organic compounds
of ethyl 5-[3-(dimethylamino)acryloyl]-2-{[(dimethylamino)methylidene]amino}-4-methylthiophene-3-carboxylate
aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com
In the title compound, C16H23N3O3S, the dihedral angles between the thiophene ring and the almost planar dimethylamino-methyleneamino (r.m.s. deviation = 0.005 Å) and dimethylamino-acryloyl (r.m.s. deviation = 0.033 Å) substituents are 6.99 (8) and 6.69 (7)°, respectively. The ester CO2 group subtends a dihedral angle of 44.92 (18)° with the thiophene ring. An intramolecular C—H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(14) loops. In addition, a weak C—H⋯π interaction is observed.
CCDC reference: 1430038
1. Related literature
For the biological activitivity of thiophene derivatives, see: Rizwan et al. (2014); Mishra et al. (2011); Sabnis et al. (1999). Mabkhot et al. (2013). For synthetic background, see: Gewald et al. (1966).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1430038
https://doi.org/10.1107/S2056989015018885/hb7489sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015018885/hb7489Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015018885/hb7489Isup3.cml
A mixture of ethyl 5-acetyl-2-amino-4-methyl-thiophene-3-carboxylate (10 mmol) and DMF—DMA (5 ml) was heated under reflux for 2 h. To this add ethanol and kept in room temperature to give a solid product (title compound) that was collected by filtration. The compound was recrystallized by slow evaporation from ethanol, yielding colourless blocks.
The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.96° A, 0.97 ° A and 0.93 ° A for methyl, methylene and methyne H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.
Sulfur containing heterocycles are seen as the center of activity due to their widespread use in several important medicinal compounds. However, it is seen that the success of thiophene as an important moiety of medicinal agents led to the introduction of new therapeutic drugs. Substituted thiophene derivatives are well known for their chemotherapeutic applications (Mabkhot et al., 2013; Mishra et al., 2011). Many thiophene based
have shown versatile pharmacological activities such as antimicrobial, antiamoebic, antiparasitic, anticancer, diabetes mellitus, analgesic, antidepressant and antiallergic. In addition, the cholesterol inhibition activity and as antagonist against many hormones releasing receptors has also been reported (Rizwan et al., 2014). 2-Aminothiophenes attract special attention because of their applications in pharmaceuticals, agriculture, pesticides and dyes (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966). Herein, we report the structure of the title compound (I).For the biological activitivity of thiophene derivatives, see: Rizwan et al. (2014); Mishra et al. (2011); Sabnis et al. (1999). Mabkhot et al. (2013). For synthetic background, see: Gewald et al. (1966).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Unit cell packing of the title compound showing intermolecular C—H···O interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded. | |
Fig. 3. Unit-cell packing depicting the intermolecular C—H···π interactions with dotted lines. |
C16H23N3O3S | Z = 2 |
Mr = 337.43 | F(000) = 360 |
Triclinic, P1 | Dx = 1.320 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6954 (5) Å | Cell parameters from 2991 reflections |
b = 8.1799 (5) Å | θ = 2.5–25.0° |
c = 13.9626 (9) Å | µ = 0.21 mm−1 |
α = 95.928 (2)° | T = 100 K |
β = 103.685 (2)° | Block, colorless |
γ = 90.137 (2)° | 0.17 × 0.16 × 0.15 mm |
V = 849.07 (9) Å3 |
Bruker SMART APEX CCD diffractometer | 2991 independent reflections |
Radiation source: fine-focus sealed tube | 2646 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −9→8 |
Tmin = 0.963, Tmax = 0.967 | k = −9→9 |
5876 measured reflections | l = −11→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3093P] where P = (Fo2 + 2Fc2)/3 |
2991 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C16H23N3O3S | γ = 90.137 (2)° |
Mr = 337.43 | V = 849.07 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6954 (5) Å | Mo Kα radiation |
b = 8.1799 (5) Å | µ = 0.21 mm−1 |
c = 13.9626 (9) Å | T = 100 K |
α = 95.928 (2)° | 0.17 × 0.16 × 0.15 mm |
β = 103.685 (2)° |
Bruker SMART APEX CCD diffractometer | 2991 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2646 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.967 | Rint = 0.016 |
5876 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.27 e Å−3 |
2991 reflections | Δρmin = −0.19 e Å−3 |
214 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.02778 (5) | 0.86621 (4) | 0.39020 (3) | 0.01529 (13) | |
O1 | −0.26349 (16) | 0.82247 (14) | 0.03518 (8) | 0.0269 (3) | |
O2 | −0.15686 (14) | 1.07646 (13) | 0.09662 (7) | 0.0181 (3) | |
O3 | −0.41534 (15) | 0.62783 (15) | 0.39383 (8) | 0.0255 (3) | |
N1 | 0.15977 (16) | 1.01180 (15) | 0.25146 (9) | 0.0150 (3) | |
N2 | 0.44236 (16) | 1.13376 (16) | 0.31336 (9) | 0.0172 (3) | |
N3 | −0.10460 (16) | 0.56379 (15) | 0.67393 (9) | 0.0162 (3) | |
C1 | 0.2971 (2) | 1.05575 (18) | 0.32371 (11) | 0.0157 (3) | |
H1 | 0.2938 | 1.0306 | 0.3882 | 0.019* | |
C2 | 0.0200 (2) | 0.93094 (17) | 0.27440 (11) | 0.0140 (3) | |
C3 | −0.14156 (19) | 0.88099 (18) | 0.20962 (11) | 0.0142 (3) | |
C4 | −0.2563 (2) | 0.78787 (18) | 0.25248 (11) | 0.0147 (3) | |
C5 | −0.18389 (19) | 0.77234 (18) | 0.35108 (11) | 0.0147 (3) | |
C6 | 0.4627 (2) | 1.1762 (2) | 0.21829 (12) | 0.0213 (4) | |
H6A | 0.5572 | 1.1107 | 0.1983 | 0.032* | |
H6B | 0.4950 | 1.2934 | 0.2238 | 0.032* | |
H6C | 0.3497 | 1.1533 | 0.1685 | 0.032* | |
C7 | 0.5897 (2) | 1.1801 (2) | 0.39906 (12) | 0.0242 (4) | |
H7A | 0.5567 | 1.1532 | 0.4593 | 0.036* | |
H7B | 0.6153 | 1.2986 | 0.4042 | 0.036* | |
H7C | 0.6963 | 1.1198 | 0.3913 | 0.036* | |
C8 | −0.19266 (19) | 0.91884 (19) | 0.10487 (11) | 0.0164 (3) | |
C9 | −0.2086 (2) | 1.1249 (2) | −0.00331 (11) | 0.0221 (4) | |
H9A | −0.3396 | 1.1106 | −0.0295 | 0.027* | |
H9B | −0.1485 | 1.0563 | −0.0478 | 0.027* | |
C10 | −0.1529 (3) | 1.3026 (2) | 0.00224 (13) | 0.0306 (4) | |
H10A | −0.2159 | 1.3696 | 0.0449 | 0.046* | |
H10B | −0.1830 | 1.3384 | −0.0644 | 0.046* | |
H10C | −0.0236 | 1.3155 | 0.0299 | 0.046* | |
C11 | −0.4355 (2) | 0.7165 (2) | 0.19573 (12) | 0.0197 (3) | |
H11A | −0.4507 | 0.6055 | 0.2135 | 0.030* | |
H11B | −0.4428 | 0.7115 | 0.1245 | 0.030* | |
H11C | −0.5302 | 0.7860 | 0.2122 | 0.030* | |
C12 | −0.2594 (2) | 0.68572 (18) | 0.42080 (11) | 0.0158 (3) | |
C13 | −0.1447 (2) | 0.67102 (18) | 0.51655 (11) | 0.0160 (3) | |
H13 | −0.0280 | 0.7203 | 0.5334 | 0.019* | |
C14 | −0.2011 (2) | 0.58678 (18) | 0.58402 (11) | 0.0154 (3) | |
H14 | −0.3192 | 0.5408 | 0.5650 | 0.018* | |
C15 | 0.0778 (2) | 0.62890 (19) | 0.70973 (11) | 0.0186 (3) | |
H15A | 0.1460 | 0.5980 | 0.6599 | 0.028* | |
H15B | 0.1339 | 0.5836 | 0.7716 | 0.028* | |
H15C | 0.0765 | 0.7490 | 0.7218 | 0.028* | |
C16 | −0.1802 (2) | 0.48165 (19) | 0.74298 (11) | 0.0195 (3) | |
H16A | −0.1883 | 0.5607 | 0.7994 | 0.029* | |
H16B | −0.1032 | 0.3918 | 0.7667 | 0.029* | |
H16C | −0.3000 | 0.4372 | 0.7094 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0142 (2) | 0.0190 (2) | 0.0122 (2) | −0.00330 (14) | 0.00129 (14) | 0.00392 (14) |
O1 | 0.0338 (7) | 0.0294 (7) | 0.0144 (6) | −0.0129 (5) | 0.0000 (5) | 0.0008 (5) |
O2 | 0.0211 (6) | 0.0210 (6) | 0.0116 (5) | −0.0003 (4) | 0.0010 (4) | 0.0065 (4) |
O3 | 0.0176 (6) | 0.0392 (7) | 0.0192 (6) | −0.0092 (5) | 0.0004 (5) | 0.0112 (5) |
N1 | 0.0134 (6) | 0.0177 (7) | 0.0143 (6) | −0.0007 (5) | 0.0030 (5) | 0.0040 (5) |
N2 | 0.0133 (6) | 0.0213 (7) | 0.0166 (7) | −0.0028 (5) | 0.0021 (5) | 0.0031 (5) |
N3 | 0.0149 (7) | 0.0177 (7) | 0.0160 (7) | −0.0015 (5) | 0.0027 (5) | 0.0044 (5) |
C1 | 0.0156 (8) | 0.0169 (8) | 0.0156 (8) | 0.0006 (6) | 0.0046 (6) | 0.0037 (6) |
C2 | 0.0157 (7) | 0.0131 (7) | 0.0136 (7) | 0.0021 (6) | 0.0038 (6) | 0.0024 (6) |
C3 | 0.0143 (7) | 0.0140 (7) | 0.0141 (8) | 0.0007 (6) | 0.0027 (6) | 0.0025 (6) |
C4 | 0.0149 (7) | 0.0133 (7) | 0.0161 (8) | 0.0012 (6) | 0.0033 (6) | 0.0031 (6) |
C5 | 0.0129 (7) | 0.0144 (7) | 0.0160 (8) | 0.0000 (6) | 0.0015 (6) | 0.0018 (6) |
C6 | 0.0198 (8) | 0.0243 (8) | 0.0216 (8) | −0.0025 (7) | 0.0073 (7) | 0.0051 (7) |
C7 | 0.0169 (8) | 0.0336 (9) | 0.0199 (9) | −0.0066 (7) | 0.0000 (7) | 0.0031 (7) |
C8 | 0.0121 (7) | 0.0214 (8) | 0.0163 (8) | 0.0001 (6) | 0.0038 (6) | 0.0042 (6) |
C9 | 0.0219 (8) | 0.0314 (9) | 0.0119 (8) | −0.0030 (7) | −0.0011 (6) | 0.0094 (7) |
C10 | 0.0370 (10) | 0.0328 (10) | 0.0211 (9) | −0.0046 (8) | 0.0008 (8) | 0.0128 (7) |
C11 | 0.0158 (8) | 0.0253 (8) | 0.0177 (8) | −0.0034 (6) | 0.0009 (6) | 0.0076 (6) |
C12 | 0.0161 (8) | 0.0147 (8) | 0.0172 (8) | 0.0002 (6) | 0.0050 (6) | 0.0022 (6) |
C13 | 0.0145 (8) | 0.0169 (8) | 0.0163 (8) | −0.0027 (6) | 0.0024 (6) | 0.0033 (6) |
C14 | 0.0151 (7) | 0.0145 (7) | 0.0158 (8) | 0.0001 (6) | 0.0024 (6) | 0.0013 (6) |
C15 | 0.0164 (8) | 0.0215 (8) | 0.0164 (8) | −0.0016 (6) | −0.0001 (6) | 0.0043 (6) |
C16 | 0.0206 (8) | 0.0229 (8) | 0.0163 (8) | −0.0007 (6) | 0.0049 (6) | 0.0070 (6) |
S1—C5 | 1.7401 (15) | C6—H6C | 0.9800 |
S1—C2 | 1.7405 (15) | C7—H7A | 0.9800 |
O1—C8 | 1.2058 (19) | C7—H7B | 0.9800 |
O2—C8 | 1.3399 (19) | C7—H7C | 0.9800 |
O2—C9 | 1.4541 (18) | C9—C10 | 1.503 (2) |
O3—C12 | 1.2458 (19) | C9—H9A | 0.9900 |
N1—C1 | 1.2973 (19) | C9—H9B | 0.9900 |
N1—C2 | 1.3785 (19) | C10—H10A | 0.9800 |
N2—C1 | 1.330 (2) | C10—H10B | 0.9800 |
N2—C6 | 1.449 (2) | C10—H10C | 0.9800 |
N2—C7 | 1.4574 (19) | C11—H11A | 0.9800 |
N3—C14 | 1.3308 (19) | C11—H11B | 0.9800 |
N3—C15 | 1.4538 (19) | C11—H11C | 0.9800 |
N3—C16 | 1.4547 (19) | C12—C13 | 1.434 (2) |
C1—H1 | 0.9500 | C13—C14 | 1.370 (2) |
C2—C3 | 1.386 (2) | C13—H13 | 0.9500 |
C3—C4 | 1.435 (2) | C14—H14 | 0.9500 |
C3—C8 | 1.487 (2) | C15—H15A | 0.9800 |
C4—C5 | 1.377 (2) | C15—H15B | 0.9800 |
C4—C11 | 1.502 (2) | C15—H15C | 0.9800 |
C5—C12 | 1.482 (2) | C16—H16A | 0.9800 |
C6—H6A | 0.9800 | C16—H16B | 0.9800 |
C6—H6B | 0.9800 | C16—H16C | 0.9800 |
C5—S1—C2 | 92.90 (7) | O2—C9—C10 | 107.39 (13) |
C8—O2—C9 | 115.32 (12) | O2—C9—H9A | 110.2 |
C1—N1—C2 | 117.13 (13) | C10—C9—H9A | 110.2 |
C1—N2—C6 | 122.52 (13) | O2—C9—H9B | 110.2 |
C1—N2—C7 | 120.47 (13) | C10—C9—H9B | 110.2 |
C6—N2—C7 | 117.01 (13) | H9A—C9—H9B | 108.5 |
C14—N3—C15 | 121.29 (12) | C9—C10—H10A | 109.5 |
C14—N3—C16 | 121.63 (13) | C9—C10—H10B | 109.5 |
C15—N3—C16 | 116.97 (12) | H10A—C10—H10B | 109.5 |
N1—C1—N2 | 124.23 (14) | C9—C10—H10C | 109.5 |
N1—C1—H1 | 117.9 | H10A—C10—H10C | 109.5 |
N2—C1—H1 | 117.9 | H10B—C10—H10C | 109.5 |
N1—C2—C3 | 126.29 (13) | C4—C11—H11A | 109.5 |
N1—C2—S1 | 123.88 (11) | C4—C11—H11B | 109.5 |
C3—C2—S1 | 109.75 (11) | H11A—C11—H11B | 109.5 |
C2—C3—C4 | 113.91 (13) | C4—C11—H11C | 109.5 |
C2—C3—C8 | 123.54 (13) | H11A—C11—H11C | 109.5 |
C4—C3—C8 | 122.55 (13) | H11B—C11—H11C | 109.5 |
C5—C4—C3 | 112.46 (13) | O3—C12—C13 | 123.52 (14) |
C5—C4—C11 | 124.08 (14) | O3—C12—C5 | 119.47 (13) |
C3—C4—C11 | 123.46 (13) | C13—C12—C5 | 117.00 (13) |
C4—C5—C12 | 128.92 (14) | C14—C13—C12 | 120.85 (14) |
C4—C5—S1 | 110.95 (11) | C14—C13—H13 | 119.6 |
C12—C5—S1 | 120.09 (11) | C12—C13—H13 | 119.6 |
N2—C6—H6A | 109.5 | N3—C14—C13 | 125.64 (14) |
N2—C6—H6B | 109.5 | N3—C14—H14 | 117.2 |
H6A—C6—H6B | 109.5 | C13—C14—H14 | 117.2 |
N2—C6—H6C | 109.5 | N3—C15—H15A | 109.5 |
H6A—C6—H6C | 109.5 | N3—C15—H15B | 109.5 |
H6B—C6—H6C | 109.5 | H15A—C15—H15B | 109.5 |
N2—C7—H7A | 109.5 | N3—C15—H15C | 109.5 |
N2—C7—H7B | 109.5 | H15A—C15—H15C | 109.5 |
H7A—C7—H7B | 109.5 | H15B—C15—H15C | 109.5 |
N2—C7—H7C | 109.5 | N3—C16—H16A | 109.5 |
H7A—C7—H7C | 109.5 | N3—C16—H16B | 109.5 |
H7B—C7—H7C | 109.5 | H16A—C16—H16B | 109.5 |
O1—C8—O2 | 123.15 (14) | N3—C16—H16C | 109.5 |
O1—C8—C3 | 124.90 (14) | H16A—C16—H16C | 109.5 |
O2—C8—C3 | 111.90 (13) | H16B—C16—H16C | 109.5 |
C2—N1—C1—N2 | 179.64 (14) | C2—S1—C5—C4 | 0.96 (12) |
C6—N2—C1—N1 | −0.8 (2) | C2—S1—C5—C12 | 179.02 (12) |
C7—N2—C1—N1 | 179.29 (14) | C9—O2—C8—O1 | −0.3 (2) |
C1—N1—C2—C3 | 176.62 (14) | C9—O2—C8—C3 | −178.01 (12) |
C1—N1—C2—S1 | −7.12 (19) | C2—C3—C8—O1 | 136.70 (17) |
C5—S1—C2—N1 | −176.53 (13) | C4—C3—C8—O1 | −42.9 (2) |
C5—S1—C2—C3 | 0.27 (11) | C2—C3—C8—O2 | −45.7 (2) |
N1—C2—C3—C4 | 175.30 (13) | C4—C3—C8—O2 | 134.66 (14) |
S1—C2—C3—C4 | −1.41 (16) | C8—O2—C9—C10 | −178.30 (13) |
N1—C2—C3—C8 | −4.4 (2) | C4—C5—C12—O3 | −6.8 (2) |
S1—C2—C3—C8 | 178.91 (11) | S1—C5—C12—O3 | 175.57 (12) |
C2—C3—C4—C5 | 2.19 (19) | C4—C5—C12—C13 | 172.14 (15) |
C8—C3—C4—C5 | −178.13 (13) | S1—C5—C12—C13 | −5.54 (19) |
C2—C3—C4—C11 | −178.12 (14) | O3—C12—C13—C14 | 1.6 (2) |
C8—C3—C4—C11 | 1.6 (2) | C5—C12—C13—C14 | −177.21 (13) |
C3—C4—C5—C12 | −179.75 (14) | C15—N3—C14—C13 | −0.2 (2) |
C11—C4—C5—C12 | 0.6 (3) | C16—N3—C14—C13 | 175.89 (14) |
C3—C4—C5—S1 | −1.90 (16) | C12—C13—C14—N3 | 178.91 (14) |
C11—C4—C5—S1 | 178.41 (12) |
Cg is the centroid of the C2/C3/C4/C5/S1 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1 | 0.98 | 2.31 | 3.054 (1) | 132 |
C16—H16C···O3i | 0.98 | 2.35 | 3.310 (2) | 168 |
C16—H16B···Cgii | 0.98 | 2.74 | 3.566 (2) | 142 |
Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
Cg is the centroid of the C2/C3/C4/C5/S1 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1 | 0.98 | 2.31 | 3.054 (1) | 132 |
C16—H16C···O3i | 0.98 | 2.35 | 3.310 (2) | 168 |
C16—H16B···Cgii | 0.98 | 2.74 | 3.566 (2) | 142 |
Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
MSK thanks the University Grants Commission (UGC), India, for a UGC–BSR Meritorious Fellowship and NLP thanks the UGC for a CSIR–NET fellowship.
References
Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gewald, K., Schinke, E. & Böttcher, H. (1966). Chem. Ber. 99, 94–100. CrossRef CAS Web of Science Google Scholar
Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712–5722. Web of Science CrossRef CAS PubMed Google Scholar
Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38–54. CAS Google Scholar
Rizwan, K., Zubair, M., Rasool, N., Ali, S., Zahoor, A. F., Rana, U. A., Khan, S. U., Shahid, M., Zia-Ul-Haq, M. & Jaafar, H. Z. (2014). Chem. Cent. J. 8, 74. Web of Science CrossRef PubMed Google Scholar
Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfur containing heterocycles are seen as the center of activity due to their widespread use in several important medicinal compounds. However, it is seen that the success of thiophene as an important moiety of medicinal agents led to the introduction of new therapeutic drugs. Substituted thiophene derivatives are well known for their chemotherapeutic applications (Mabkhot et al., 2013; Mishra et al., 2011). Many thiophene based heterocyclic compounds have shown versatile pharmacological activities such as antimicrobial, antiamoebic, antiparasitic, anticancer, diabetes mellitus, analgesic, antidepressant and antiallergic. In addition, the cholesterol inhibition activity and as antagonist against many hormones releasing receptors has also been reported (Rizwan et al., 2014). 2-Aminothiophenes attract special attention because of their applications in pharmaceuticals, agriculture, pesticides and dyes (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966). Herein, we report the structure of the title compound (I).