongoing effort on foldamer design and synthesis, we report here on the synthesis and crystal structure of this chiral sulfonamide.

2. Structural commentary

The asymmetric part of the unit cell is shown in Fig. 1[link] along with the atom-numbering scheme. The absolute stereochemistry of this chiral sulfonamide was confirmed by a Flack parameter of 0.00 (2) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The cyclo­hexyl (C1–C6) and benzene (C7–C12) substituents are oriented gauche around the sulfonamide S—N bond, with a C1—N1—S1—C7 torsion angle of 70.4 (2)°. A weak intra­molecular inter­action is present between the amine H2A atom and the sp2-hybridized sulfonamide N1 atom (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.89 (3) 2.43 (3) 2.877 (3) 111 (2)
N1—H1⋯N2i 0.79 (3) 2.14 (3) 2.921 (3) 170 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric part of the unit cell along with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. An intra­molecular N—H⋯N inter­action is shown with a blue dashed line. Only N—H hydrogens are shown for clarity.

As described in the Database survey section below, the structure of a racemic crystal of this compound has been reported (FAVHEP; Balsells, et al., 1998[Balsells, J., Mejorado, L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Asymmetry, 9, 4135-4142.]). In this crystal, there are two crystallographically unique mol­ecules of the sulfonamide compound in the asymmetric unit. Here, the cyclo­hexyl and benzene substituents are oriented gauche around the S—N bond with torsion angles of 86.8 (8) and 69.1 (7)°. While we expected that there would be an intra­molecular hydrogen bond in this crystal, in the model deposited in the CSD there are no intra­molecular hydrogen bonds present between the amine N—H group and the sulfonamide N atom.

3. Supra­molecular features

Mol­ecules of the title compound are held together in the solid state by inter­molecular hydrogen-bonding inter­actions between the donor sulfonamide N1—H1 and the acceptor amine N2 atoms (Table 1[link] and Fig. 2[link]). These hydrogen bonds arrange mol­ecules into supra­molecular chains that are oriented along the [100] axis (Fig. 2[link]). Weaker N2—H2B⋯O1(1 + x, y, z) inter­actions with an H2B⋯O1(1 + x, y, z) distance of 2.72 Å between the donor amine N2—H2B and the acceptor sulfonamide O1 atoms can also be noticed within this chain.

[Figure 2]
Figure 2
Intra- and inter­molecular hydrogen-bonding inter­actions present in the crystal. Hydrogen bonds are drawn as blue dashed lines. Only N—H hydrogens are shown for clarity. [Symmetry code: (i) x − [{1\over 2}], −y + [{3\over 2}], −z + 1.]

As for the racemic crystal FAVHEP, in the model deposited in the CSD there is one inter­molecular hydrogen bond present between a donor sulfonamide N1—H1 and a nearby amine acceptor N atom [D⋯H = 0.860 (7) Å; H⋯A = 2.160 (8) Å; DA = 3.011 (8) Å; D—H⋯A = 169.9 (5)°].

4. Database survey

The Cambridge Structural Database (CSD, Version 5.36, May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains 35 sulfonamides bearing a mesitylene group on the S atom. Of these, there are four structures where the substituent bonded to the sulfonamide N atom is an aliphatic six-membered ring. In structures RAWMAF (Hou et al., 2012[Hou, W., Zheng, B., Chen, J. & Peng, Y. (2012). Org. Lett. 14, 2378-2381.]) and ZIQPAS (Wu et al., 2014[Wu, L., Wang, Y., Song, H., Tang, L., Zhou, Z. & Tang, C. (2014). ChemCatChem, 6, 649-654.]), the amino­cyclo­hexane substituent is part of a larger fused-ring system. Inter­estingly, there are two structures with 1,2-di­amino­cyclo­hexane rings as the amide substituent. In structure OTOPAP (Schwarz et al., 2010[Schwarz, A. D., Herbert, K. R., Paniagua, C. & Mountford, P. (2010). Organometallics, 29, 4171-4188.]), both amines of the trans-1,2-di­amino­cyclo­hexane ring are bonded to a mesitylsulfonamide group. Structure FAVHEP (Balsells et al., 1998[Balsells, J., Mejorado, L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Asymmetry, 9, 4135-4142.]) is the same as the title compound, but is present as a racemic mixture that crystallized in the space group P[\overline{1}].

5. Synthesis and crystallization

To a stirred solution of (1S,2S)-(+)-1,2-di­amino­cyclo­hexane (0.77 g, 6.74 mmol) in 5 ml of CH2Cl2 at 273 K was added a solution of 2,4,6-tri­methyl­benzene-1-sulfonyl chloride (0.44 g, 2.01 mmol) in 5 ml CH2Cl2. After the addition was complete (20 min), the mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was washed with H2O (3 × 25 ml) and the aqueous layer was back-extracted with CH2Cl2 (20 ml). The combined organic extracts were dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was purified by column chromatography over silica gel (CH2Cl2/EtOAc 1:1 v/v) to afford a pale-yellow–white solid (yield: 0.46 g, 78%). Part of the purified product was redissolved in CH2Cl2 and after slow evaporation for several days, white large chunky crystals (stained yellow) were formed that were suitable for analysis by X-ray diffraction (m.p. 406–407 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of all non-polar H atoms were calculated geometrically and refined to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for methine, methyl­ene and aryl groups, and Uiso(H) = 1.5Ueq(C) for methyl groups. H atoms bonded directly to N atoms (H1, H2A and H2B) were located in difference-Fourier maps and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C15H24N2O2S
Mr 296.42
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 6.5215 (4), 10.0202 (6), 23.3660 (15)
V3) 1526.89 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.37 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.706, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 25587, 2799, 2667
Rint 0.034
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.06
No. of reflections 2799
No. of parameters 196
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Flack parameter x determined using 1098 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (2)
Computer programs: APEX2 ad SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. Crystal Maker Software, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

N-[(1S,2S)-2-Aminocyclohexyl]-2,4,6-trimethylbenzenesulfonamide top
Crystal data top
C15H24N2O2SDx = 1.289 Mg m3
Mr = 296.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9968 reflections
a = 6.5215 (4) Åθ = 2.2–25.3°
b = 10.0202 (6) ŵ = 0.22 mm1
c = 23.3660 (15) ÅT = 173 K
V = 1526.89 (16) Å3Block, colourless
Z = 40.37 × 0.20 × 0.15 mm
F(000) = 640
Data collection top
Bruker APEXII CCD
diffractometer
2799 independent reflections
Radiation source: sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8 pixels mm-1θmax = 25.4°, θmin = 1.7°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1212
Tmin = 0.706, Tmax = 0.745l = 2828
25587 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.5049P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.19 e Å3
2799 reflectionsΔρmin = 0.21 e Å3
196 parametersAbsolute structure: Flack parameter x determined using 1098 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39425 (9)0.81200 (6)0.62892 (2)0.03018 (16)
O10.2464 (3)0.72704 (19)0.65596 (8)0.0412 (4)
O20.3238 (3)0.93797 (17)0.60697 (8)0.0408 (5)
N10.5015 (3)0.7361 (2)0.57616 (9)0.0297 (5)
N20.9140 (3)0.6769 (2)0.54061 (8)0.0287 (4)
C10.5776 (3)0.5984 (2)0.58084 (9)0.0238 (5)
H1A0.64250.58720.61930.029*
C20.7442 (3)0.5816 (2)0.53502 (9)0.0234 (5)
H20.67800.59860.49710.028*
C30.8271 (3)0.4398 (2)0.53360 (10)0.0273 (5)
H3A0.90520.42250.56920.033*
H3B0.92280.43060.50090.033*
C40.6574 (4)0.3363 (2)0.52793 (10)0.0308 (5)
H4A0.71740.24570.53000.037*
H4B0.59020.34600.49020.037*
C50.4980 (4)0.3528 (2)0.57518 (11)0.0314 (5)
H5A0.38640.28710.56960.038*
H5B0.56240.33530.61280.038*
C60.4094 (4)0.4934 (2)0.57442 (10)0.0300 (5)
H6A0.30950.50310.60610.036*
H6B0.33560.50800.53790.036*
C70.5988 (4)0.8413 (2)0.67770 (9)0.0252 (5)
C80.7523 (4)0.9336 (2)0.66163 (9)0.0270 (5)
C90.9071 (4)0.9619 (2)0.69984 (10)0.0321 (5)
H91.01191.02250.68870.039*
C100.9154 (4)0.9054 (2)0.75383 (10)0.0340 (6)
C110.7662 (4)0.8131 (3)0.76822 (10)0.0346 (5)
H110.77240.77230.80490.042*
C120.6078 (4)0.7775 (2)0.73148 (9)0.0291 (5)
C130.7568 (5)1.0087 (2)0.60541 (10)0.0384 (6)
H13A0.70840.95020.57460.058*
H13B0.89741.03730.59720.058*
H13C0.66751.08710.60800.058*
C141.0799 (5)0.9459 (3)0.79566 (13)0.0532 (8)
H14A1.21170.95230.77570.080*
H14B1.08970.87890.82610.080*
H14C1.04521.03270.81240.080*
C150.4607 (5)0.6726 (3)0.75300 (12)0.0440 (7)
H15A0.32360.71160.75690.066*
H15B0.50710.63990.79030.066*
H15C0.45590.59830.72580.066*
H2A0.864 (5)0.754 (3)0.5537 (12)0.047 (8)*
H10.484 (5)0.768 (3)0.5458 (13)0.040 (8)*
H2B1.003 (5)0.645 (3)0.5683 (13)0.045 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (3)0.0327 (3)0.0307 (3)0.0072 (3)0.0005 (3)0.0065 (2)
O10.0275 (8)0.0496 (11)0.0465 (10)0.0037 (8)0.0092 (8)0.0111 (8)
O20.0427 (10)0.0387 (10)0.0410 (10)0.0196 (8)0.0057 (8)0.0067 (8)
N10.0371 (11)0.0293 (11)0.0228 (10)0.0109 (9)0.0014 (9)0.0010 (9)
N20.0283 (10)0.0250 (10)0.0329 (10)0.0021 (9)0.0002 (9)0.0004 (9)
C10.0239 (11)0.0250 (11)0.0225 (10)0.0044 (9)0.0012 (9)0.0009 (9)
C20.0228 (10)0.0238 (11)0.0236 (10)0.0009 (9)0.0001 (9)0.0016 (9)
C30.0261 (11)0.0259 (12)0.0300 (12)0.0053 (10)0.0036 (9)0.0003 (9)
C40.0357 (13)0.0241 (11)0.0326 (12)0.0008 (10)0.0001 (10)0.0010 (9)
C50.0315 (13)0.0313 (13)0.0315 (12)0.0059 (10)0.0014 (10)0.0010 (10)
C60.0229 (11)0.0359 (12)0.0312 (11)0.0006 (11)0.0032 (11)0.0033 (10)
C70.0278 (11)0.0242 (10)0.0235 (10)0.0038 (10)0.0040 (10)0.0040 (8)
C80.0327 (12)0.0217 (11)0.0267 (11)0.0030 (10)0.0081 (10)0.0020 (9)
C90.0291 (12)0.0290 (12)0.0382 (13)0.0015 (11)0.0069 (12)0.0045 (10)
C100.0319 (13)0.0361 (13)0.0340 (13)0.0076 (11)0.0008 (11)0.0102 (10)
C110.0465 (14)0.0342 (12)0.0232 (11)0.0075 (13)0.0014 (11)0.0010 (10)
C120.0367 (12)0.0247 (11)0.0259 (11)0.0018 (11)0.0062 (11)0.0010 (9)
C130.0536 (16)0.0285 (12)0.0331 (13)0.0021 (12)0.0098 (13)0.0058 (11)
C140.0455 (18)0.0629 (19)0.0512 (17)0.0037 (16)0.0124 (16)0.0140 (15)
C150.0569 (18)0.0351 (14)0.0401 (14)0.0079 (13)0.0094 (13)0.0066 (12)
Geometric parameters (Å, º) top
S1—O11.4330 (19)C6—H6A0.9900
S1—O21.4379 (18)C6—H6B0.9900
S1—N11.609 (2)C7—C81.414 (3)
S1—C71.779 (2)C7—C121.411 (3)
N1—C11.470 (3)C8—C91.377 (3)
N1—H10.79 (3)C8—C131.514 (3)
N2—C21.469 (3)C9—H90.9500
N2—H2A0.89 (3)C9—C101.384 (3)
N2—H2B0.93 (3)C10—C111.384 (4)
C1—H1A1.0000C10—C141.507 (4)
C1—C21.535 (3)C11—H110.9500
C1—C61.527 (3)C11—C121.390 (4)
C2—H21.0000C12—C151.509 (3)
C2—C31.521 (3)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C3—C41.522 (3)C14—H14A0.9800
C4—H4A0.9900C14—H14B0.9800
C4—H4B0.9900C14—H14C0.9800
C4—C51.525 (3)C15—H15A0.9800
C5—H5A0.9900C15—H15B0.9800
C5—H5B0.9900C15—H15C0.9800
C5—C61.523 (3)
O1—S1—O2117.62 (12)C1—C6—H6A109.4
O1—S1—N1110.46 (11)C1—C6—H6B109.4
O1—S1—C7108.68 (11)C5—C6—C1111.33 (19)
O2—S1—N1106.31 (11)C5—C6—H6A109.4
O2—S1—C7108.86 (11)C5—C6—H6B109.4
N1—S1—C7104.06 (11)H6A—C6—H6B108.0
S1—N1—H1116 (2)C8—C7—S1117.96 (16)
C1—N1—S1122.24 (17)C12—C7—S1121.78 (19)
C1—N1—H1120 (2)C12—C7—C8120.2 (2)
C2—N2—H2A108 (2)C7—C8—C13124.7 (2)
C2—N2—H2B108.1 (18)C9—C8—C7118.8 (2)
H2A—N2—H2B107 (3)C9—C8—C13116.5 (2)
N1—C1—H1A108.4C8—C9—H9118.8
N1—C1—C2106.87 (18)C8—C9—C10122.4 (2)
N1—C1—C6113.39 (19)C10—C9—H9118.8
C2—C1—H1A108.4C9—C10—C14120.6 (3)
C6—C1—H1A108.4C11—C10—C9117.9 (2)
C6—C1—C2111.36 (17)C11—C10—C14121.5 (2)
N2—C2—C1113.59 (18)C10—C11—H11118.5
N2—C2—H2107.1C10—C11—C12123.0 (2)
N2—C2—C3109.98 (18)C12—C11—H11118.5
C1—C2—H2107.1C7—C12—C15125.9 (2)
C3—C2—C1111.70 (18)C11—C12—C7117.7 (2)
C3—C2—H2107.1C11—C12—C15116.5 (2)
C2—C3—H3A109.1C8—C13—H13A109.5
C2—C3—H3B109.1C8—C13—H13B109.5
C2—C3—C4112.32 (19)C8—C13—H13C109.5
H3A—C3—H3B107.9H13A—C13—H13B109.5
C4—C3—H3A109.1H13A—C13—H13C109.5
C4—C3—H3B109.1H13B—C13—H13C109.5
C3—C4—H4A109.4C10—C14—H14A109.5
C3—C4—H4B109.4C10—C14—H14B109.5
C3—C4—C5111.02 (19)C10—C14—H14C109.5
H4A—C4—H4B108.0H14A—C14—H14B109.5
C5—C4—H4A109.4H14A—C14—H14C109.5
C5—C4—H4B109.4H14B—C14—H14C109.5
C4—C5—H5A109.5C12—C15—H15A109.5
C4—C5—H5B109.5C12—C15—H15B109.5
H5A—C5—H5B108.1C12—C15—H15C109.5
C6—C5—C4110.51 (19)H15A—C15—H15B109.5
C6—C5—H5A109.5H15A—C15—H15C109.5
C6—C5—H5B109.5H15B—C15—H15C109.5
S1—N1—C1—C2156.04 (17)C2—C1—C6—C555.2 (2)
S1—N1—C1—C680.9 (2)C2—C3—C4—C555.0 (3)
S1—C7—C8—C9177.22 (17)C3—C4—C5—C656.8 (3)
S1—C7—C8—C130.7 (3)C4—C5—C6—C157.3 (3)
S1—C7—C12—C11175.90 (18)C6—C1—C2—N2177.74 (19)
S1—C7—C12—C154.4 (3)C6—C1—C2—C352.6 (2)
O1—S1—N1—C146.1 (2)C7—S1—N1—C170.4 (2)
O1—S1—C7—C8173.93 (17)C7—C8—C9—C101.4 (3)
O1—S1—C7—C124.7 (2)C8—C7—C12—C112.7 (3)
O2—S1—N1—C1174.73 (18)C8—C7—C12—C15177.0 (2)
O2—S1—C7—C844.7 (2)C8—C9—C10—C112.8 (4)
O2—S1—C7—C12133.97 (19)C8—C9—C10—C14176.1 (2)
N1—S1—C7—C868.36 (19)C9—C10—C11—C121.4 (4)
N1—S1—C7—C12112.99 (19)C10—C11—C12—C71.3 (4)
N1—C1—C2—N257.9 (2)C10—C11—C12—C15178.4 (2)
N1—C1—C2—C3176.97 (18)C12—C7—C8—C91.5 (3)
N1—C1—C6—C5175.8 (2)C12—C7—C8—C13179.4 (2)
N2—C2—C3—C4179.90 (18)C13—C8—C9—C10176.7 (2)
C1—C2—C3—C452.8 (3)C14—C10—C11—C12177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.89 (3)2.43 (3)2.877 (3)111 (2)
N1—H1···N2i0.79 (3)2.14 (3)2.921 (3)170 (3)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 FT–NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

References

First citationBalsells, J., Mejorado, L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Asymmetry, 9, 4135–4142.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y., Guo, L., Kopf, N. A. & Gellman, S. H. (2008). J. Am. Chem. Soc. 130, 5608–5609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Y., Xiaomin, S., Zhichao, J., Shiganag, W., Xinmiao, L. & Jinxing, Y. (2010). Chem Commun. pp. 4589–4590.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHayen, A., Schmitt, M. N., Ngassa, F. N., Thomasson, K. A. & Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505–510.  Web of Science CrossRef CAS Google Scholar
First citationHorne, W. S. & Gellman, S. H. (2008). Acc. Chem. Res. 41, 1399–1408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHou, W., Zheng, B., Chen, J. & Peng, Y. (2012). Org. Lett. 14, 2378–2381.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuang, H. & Jacobsen, E. N. (2006). J. Am. Chem. Soc. 128, 7170–7171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, W., Li, X., Huang, Y., Wu, F. & Wan, B. (2010). Chem. Eur. J. 16, 8259–8261.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLao, J., Zhang, X., Wang, J., Li, X., Yan, M. & Luo, H. (2009). Tetrahedron Asymmetry, 20, 2818–2822.  Web of Science CrossRef CAS Google Scholar
First citationNavia, M. A. (2000). Science, 288, 2132–2133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalakurthy, N. B. & Mandal, B. (2011). Tetrahedron Lett. 52, 7132–7134.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. Crystal Maker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRabalakos, C. & Wulff, W. D. (2008). J. Am. Chem. Soc. 130, 13524–13525.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuiz-Olalla, A., Retamosa, M. de G. & Cossío, F. P. (2015). J. Org. Chem. 80, 5588–5599.  Web of Science CAS PubMed Google Scholar
First citationSchwarz, A. D., Herbert, K. R., Paniagua, C. & Mountford, P. (2010). Organometallics, 29, 4171–4188.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Z. W., Peng, F. Z., Li, Z. Q., Zou, L. W., Zhang, S. X., Li, X. & Shao, Z. H. (2012). J. Org. Chem. 77, 4103–4110.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWiesner, M., Revell, J. D., Tonazzi, S. & Wennemers, H. (2008). J. Am. Chem. Soc. 130, 5610–5611.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, L., Wang, Y., Song, H., Tang, L., Zhou, Z. & Tang, C. (2014). ChemCatChem, 6, 649–654.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, L., Bertarelli, D. C., Hayallah, A. M., Meyer, H., Klotz, K. N. & Müller, C. E. (2006). J. Med. Chem. 49, 4384–4391.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, D., Li, D., Wang, L., Zhao, D. & Wang, R. (2015). J. Org. Chem. 80, 4336–4348.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, Z., Feng, X., Yin, X. & Chen, Y. C. (2014). Org. Lett. 16, 2370–2373.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds