research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (3E,5E)-3,5-bis­­[4-(di­ethyl­aza­nium­yl)benzyl­­idene]-1-methyl-4-oxopiperidin-1-ium trichloride dihydrate: a potential biophotonic material

aDepartment of Chemistry, University of North Texas, Denton, TX 76203, USA, bCAMCOR Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403-1443, USA, and cDepartment of Biological Sciences, University of North Texas, Denton, TX 76203, USA
*Correspondence e-mail: vladimir.nesterov@unt.edu, shulaev@unt.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 September 2015; accepted 4 November 2015; online 21 November 2015)

In the trication of the title hydrated mol­ecular salt, C28H40N3O3+·3Cl·2H2O, the central heterocyclic ring adopts a sofa conformation, with the exocyclic N—C bond in an equatorial orientation. The dihedral angles between the planar part of this heterocyclic ring and the two almost flat side-chain fragments, which include the aromatic ring and bridging atoms, are 28.8 (1) and 41.1 (1)°. Both di­ethyl­aza­niumyl substituents have a tetra­hedral geometry, while the dihedral angles between the above-mentioned flat part of the aryl fragments and the imaginary planes drawn through atoms C—N—C of the di­ethyl­aza­niumyl substituents are 86.3 (2) and 80.4 (1)°, respectively. In the crystal, N—H⋯Cl hydrogen bonds link the cations and anions into [100] chains. The chains are cross-linked by numerous C—H⋯O and C—H⋯Cl inter­actions, generating a three-dimensional network. One of the chloride ions is disordered over two adjacent positions in a 0.895 (4):0.105 (4) ratio.

1. Chemical context

In a continuation of our work on the synthesis and structural investigations of non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials (Nesterov et al., 2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.], 2007[Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.]; Nesterov et al., 2011a[Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011a). Acta Cryst. E67, o760-o761.],b[Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011b). Acta Cryst. E67, o1505-o1506.]; Sarkisov et al., 2005[Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). J. Nonlinear Opt. Phys. Mat. 14, 21-40.]), we determined the crystal structure of the title compound. This compound belongs to a group that has shown anti­cancer activity (Jia et al., 1988[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114-2117.]; Dimmock et al., 2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). It may also find application as an agent for locating cancer cells with two-photon excited fluorescence and as a potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.]; Sarkisov et al., 2005[Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). J. Nonlinear Opt. Phys. Mat. 14, 21-40.]).

[Scheme 1]

2. Structural commentary

The structure of the trication with chloride anions is illustrated in Fig. 1[link]. There are also two water mol­ecules of crystallization. The central heterocycle adopts a sofa conformation: atom N1 lies −0.732 (3) Å out of the central C5 plane [planar within 0.027 (2) Å]. The dihedral angles between the flat part of the heterocycle (atoms C2, C3, C4, C5, and C6) and the two almost planar fragments that include the phenyl-ring and the bridging atoms are 28.7 (1) and 41.1 (1)° for (C7–C13) and (C18–C24), respectively. Such non-planarity might partly be caused by the presence of short intra­molecular contacts H2AB⋯H24A and H6AB⋯H13A with distances 2.18 and 2.14 Å, respectively, which are shorter than the doubled van der Waals radius of the H atom (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). The mutual orientations of both aryl substit­uents relative to the flat part of the di­ethyl­aza­niumyl groups (N2, C14, C16 and N3, C25, C27) are almost orthogonal [dihedral angles of 86.3 (2) and 80.4 (1)°, respectively]. This is in contrast to the starting material where such angles are close to zero and the substituents participate in conjugated systems with the respective aromatic rings (Nesterov et al., 2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.]).

[Figure 1]
Figure 1
Perspective view of the trication and anions of (I)[link], with hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, N—H⋯Cl hydrogen bonds (Table 1[link]) link cations and anions (Fig. 2[link]) into [100] chains. The chains are cross-linked by C—H⋯Cl and C—H⋯O inter­actions, forming a three-dimensional network. In addition, the existence of short (compared to the sum of the van der Waals radii of the corresponding pairs of atoms; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) inter­molecular water-to-water O⋯O and water-to-chloride O⋯Cl contacts presumably correspond to O—H⋯X hydrogen bonds, although the water H atoms could not be located in the present study.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl2 0.91 (1) 2.27 (1) 3.166 (2) 169 (3)
N3—H3A⋯Cl3 0.91 (1) 2.14 (1) 3.054 (3) 175 (5)
N1—H1D⋯Cl2i 0.90 (1) 2.15 (1) 3.030 (2) 167 (2)
C1—H1B⋯Cl3ii 0.98 2.81 3.717 (4) 154
C2—H2B⋯Cl1 0.99 2.47 3.456 (3) 174
C6—H6B⋯Cl3ii 0.99 2.73 3.668 (3) 158
C10—H10A⋯O1Aiii 0.95 2.56 3.491 (4) 166
C16—H16A⋯Cl3iii 0.99 2.73 3.576 (3) 143
C20—H20A⋯O1iv 0.95 2.49 3.224 (3) 134
C21—H21A⋯Cl1i 0.95 2.68 3.602 (3) 164
C25—H25A⋯O1Av 0.99 2.45 3.435 (4) 171
C27—H27A⋯Cl2ii 0.99 2.74 3.576 (3) 143
C27—H27B⋯Cl1i 0.99 2.66 3.621 (3) 164
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z-1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Projection of the crystal packing of the title compound along the c axis. Dashed lines denote strong inter­molecular N—H⋯Cl hydrogen bonds. Water mol­ecules have been omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for structures of piperidone with the amino substituents revealed eight hits with two salt structures of the oxopiperidinium iodide (Jia et al., 1989[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 1119-1120.]; Nesterov et al., 2007[Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.]). Among these, there is a starting compound in which both di­ethyl­amino substituents participate in a conjugation with aromatic rings (Nesterov et al., 2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.]).

5. Synthesis and crystallization

The starting compound (3E,5E)-3,5-bis­[4-(di­ethyl­amino)­benzyl­idene[−1-methyl-4-piperidone was obtained according to a literature procedure (Nesterov et al., 2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.]). The relatively stable colorless crystals of the investigated salt were obtained by slow evaporation of the solution of the above piperidone from a mixture of ethanol and hydro­chloric acid over several days.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. All C-bound H-atoms were placed in idealized positions and allowed to ride on their parent atom: C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH and CH2 and 1.5 for CH3 H atoms. All N-bound H atoms were located using difference Fourier maps, but in the final refinement their distances were constrained at 0.90 Å (DFIX). H atoms of the two water mol­ecules were not localized properly, since they appeared to be disordered over several positions. These H atoms were therefore removed from the refinement, but they were still included in the resulting chemical formula. Atom Cl3 is disordered over two positions in a 0.895 (4):0.105 (4) ratio.

Table 2
Experimental details

Crystal data
Chemical formula C28H40N3O3+·3Cl·2H2O
Mr 577.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.0933 (5), 12.0661 (6), 13.7576 (6)
α, β, γ (°) 97.759 (1), 110.795 (1), 102.733 (1)
V3) 1485.46 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.18 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 11768, 5787, 5056
Rint 0.016
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.05
No. of reflections 5787
No. of parameters 356
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.13, −0.62
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3E,5E)-3,5-Bis[4-(diethylazaniumyl)benzylidene]-1-methyl- 4-oxopiperidin-1-ium top
Crystal data top
C28H40N3O3+·3Cl·2H2OZ = 2
Mr = 577.01F(000) = 616
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0933 (5) ÅCell parameters from 4567 reflections
b = 12.0661 (6) Åθ = 2.5–26.0°
c = 13.7576 (6) ŵ = 0.34 mm1
α = 97.759 (1)°T = 100 K
β = 110.795 (1)°Block, colourless
γ = 102.733 (1)°0.18 × 0.12 × 0.10 mm
V = 1485.46 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5787 independent reflections
Radiation source: fine-focus sealed tube5056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.941, Tmax = 0.967k = 1414
11768 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.091P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
5787 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 1.13 e Å3
3 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.69912 (7)0.36862 (6)0.70014 (6)0.0379 (2)
Cl21.10763 (7)0.16702 (5)0.19807 (5)0.02863 (18)
Cl30.41255 (10)0.74605 (6)0.84491 (6)0.0319 (3)0.895 (4)
Cl3A0.4816 (15)0.7207 (9)0.8555 (8)0.059 (3)*0.105 (4)
O10.2253 (2)0.04179 (15)0.41664 (15)0.0288 (4)
N10.4116 (2)0.26939 (17)0.37806 (17)0.0229 (4)
H1D0.3294 (19)0.239 (2)0.3181 (14)0.017 (6)*
N20.8498 (2)0.06652 (19)0.13943 (17)0.0251 (5)
H2C0.924 (3)0.0015 (16)0.165 (2)0.034 (8)*
N30.1387 (3)0.5404 (2)0.78810 (19)0.0308 (5)
H3A0.221 (3)0.602 (3)0.809 (4)0.093 (17)*
C10.4892 (4)0.3863 (2)0.3704 (3)0.0365 (7)
H1A0.42360.43660.36210.055*
H1B0.51570.37720.30840.055*
H1C0.57920.42200.43560.055*
C20.3736 (3)0.2804 (2)0.4734 (2)0.0237 (5)
H2A0.31440.33620.47040.028*
H2B0.46560.31140.53920.028*
C30.2870 (3)0.1637 (2)0.47709 (18)0.0204 (5)
C40.3029 (3)0.0544 (2)0.42288 (19)0.0213 (5)
C50.4212 (3)0.0674 (2)0.37980 (18)0.0204 (5)
C60.5053 (3)0.1887 (2)0.3839 (2)0.0249 (5)
H6A0.59530.21790.45130.030*
H6B0.53680.18660.32350.030*
C70.4468 (3)0.0299 (2)0.33955 (18)0.0204 (5)
H7A0.38740.10190.34140.024*
C80.5559 (3)0.0379 (2)0.29304 (19)0.0223 (5)
C90.5226 (3)0.1372 (2)0.2139 (2)0.0261 (5)
H9A0.43460.19880.19510.031*
C100.6172 (3)0.1468 (2)0.1624 (2)0.0299 (6)
H10A0.59300.21340.10700.036*
C110.7474 (3)0.0574 (2)0.1932 (2)0.0255 (5)
C120.7871 (3)0.0384 (2)0.2743 (2)0.0273 (5)
H12A0.87860.09700.29600.033*
C130.6914 (3)0.0482 (2)0.3240 (2)0.0274 (5)
H13A0.71790.11450.38030.033*
C140.9212 (3)0.1619 (2)0.1686 (2)0.0294 (6)
H14A0.96280.15030.24740.035*
H14B0.84420.23840.13790.035*
C151.0423 (3)0.1647 (3)0.1296 (2)0.0335 (6)
H15A1.09400.21980.15990.050*
H15B1.11270.08650.15210.050*
H15C0.99920.18970.05140.050*
C160.7779 (3)0.0775 (3)0.0204 (2)0.0314 (6)
H16A0.69930.15300.01290.038*
H16B0.85280.07780.01040.038*
C170.7110 (3)0.0207 (3)0.0065 (2)0.0357 (6)
H17A0.66720.01030.08440.054*
H17B0.78830.09570.02580.054*
H17C0.63400.01960.02140.054*
C180.1975 (3)0.1549 (2)0.53023 (19)0.0205 (5)
H18A0.14010.07850.52430.025*
C190.1804 (3)0.2522 (2)0.59652 (19)0.0203 (5)
C200.0408 (3)0.2538 (2)0.5932 (2)0.0247 (5)
H20A0.04340.19020.54880.030*
C210.0235 (3)0.3478 (3)0.6542 (2)0.0300 (6)
H21A0.07190.34940.65030.036*
C220.1474 (3)0.4382 (2)0.7200 (2)0.0285 (6)
C230.2872 (3)0.4361 (2)0.7293 (2)0.0276 (5)
H23A0.37160.49720.77800.033*
C240.3036 (3)0.3444 (2)0.6671 (2)0.0245 (5)
H24A0.39980.34370.67230.029*
C250.1258 (3)0.5097 (2)0.8880 (2)0.0312 (6)
H25A0.19940.46830.91910.037*
H25B0.02600.45620.86890.037*
C260.1511 (5)0.6178 (3)0.9711 (3)0.0505 (9)
H26A0.16690.59761.04020.076*
H26B0.06430.64690.94860.076*
H26C0.23850.67840.97790.076*
C270.0234 (3)0.5949 (2)0.7310 (2)0.0336 (6)
H27A0.03160.66620.78050.040*
H27B0.07570.53970.71100.040*
C280.0356 (4)0.6268 (3)0.6323 (2)0.0416 (7)
H28A0.01410.68700.61450.062*
H28B0.01150.55740.57280.062*
H28C0.14030.65690.64510.062*
O1A0.5901 (3)0.6022 (2)0.9885 (3)0.0693 (8)
O2A0.7711 (5)0.5914 (3)0.8786 (3)0.0984 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0277 (3)0.0416 (4)0.0486 (4)0.0113 (3)0.0192 (3)0.0105 (3)
Cl20.0306 (3)0.0305 (3)0.0273 (3)0.0124 (3)0.0130 (3)0.0049 (2)
Cl30.0304 (5)0.0243 (4)0.0365 (5)0.0025 (3)0.0142 (3)0.0012 (3)
O10.0339 (10)0.0195 (9)0.0368 (10)0.0005 (7)0.0247 (8)0.0012 (7)
N10.0286 (11)0.0174 (10)0.0253 (11)0.0029 (8)0.0169 (9)0.0023 (8)
N20.0276 (11)0.0259 (11)0.0264 (11)0.0107 (9)0.0140 (9)0.0071 (9)
N30.0442 (14)0.0291 (12)0.0295 (12)0.0167 (11)0.0221 (11)0.0090 (10)
C10.0512 (18)0.0193 (12)0.0517 (18)0.0051 (12)0.0380 (15)0.0080 (12)
C20.0297 (13)0.0205 (11)0.0241 (12)0.0045 (10)0.0174 (10)0.0016 (9)
C30.0209 (11)0.0209 (11)0.0190 (11)0.0048 (9)0.0089 (9)0.0033 (9)
C40.0226 (11)0.0223 (12)0.0198 (11)0.0040 (9)0.0114 (10)0.0029 (9)
C50.0200 (11)0.0221 (11)0.0202 (11)0.0042 (9)0.0109 (9)0.0039 (9)
C60.0248 (12)0.0208 (12)0.0336 (13)0.0047 (10)0.0193 (11)0.0020 (10)
C70.0213 (11)0.0222 (11)0.0190 (11)0.0061 (9)0.0091 (9)0.0059 (9)
C80.0281 (12)0.0247 (12)0.0232 (12)0.0141 (10)0.0146 (10)0.0114 (10)
C90.0306 (13)0.0242 (12)0.0304 (13)0.0115 (10)0.0168 (11)0.0094 (10)
C100.0390 (15)0.0258 (13)0.0312 (14)0.0159 (11)0.0181 (12)0.0049 (11)
C110.0277 (13)0.0311 (13)0.0272 (13)0.0132 (11)0.0160 (11)0.0154 (11)
C120.0255 (12)0.0276 (13)0.0340 (14)0.0094 (10)0.0161 (11)0.0090 (11)
C130.0268 (13)0.0293 (13)0.0314 (14)0.0112 (11)0.0156 (11)0.0081 (11)
C140.0357 (14)0.0277 (13)0.0323 (14)0.0166 (11)0.0163 (12)0.0106 (11)
C150.0347 (15)0.0333 (14)0.0391 (15)0.0163 (12)0.0185 (13)0.0077 (12)
C160.0291 (13)0.0477 (16)0.0205 (13)0.0132 (12)0.0122 (11)0.0078 (11)
C170.0347 (15)0.0444 (16)0.0331 (15)0.0120 (13)0.0170 (12)0.0150 (13)
C180.0218 (11)0.0189 (11)0.0215 (11)0.0045 (9)0.0098 (9)0.0052 (9)
C190.0261 (12)0.0207 (11)0.0208 (11)0.0081 (9)0.0147 (10)0.0092 (9)
C200.0229 (12)0.0305 (13)0.0242 (12)0.0071 (10)0.0131 (10)0.0087 (10)
C210.0350 (14)0.0423 (15)0.0314 (14)0.0229 (12)0.0241 (12)0.0185 (12)
C220.0463 (16)0.0261 (13)0.0242 (12)0.0179 (12)0.0204 (12)0.0115 (10)
C230.0367 (14)0.0238 (12)0.0247 (12)0.0056 (11)0.0170 (11)0.0049 (10)
C240.0265 (12)0.0253 (12)0.0240 (12)0.0051 (10)0.0145 (10)0.0050 (10)
C250.0481 (16)0.0274 (13)0.0302 (14)0.0151 (12)0.0256 (13)0.0104 (11)
C260.093 (3)0.0444 (18)0.0347 (16)0.0295 (19)0.0425 (18)0.0120 (14)
C270.0432 (16)0.0266 (13)0.0366 (15)0.0180 (12)0.0171 (13)0.0087 (11)
C280.057 (2)0.0377 (16)0.0338 (16)0.0221 (15)0.0162 (14)0.0130 (13)
O1A0.0472 (14)0.0392 (13)0.104 (2)0.0153 (11)0.0153 (15)0.0023 (14)
O2A0.142 (4)0.075 (2)0.076 (2)0.027 (2)0.044 (2)0.0198 (18)
Geometric parameters (Å, º) top
O1—C41.221 (3)C13—H13A0.9500
N1—C21.489 (3)C14—C151.504 (4)
N1—C61.491 (3)C14—H14A0.9900
N1—C11.492 (3)C14—H14B0.9900
N1—H1D0.895 (10)C15—H15A0.9800
N2—C111.483 (3)C15—H15B0.9800
N2—C161.510 (3)C15—H15C0.9800
N2—C141.513 (3)C16—C171.513 (4)
N2—H2C0.907 (10)C16—H16A0.9900
N3—C221.483 (3)C16—H16B0.9900
N3—C271.494 (4)C17—H17A0.9800
N3—C251.512 (3)C17—H17B0.9800
N3—H3A0.912 (10)C17—H17C0.9800
C1—H1A0.9800C18—C191.468 (3)
C1—H1B0.9800C18—H18A0.9500
C1—H1C0.9800C19—C201.398 (3)
C2—C31.503 (3)C19—C241.402 (4)
C2—H2A0.9900C20—C211.399 (4)
C2—H2B0.9900C20—H20A0.9500
C3—C181.345 (3)C21—C221.379 (4)
C3—C41.495 (3)C21—H21A0.9500
C4—C51.499 (3)C22—C231.377 (4)
C5—C71.346 (3)C23—C241.382 (4)
C5—C61.503 (3)C23—H23A0.9500
C6—H6A0.9900C24—H24A0.9500
C6—H6B0.9900C25—C261.521 (4)
C7—C81.470 (3)C25—H25A0.9900
C7—H7A0.9500C25—H25B0.9900
C8—C91.394 (4)C26—H26A0.9800
C8—C131.404 (4)C26—H26B0.9800
C9—C101.391 (4)C26—H26C0.9800
C9—H9A0.9500C27—C281.499 (4)
C10—C111.388 (4)C27—H27A0.9900
C10—H10A0.9500C27—H27B0.9900
C11—C121.367 (4)C28—H28A0.9800
C12—C131.383 (4)C28—H28B0.9800
C12—H12A0.9500C28—H28C0.9800
C2—N1—C6109.88 (19)N2—C14—H14A108.9
C2—N1—C1110.58 (19)C15—C14—H14B108.9
C6—N1—C1110.6 (2)N2—C14—H14B108.9
C2—N1—H1D110.5 (18)H14A—C14—H14B107.7
C6—N1—H1D107.7 (17)C14—C15—H15A109.5
C1—N1—H1D107.5 (17)C14—C15—H15B109.5
C11—N2—C16112.58 (19)H15A—C15—H15B109.5
C11—N2—C14110.55 (19)C14—C15—H15C109.5
C16—N2—C14113.6 (2)H15A—C15—H15C109.5
C11—N2—H2C108 (2)H15B—C15—H15C109.5
C16—N2—H2C105 (2)N2—C16—C17112.6 (2)
C14—N2—H2C107 (2)N2—C16—H16A109.1
C22—N3—C27114.4 (2)C17—C16—H16A109.1
C22—N3—C25110.3 (2)N2—C16—H16B109.1
C27—N3—C25112.8 (2)C17—C16—H16B109.1
C22—N3—H3A112 (3)H16A—C16—H16B107.8
C27—N3—H3A99 (3)C16—C17—H17A109.5
C25—N3—H3A108 (3)C16—C17—H17B109.5
N1—C1—H1A109.5H17A—C17—H17B109.5
N1—C1—H1B109.5C16—C17—H17C109.5
H1A—C1—H1B109.5H17A—C17—H17C109.5
N1—C1—H1C109.5H17B—C17—H17C109.5
H1A—C1—H1C109.5C3—C18—C19126.0 (2)
H1B—C1—H1C109.5C3—C18—H18A117.0
N1—C2—C3110.49 (19)C19—C18—H18A117.0
N1—C2—H2A109.6C20—C19—C24118.1 (2)
C3—C2—H2A109.6C20—C19—C18120.7 (2)
N1—C2—H2B109.6C24—C19—C18121.1 (2)
C3—C2—H2B109.6C19—C20—C21120.9 (2)
H2A—C2—H2B108.1C19—C20—H20A119.5
C18—C3—C4118.8 (2)C21—C20—H20A119.5
C18—C3—C2121.6 (2)C22—C21—C20118.7 (2)
C4—C3—C2119.6 (2)C22—C21—H21A120.6
O1—C4—C3121.3 (2)C20—C21—H21A120.6
O1—C4—C5121.4 (2)C23—C22—C21121.6 (2)
C3—C4—C5117.3 (2)C23—C22—N3116.2 (2)
C7—C5—C4118.3 (2)C21—C22—N3122.1 (2)
C7—C5—C6123.4 (2)C22—C23—C24119.4 (3)
C4—C5—C6118.2 (2)C22—C23—H23A120.3
N1—C6—C5110.69 (19)C24—C23—H23A120.3
N1—C6—H6A109.5C23—C24—C19121.0 (2)
C5—C6—H6A109.5C23—C24—H24A119.5
N1—C6—H6B109.5C19—C24—H24A119.5
C5—C6—H6B109.5N3—C25—C26111.9 (2)
H6A—C6—H6B108.1N3—C25—H25A109.2
C5—C7—C8127.6 (2)C26—C25—H25A109.2
C5—C7—H7A116.2N3—C25—H25B109.2
C8—C7—H7A116.2C26—C25—H25B109.2
C9—C8—C13118.3 (2)H25A—C25—H25B107.9
C9—C8—C7117.8 (2)C25—C26—H26A109.5
C13—C8—C7123.8 (2)C25—C26—H26B109.5
C10—C9—C8120.6 (2)H26A—C26—H26B109.5
C10—C9—H9A119.7C25—C26—H26C109.5
C8—C9—H9A119.7H26A—C26—H26C109.5
C11—C10—C9118.9 (2)H26B—C26—H26C109.5
C11—C10—H10A120.6N3—C27—C28113.5 (2)
C9—C10—H10A120.6N3—C27—H27A108.9
C12—C11—C10122.0 (2)C28—C27—H27A108.9
C12—C11—N2118.4 (2)N3—C27—H27B108.9
C10—C11—N2119.6 (2)C28—C27—H27B108.9
C11—C12—C13118.7 (2)H27A—C27—H27B107.7
C11—C12—H12A120.6C27—C28—H28A109.5
C13—C12—H12A120.6C27—C28—H28B109.5
C12—C13—C8121.3 (2)H28A—C28—H28B109.5
C12—C13—H13A119.3C27—C28—H28C109.5
C8—C13—H13A119.3H28A—C28—H28C109.5
C15—C14—N2113.3 (2)H28B—C28—H28C109.5
C15—C14—H14A108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl20.91 (1)2.27 (1)3.166 (2)169 (3)
N3—H3A···Cl30.91 (1)2.14 (1)3.054 (3)175 (5)
N1—H1D···Cl2i0.90 (1)2.15 (1)3.030 (2)167 (2)
C1—H1B···Cl3ii0.982.813.717 (4)154
C2—H2B···Cl10.992.473.456 (3)174
C6—H6B···Cl3ii0.992.733.668 (3)158
C10—H10A···O1Aiii0.952.563.491 (4)166
C16—H16A···Cl3iii0.992.733.576 (3)143
C20—H20A···O1iv0.952.493.224 (3)134
C21—H21A···Cl1i0.952.683.602 (3)164
C25—H25A···O1Av0.992.453.435 (4)171
C27—H27A···Cl2ii0.992.743.576 (3)143
C27—H27B···Cl1i0.992.663.621 (3)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z1; (iv) x, y, z+1; (v) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by NIH NCI grant No. R01CA120170.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114–2117.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 1119–1120.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007). Acta Cryst. E63, o4784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011a). Acta Cryst. E67, o760–o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011b). Acta Cryst. E67, o1505–o1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605–o608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). J. Nonlinear Opt. Phys. Mat. 14, 21–40.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds