research communications
E,5E)-3,5-bis[4-(diethylazaniumyl)benzylidene]-1-methyl-4-oxopiperidin-1-ium trichloride dihydrate: a potential biophotonic material
of (3aDepartment of Chemistry, University of North Texas, Denton, TX 76203, USA, bCAMCOR Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403-1443, USA, and cDepartment of Biological Sciences, University of North Texas, Denton, TX 76203, USA
*Correspondence e-mail: vladimir.nesterov@unt.edu, shulaev@unt.edu
In the trication of the title hydrated molecular salt, C28H40N3O3+·3Cl−·2H2O, the central heterocyclic ring adopts a sofa conformation, with the exocyclic N—C bond in an equatorial orientation. The dihedral angles between the planar part of this heterocyclic ring and the two almost flat side-chain fragments, which include the aromatic ring and bridging atoms, are 28.8 (1) and 41.1 (1)°. Both diethylazaniumyl substituents have a tetrahedral geometry, while the dihedral angles between the above-mentioned flat part of the aryl fragments and the imaginary planes drawn through atoms C—N—C of the diethylazaniumyl substituents are 86.3 (2) and 80.4 (1)°, respectively. In the crystal, N—H⋯Cl hydrogen bonds link the cations and anions into [100] chains. The chains are cross-linked by numerous C—H⋯O and C—H⋯Cl interactions, generating a three-dimensional network. One of the chloride ions is disordered over two adjacent positions in a 0.895 (4):0.105 (4) ratio.
Keywords: crystal structure; X-ray analysis; piperidinium salt; hydrogen bonding; biophotonic material.
CCDC reference: 1435161
1. Chemical context
In a continuation of our work on the synthesis and structural investigations of non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials (Nesterov et al., 2003, 2007; Nesterov et al., 2011a,b; Sarkisov et al., 2005), we determined the of the title compound. This compound belongs to a group that has shown anticancer activity (Jia et al., 1988; Dimmock et al., 2001). It may also find application as an agent for locating cancer cells with two-photon excited fluorescence and as a potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).
2. Structural commentary
The structure of the trication with chloride anions is illustrated in Fig. 1. There are also two water molecules of crystallization. The central heterocycle adopts a sofa conformation: atom N1 lies −0.732 (3) Å out of the central C5 plane [planar within 0.027 (2) Å]. The dihedral angles between the flat part of the heterocycle (atoms C2, C3, C4, C5, and C6) and the two almost planar fragments that include the phenyl-ring and the bridging atoms are 28.7 (1) and 41.1 (1)° for (C7–C13) and (C18–C24), respectively. Such non-planarity might partly be caused by the presence of short intramolecular contacts H2AB⋯H24A and H6AB⋯H13A with distances 2.18 and 2.14 Å, respectively, which are shorter than the doubled van der Waals radius of the H atom (Rowland & Taylor, 1996). The mutual orientations of both aryl substituents relative to the flat part of the diethylazaniumyl groups (N2, C14, C16 and N3, C25, C27) are almost orthogonal [dihedral angles of 86.3 (2) and 80.4 (1)°, respectively]. This is in contrast to the starting material where such angles are close to zero and the substituents participate in conjugated systems with the respective aromatic rings (Nesterov et al., 2003).
3. Supramolecular features
In the crystal, N—H⋯Cl hydrogen bonds (Table 1) link cations and anions (Fig. 2) into [100] chains. The chains are cross-linked by C—H⋯Cl and C—H⋯O interactions, forming a three-dimensional network. In addition, the existence of short (compared to the sum of the van der Waals radii of the corresponding pairs of atoms; Rowland & Taylor, 1996) intermolecular water-to-water O⋯O and water-to-chloride O⋯Cl contacts presumably correspond to O—H⋯X hydrogen bonds, although the water H atoms could not be located in the present study.
4. Database survey
A search in the Cambridge Structural Database (Groom & Allen, 2014) for structures of piperidone with the amino substituents revealed eight hits with two salt structures of the oxopiperidinium iodide (Jia et al., 1989; Nesterov et al., 2007). Among these, there is a starting compound in which both diethylamino substituents participate in a conjugation with aromatic rings (Nesterov et al., 2003).
5. Synthesis and crystallization
The starting compound (3E,5E)-3,5-bis[4-(diethylamino)benzylidene[−1-methyl-4-piperidone was obtained according to a literature procedure (Nesterov et al., 2003). The relatively stable colorless crystals of the investigated salt were obtained by slow evaporation of the solution of the above piperidone from a mixture of ethanol and hydrochloric acid over several days.
6. Refinement
Crystal data, data collection, and structure . All C-bound H-atoms were placed in idealized positions and allowed to ride on their parent atom: C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH and CH2 and 1.5 for CH3 H atoms. All N-bound H atoms were located using difference Fourier maps, but in the final their distances were constrained at 0.90 Å (DFIX). H atoms of the two water molecules were not localized properly, since they appeared to be disordered over several positions. These H atoms were therefore removed from the but they were still included in the resulting chemical formula. Atom Cl3 is disordered over two positions in a 0.895 (4):0.105 (4) ratio.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1435161
https://doi.org/10.1107/S2056989015020952/hb7503sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020952/hb7503Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020952/hb7503Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C28H40N3O3+·3Cl−·2H2O | Z = 2 |
Mr = 577.01 | F(000) = 616 |
Triclinic, P1 | Dx = 1.290 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0933 (5) Å | Cell parameters from 4567 reflections |
b = 12.0661 (6) Å | θ = 2.5–26.0° |
c = 13.7576 (6) Å | µ = 0.34 mm−1 |
α = 97.759 (1)° | T = 100 K |
β = 110.795 (1)° | Block, colourless |
γ = 102.733 (1)° | 0.18 × 0.12 × 0.10 mm |
V = 1485.46 (12) Å3 |
Bruker APEXII CCD diffractometer | 5787 independent reflections |
Radiation source: fine-focus sealed tube | 5056 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
φ and ω scans | θmax = 26.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.941, Tmax = 0.967 | k = −14→14 |
11768 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.091P)2 + 1.9P] where P = (Fo2 + 2Fc2)/3 |
5787 reflections | (Δ/σ)max = 0.001 |
356 parameters | Δρmax = 1.13 e Å−3 |
3 restraints | Δρmin = −0.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.69912 (7) | 0.36862 (6) | 0.70014 (6) | 0.0379 (2) | |
Cl2 | 1.10763 (7) | 0.16702 (5) | 0.19807 (5) | 0.02863 (18) | |
Cl3 | 0.41255 (10) | 0.74605 (6) | 0.84491 (6) | 0.0319 (3) | 0.895 (4) |
Cl3A | 0.4816 (15) | 0.7207 (9) | 0.8555 (8) | 0.059 (3)* | 0.105 (4) |
O1 | 0.2253 (2) | −0.04179 (15) | 0.41664 (15) | 0.0288 (4) | |
N1 | 0.4116 (2) | 0.26939 (17) | 0.37806 (17) | 0.0229 (4) | |
H1D | 0.3294 (19) | 0.239 (2) | 0.3181 (14) | 0.017 (6)* | |
N2 | 0.8498 (2) | −0.06652 (19) | 0.13943 (17) | 0.0251 (5) | |
H2C | 0.924 (3) | 0.0015 (16) | 0.165 (2) | 0.034 (8)* | |
N3 | 0.1387 (3) | 0.5404 (2) | 0.78810 (19) | 0.0308 (5) | |
H3A | 0.221 (3) | 0.602 (3) | 0.809 (4) | 0.093 (17)* | |
C1 | 0.4892 (4) | 0.3863 (2) | 0.3704 (3) | 0.0365 (7) | |
H1A | 0.4236 | 0.4366 | 0.3621 | 0.055* | |
H1B | 0.5157 | 0.3772 | 0.3084 | 0.055* | |
H1C | 0.5792 | 0.4220 | 0.4356 | 0.055* | |
C2 | 0.3736 (3) | 0.2804 (2) | 0.4734 (2) | 0.0237 (5) | |
H2A | 0.3144 | 0.3362 | 0.4704 | 0.028* | |
H2B | 0.4656 | 0.3114 | 0.5392 | 0.028* | |
C3 | 0.2870 (3) | 0.1637 (2) | 0.47709 (18) | 0.0204 (5) | |
C4 | 0.3029 (3) | 0.0544 (2) | 0.42288 (19) | 0.0213 (5) | |
C5 | 0.4212 (3) | 0.0674 (2) | 0.37980 (18) | 0.0204 (5) | |
C6 | 0.5053 (3) | 0.1887 (2) | 0.3839 (2) | 0.0249 (5) | |
H6A | 0.5953 | 0.2179 | 0.4513 | 0.030* | |
H6B | 0.5368 | 0.1866 | 0.3235 | 0.030* | |
C7 | 0.4468 (3) | −0.0299 (2) | 0.33955 (18) | 0.0204 (5) | |
H7A | 0.3874 | −0.1019 | 0.3414 | 0.024* | |
C8 | 0.5559 (3) | −0.0379 (2) | 0.29304 (19) | 0.0223 (5) | |
C9 | 0.5226 (3) | −0.1372 (2) | 0.2139 (2) | 0.0261 (5) | |
H9A | 0.4346 | −0.1988 | 0.1951 | 0.031* | |
C10 | 0.6172 (3) | −0.1468 (2) | 0.1624 (2) | 0.0299 (6) | |
H10A | 0.5930 | −0.2134 | 0.1070 | 0.036* | |
C11 | 0.7474 (3) | −0.0574 (2) | 0.1932 (2) | 0.0255 (5) | |
C12 | 0.7871 (3) | 0.0384 (2) | 0.2743 (2) | 0.0273 (5) | |
H12A | 0.8786 | 0.0970 | 0.2960 | 0.033* | |
C13 | 0.6914 (3) | 0.0482 (2) | 0.3240 (2) | 0.0274 (5) | |
H13A | 0.7179 | 0.1145 | 0.3803 | 0.033* | |
C14 | 0.9212 (3) | −0.1619 (2) | 0.1686 (2) | 0.0294 (6) | |
H14A | 0.9628 | −0.1503 | 0.2474 | 0.035* | |
H14B | 0.8442 | −0.2384 | 0.1379 | 0.035* | |
C15 | 1.0423 (3) | −0.1647 (3) | 0.1296 (2) | 0.0335 (6) | |
H15A | 1.0940 | −0.2198 | 0.1599 | 0.050* | |
H15B | 1.1127 | −0.0865 | 0.1521 | 0.050* | |
H15C | 0.9992 | −0.1897 | 0.0514 | 0.050* | |
C16 | 0.7779 (3) | −0.0775 (3) | 0.0204 (2) | 0.0314 (6) | |
H16A | 0.6993 | −0.1530 | −0.0129 | 0.038* | |
H16B | 0.8528 | −0.0778 | −0.0104 | 0.038* | |
C17 | 0.7110 (3) | 0.0207 (3) | −0.0065 (2) | 0.0357 (6) | |
H17A | 0.6672 | 0.0103 | −0.0844 | 0.054* | |
H17B | 0.7883 | 0.0957 | 0.0258 | 0.054* | |
H17C | 0.6340 | 0.0196 | 0.0214 | 0.054* | |
C18 | 0.1975 (3) | 0.1549 (2) | 0.53023 (19) | 0.0205 (5) | |
H18A | 0.1401 | 0.0785 | 0.5243 | 0.025* | |
C19 | 0.1804 (3) | 0.2522 (2) | 0.59652 (19) | 0.0203 (5) | |
C20 | 0.0408 (3) | 0.2538 (2) | 0.5932 (2) | 0.0247 (5) | |
H20A | −0.0434 | 0.1902 | 0.5488 | 0.030* | |
C21 | 0.0235 (3) | 0.3478 (3) | 0.6542 (2) | 0.0300 (6) | |
H21A | −0.0719 | 0.3494 | 0.6503 | 0.036* | |
C22 | 0.1474 (3) | 0.4382 (2) | 0.7200 (2) | 0.0285 (6) | |
C23 | 0.2872 (3) | 0.4361 (2) | 0.7293 (2) | 0.0276 (5) | |
H23A | 0.3716 | 0.4972 | 0.7780 | 0.033* | |
C24 | 0.3036 (3) | 0.3444 (2) | 0.6671 (2) | 0.0245 (5) | |
H24A | 0.3998 | 0.3437 | 0.6723 | 0.029* | |
C25 | 0.1258 (3) | 0.5097 (2) | 0.8880 (2) | 0.0312 (6) | |
H25A | 0.1994 | 0.4683 | 0.9191 | 0.037* | |
H25B | 0.0260 | 0.4562 | 0.8689 | 0.037* | |
C26 | 0.1511 (5) | 0.6178 (3) | 0.9711 (3) | 0.0505 (9) | |
H26A | 0.1669 | 0.5976 | 1.0402 | 0.076* | |
H26B | 0.0643 | 0.6469 | 0.9486 | 0.076* | |
H26C | 0.2385 | 0.6784 | 0.9779 | 0.076* | |
C27 | 0.0234 (3) | 0.5949 (2) | 0.7310 (2) | 0.0336 (6) | |
H27A | 0.0316 | 0.6662 | 0.7805 | 0.040* | |
H27B | −0.0757 | 0.5397 | 0.7110 | 0.040* | |
C28 | 0.0356 (4) | 0.6268 (3) | 0.6323 (2) | 0.0416 (7) | |
H28A | −0.0141 | 0.6870 | 0.6145 | 0.062* | |
H28B | −0.0115 | 0.5574 | 0.5728 | 0.062* | |
H28C | 0.1403 | 0.6569 | 0.6451 | 0.062* | |
O1A | 0.5901 (3) | 0.6022 (2) | 0.9885 (3) | 0.0693 (8) | |
O2A | 0.7711 (5) | 0.5914 (3) | 0.8786 (3) | 0.0984 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0277 (3) | 0.0416 (4) | 0.0486 (4) | 0.0113 (3) | 0.0192 (3) | 0.0105 (3) |
Cl2 | 0.0306 (3) | 0.0305 (3) | 0.0273 (3) | 0.0124 (3) | 0.0130 (3) | 0.0049 (2) |
Cl3 | 0.0304 (5) | 0.0243 (4) | 0.0365 (5) | 0.0025 (3) | 0.0142 (3) | −0.0012 (3) |
O1 | 0.0339 (10) | 0.0195 (9) | 0.0368 (10) | 0.0005 (7) | 0.0247 (8) | 0.0012 (7) |
N1 | 0.0286 (11) | 0.0174 (10) | 0.0253 (11) | 0.0029 (8) | 0.0169 (9) | 0.0023 (8) |
N2 | 0.0276 (11) | 0.0259 (11) | 0.0264 (11) | 0.0107 (9) | 0.0140 (9) | 0.0071 (9) |
N3 | 0.0442 (14) | 0.0291 (12) | 0.0295 (12) | 0.0167 (11) | 0.0221 (11) | 0.0090 (10) |
C1 | 0.0512 (18) | 0.0193 (12) | 0.0517 (18) | 0.0051 (12) | 0.0380 (15) | 0.0080 (12) |
C2 | 0.0297 (13) | 0.0205 (11) | 0.0241 (12) | 0.0045 (10) | 0.0174 (10) | 0.0016 (9) |
C3 | 0.0209 (11) | 0.0209 (11) | 0.0190 (11) | 0.0048 (9) | 0.0089 (9) | 0.0033 (9) |
C4 | 0.0226 (11) | 0.0223 (12) | 0.0198 (11) | 0.0040 (9) | 0.0114 (10) | 0.0029 (9) |
C5 | 0.0200 (11) | 0.0221 (11) | 0.0202 (11) | 0.0042 (9) | 0.0109 (9) | 0.0039 (9) |
C6 | 0.0248 (12) | 0.0208 (12) | 0.0336 (13) | 0.0047 (10) | 0.0193 (11) | 0.0020 (10) |
C7 | 0.0213 (11) | 0.0222 (11) | 0.0190 (11) | 0.0061 (9) | 0.0091 (9) | 0.0059 (9) |
C8 | 0.0281 (12) | 0.0247 (12) | 0.0232 (12) | 0.0141 (10) | 0.0146 (10) | 0.0114 (10) |
C9 | 0.0306 (13) | 0.0242 (12) | 0.0304 (13) | 0.0115 (10) | 0.0168 (11) | 0.0094 (10) |
C10 | 0.0390 (15) | 0.0258 (13) | 0.0312 (14) | 0.0159 (11) | 0.0181 (12) | 0.0049 (11) |
C11 | 0.0277 (13) | 0.0311 (13) | 0.0272 (13) | 0.0132 (11) | 0.0160 (11) | 0.0154 (11) |
C12 | 0.0255 (12) | 0.0276 (13) | 0.0340 (14) | 0.0094 (10) | 0.0161 (11) | 0.0090 (11) |
C13 | 0.0268 (13) | 0.0293 (13) | 0.0314 (14) | 0.0112 (11) | 0.0156 (11) | 0.0081 (11) |
C14 | 0.0357 (14) | 0.0277 (13) | 0.0323 (14) | 0.0166 (11) | 0.0163 (12) | 0.0106 (11) |
C15 | 0.0347 (15) | 0.0333 (14) | 0.0391 (15) | 0.0163 (12) | 0.0185 (13) | 0.0077 (12) |
C16 | 0.0291 (13) | 0.0477 (16) | 0.0205 (13) | 0.0132 (12) | 0.0122 (11) | 0.0078 (11) |
C17 | 0.0347 (15) | 0.0444 (16) | 0.0331 (15) | 0.0120 (13) | 0.0170 (12) | 0.0150 (13) |
C18 | 0.0218 (11) | 0.0189 (11) | 0.0215 (11) | 0.0045 (9) | 0.0098 (9) | 0.0052 (9) |
C19 | 0.0261 (12) | 0.0207 (11) | 0.0208 (11) | 0.0081 (9) | 0.0147 (10) | 0.0092 (9) |
C20 | 0.0229 (12) | 0.0305 (13) | 0.0242 (12) | 0.0071 (10) | 0.0131 (10) | 0.0087 (10) |
C21 | 0.0350 (14) | 0.0423 (15) | 0.0314 (14) | 0.0229 (12) | 0.0241 (12) | 0.0185 (12) |
C22 | 0.0463 (16) | 0.0261 (13) | 0.0242 (12) | 0.0179 (12) | 0.0204 (12) | 0.0115 (10) |
C23 | 0.0367 (14) | 0.0238 (12) | 0.0247 (12) | 0.0056 (11) | 0.0170 (11) | 0.0049 (10) |
C24 | 0.0265 (12) | 0.0253 (12) | 0.0240 (12) | 0.0051 (10) | 0.0145 (10) | 0.0050 (10) |
C25 | 0.0481 (16) | 0.0274 (13) | 0.0302 (14) | 0.0151 (12) | 0.0256 (13) | 0.0104 (11) |
C26 | 0.093 (3) | 0.0444 (18) | 0.0347 (16) | 0.0295 (19) | 0.0425 (18) | 0.0120 (14) |
C27 | 0.0432 (16) | 0.0266 (13) | 0.0366 (15) | 0.0180 (12) | 0.0171 (13) | 0.0087 (11) |
C28 | 0.057 (2) | 0.0377 (16) | 0.0338 (16) | 0.0221 (15) | 0.0162 (14) | 0.0130 (13) |
O1A | 0.0472 (14) | 0.0392 (13) | 0.104 (2) | 0.0153 (11) | 0.0153 (15) | −0.0023 (14) |
O2A | 0.142 (4) | 0.075 (2) | 0.076 (2) | 0.027 (2) | 0.044 (2) | 0.0198 (18) |
O1—C4 | 1.221 (3) | C13—H13A | 0.9500 |
N1—C2 | 1.489 (3) | C14—C15 | 1.504 (4) |
N1—C6 | 1.491 (3) | C14—H14A | 0.9900 |
N1—C1 | 1.492 (3) | C14—H14B | 0.9900 |
N1—H1D | 0.895 (10) | C15—H15A | 0.9800 |
N2—C11 | 1.483 (3) | C15—H15B | 0.9800 |
N2—C16 | 1.510 (3) | C15—H15C | 0.9800 |
N2—C14 | 1.513 (3) | C16—C17 | 1.513 (4) |
N2—H2C | 0.907 (10) | C16—H16A | 0.9900 |
N3—C22 | 1.483 (3) | C16—H16B | 0.9900 |
N3—C27 | 1.494 (4) | C17—H17A | 0.9800 |
N3—C25 | 1.512 (3) | C17—H17B | 0.9800 |
N3—H3A | 0.912 (10) | C17—H17C | 0.9800 |
C1—H1A | 0.9800 | C18—C19 | 1.468 (3) |
C1—H1B | 0.9800 | C18—H18A | 0.9500 |
C1—H1C | 0.9800 | C19—C20 | 1.398 (3) |
C2—C3 | 1.503 (3) | C19—C24 | 1.402 (4) |
C2—H2A | 0.9900 | C20—C21 | 1.399 (4) |
C2—H2B | 0.9900 | C20—H20A | 0.9500 |
C3—C18 | 1.345 (3) | C21—C22 | 1.379 (4) |
C3—C4 | 1.495 (3) | C21—H21A | 0.9500 |
C4—C5 | 1.499 (3) | C22—C23 | 1.377 (4) |
C5—C7 | 1.346 (3) | C23—C24 | 1.382 (4) |
C5—C6 | 1.503 (3) | C23—H23A | 0.9500 |
C6—H6A | 0.9900 | C24—H24A | 0.9500 |
C6—H6B | 0.9900 | C25—C26 | 1.521 (4) |
C7—C8 | 1.470 (3) | C25—H25A | 0.9900 |
C7—H7A | 0.9500 | C25—H25B | 0.9900 |
C8—C9 | 1.394 (4) | C26—H26A | 0.9800 |
C8—C13 | 1.404 (4) | C26—H26B | 0.9800 |
C9—C10 | 1.391 (4) | C26—H26C | 0.9800 |
C9—H9A | 0.9500 | C27—C28 | 1.499 (4) |
C10—C11 | 1.388 (4) | C27—H27A | 0.9900 |
C10—H10A | 0.9500 | C27—H27B | 0.9900 |
C11—C12 | 1.367 (4) | C28—H28A | 0.9800 |
C12—C13 | 1.383 (4) | C28—H28B | 0.9800 |
C12—H12A | 0.9500 | C28—H28C | 0.9800 |
C2—N1—C6 | 109.88 (19) | N2—C14—H14A | 108.9 |
C2—N1—C1 | 110.58 (19) | C15—C14—H14B | 108.9 |
C6—N1—C1 | 110.6 (2) | N2—C14—H14B | 108.9 |
C2—N1—H1D | 110.5 (18) | H14A—C14—H14B | 107.7 |
C6—N1—H1D | 107.7 (17) | C14—C15—H15A | 109.5 |
C1—N1—H1D | 107.5 (17) | C14—C15—H15B | 109.5 |
C11—N2—C16 | 112.58 (19) | H15A—C15—H15B | 109.5 |
C11—N2—C14 | 110.55 (19) | C14—C15—H15C | 109.5 |
C16—N2—C14 | 113.6 (2) | H15A—C15—H15C | 109.5 |
C11—N2—H2C | 108 (2) | H15B—C15—H15C | 109.5 |
C16—N2—H2C | 105 (2) | N2—C16—C17 | 112.6 (2) |
C14—N2—H2C | 107 (2) | N2—C16—H16A | 109.1 |
C22—N3—C27 | 114.4 (2) | C17—C16—H16A | 109.1 |
C22—N3—C25 | 110.3 (2) | N2—C16—H16B | 109.1 |
C27—N3—C25 | 112.8 (2) | C17—C16—H16B | 109.1 |
C22—N3—H3A | 112 (3) | H16A—C16—H16B | 107.8 |
C27—N3—H3A | 99 (3) | C16—C17—H17A | 109.5 |
C25—N3—H3A | 108 (3) | C16—C17—H17B | 109.5 |
N1—C1—H1A | 109.5 | H17A—C17—H17B | 109.5 |
N1—C1—H1B | 109.5 | C16—C17—H17C | 109.5 |
H1A—C1—H1B | 109.5 | H17A—C17—H17C | 109.5 |
N1—C1—H1C | 109.5 | H17B—C17—H17C | 109.5 |
H1A—C1—H1C | 109.5 | C3—C18—C19 | 126.0 (2) |
H1B—C1—H1C | 109.5 | C3—C18—H18A | 117.0 |
N1—C2—C3 | 110.49 (19) | C19—C18—H18A | 117.0 |
N1—C2—H2A | 109.6 | C20—C19—C24 | 118.1 (2) |
C3—C2—H2A | 109.6 | C20—C19—C18 | 120.7 (2) |
N1—C2—H2B | 109.6 | C24—C19—C18 | 121.1 (2) |
C3—C2—H2B | 109.6 | C19—C20—C21 | 120.9 (2) |
H2A—C2—H2B | 108.1 | C19—C20—H20A | 119.5 |
C18—C3—C4 | 118.8 (2) | C21—C20—H20A | 119.5 |
C18—C3—C2 | 121.6 (2) | C22—C21—C20 | 118.7 (2) |
C4—C3—C2 | 119.6 (2) | C22—C21—H21A | 120.6 |
O1—C4—C3 | 121.3 (2) | C20—C21—H21A | 120.6 |
O1—C4—C5 | 121.4 (2) | C23—C22—C21 | 121.6 (2) |
C3—C4—C5 | 117.3 (2) | C23—C22—N3 | 116.2 (2) |
C7—C5—C4 | 118.3 (2) | C21—C22—N3 | 122.1 (2) |
C7—C5—C6 | 123.4 (2) | C22—C23—C24 | 119.4 (3) |
C4—C5—C6 | 118.2 (2) | C22—C23—H23A | 120.3 |
N1—C6—C5 | 110.69 (19) | C24—C23—H23A | 120.3 |
N1—C6—H6A | 109.5 | C23—C24—C19 | 121.0 (2) |
C5—C6—H6A | 109.5 | C23—C24—H24A | 119.5 |
N1—C6—H6B | 109.5 | C19—C24—H24A | 119.5 |
C5—C6—H6B | 109.5 | N3—C25—C26 | 111.9 (2) |
H6A—C6—H6B | 108.1 | N3—C25—H25A | 109.2 |
C5—C7—C8 | 127.6 (2) | C26—C25—H25A | 109.2 |
C5—C7—H7A | 116.2 | N3—C25—H25B | 109.2 |
C8—C7—H7A | 116.2 | C26—C25—H25B | 109.2 |
C9—C8—C13 | 118.3 (2) | H25A—C25—H25B | 107.9 |
C9—C8—C7 | 117.8 (2) | C25—C26—H26A | 109.5 |
C13—C8—C7 | 123.8 (2) | C25—C26—H26B | 109.5 |
C10—C9—C8 | 120.6 (2) | H26A—C26—H26B | 109.5 |
C10—C9—H9A | 119.7 | C25—C26—H26C | 109.5 |
C8—C9—H9A | 119.7 | H26A—C26—H26C | 109.5 |
C11—C10—C9 | 118.9 (2) | H26B—C26—H26C | 109.5 |
C11—C10—H10A | 120.6 | N3—C27—C28 | 113.5 (2) |
C9—C10—H10A | 120.6 | N3—C27—H27A | 108.9 |
C12—C11—C10 | 122.0 (2) | C28—C27—H27A | 108.9 |
C12—C11—N2 | 118.4 (2) | N3—C27—H27B | 108.9 |
C10—C11—N2 | 119.6 (2) | C28—C27—H27B | 108.9 |
C11—C12—C13 | 118.7 (2) | H27A—C27—H27B | 107.7 |
C11—C12—H12A | 120.6 | C27—C28—H28A | 109.5 |
C13—C12—H12A | 120.6 | C27—C28—H28B | 109.5 |
C12—C13—C8 | 121.3 (2) | H28A—C28—H28B | 109.5 |
C12—C13—H13A | 119.3 | C27—C28—H28C | 109.5 |
C8—C13—H13A | 119.3 | H28A—C28—H28C | 109.5 |
C15—C14—N2 | 113.3 (2) | H28B—C28—H28C | 109.5 |
C15—C14—H14A | 108.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl2 | 0.91 (1) | 2.27 (1) | 3.166 (2) | 169 (3) |
N3—H3A···Cl3 | 0.91 (1) | 2.14 (1) | 3.054 (3) | 175 (5) |
N1—H1D···Cl2i | 0.90 (1) | 2.15 (1) | 3.030 (2) | 167 (2) |
C1—H1B···Cl3ii | 0.98 | 2.81 | 3.717 (4) | 154 |
C2—H2B···Cl1 | 0.99 | 2.47 | 3.456 (3) | 174 |
C6—H6B···Cl3ii | 0.99 | 2.73 | 3.668 (3) | 158 |
C10—H10A···O1Aiii | 0.95 | 2.56 | 3.491 (4) | 166 |
C16—H16A···Cl3iii | 0.99 | 2.73 | 3.576 (3) | 143 |
C20—H20A···O1iv | 0.95 | 2.49 | 3.224 (3) | 134 |
C21—H21A···Cl1i | 0.95 | 2.68 | 3.602 (3) | 164 |
C25—H25A···O1Av | 0.99 | 2.45 | 3.435 (4) | 171 |
C27—H27A···Cl2ii | 0.99 | 2.74 | 3.576 (3) | 143 |
C27—H27B···Cl1i | 0.99 | 2.66 | 3.621 (3) | 164 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z−1; (iv) −x, −y, −z+1; (v) −x+1, −y+1, −z+2. |
Acknowledgements
This work was supported by NIH NCI grant No. R01CA120170.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114–2117. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 1119–1120. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011a). Acta Cryst. E67, o760–o761. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011b). Acta Cryst. E67, o1505–o1506. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605–o608. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CSD CrossRef CAS Web of Science Google Scholar
Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). J. Nonlinear Opt. Phys. Mat. 14, 21–40. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.