research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis-p-anizidinegossypol with an unknown solvate

aInstitute of Bioorganich Chemistry, Mirzo Ulughbek Str., 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: muhabbat.n75@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 September 2015; accepted 28 October 2015; online 4 November 2015)

The title compound, C44H44N2O8, (systematic name: 1,1′,6,6′-tetra­hydroxy-5,5′-diisopropyl-8,8′-bis­{[(4-meth­oxy­phen­yl)iminium­yl]meth­yl}-3,3′-dimethyl-2,2′-bi­naphthalene-7,7′-diolate) has been obtained by the addition of p-anizidine to gossypol dissolved in di­chloro­methane. In the solid state, the title compound exists in the enamine or quinoid form. The two naphthyl moieties are inclined to one another by 72.08 (5)°. The pendant phenyl rings are inclined at 22.26 (14) and 23.86 (13)° to the corresponding naphthyl rings. In the crystal, mol­ecules are incorporated into layers through inversion-related pairs of O—H⋯O inter­actions [graph sets R22(20) and R22(10)] and translation-related O—H⋯O inter­actions [graph set C(15)]. The packing of these layers in the crystal structure gives rise to channels in the [011] direction, with hydro­phobic inter­actions occurring between adjacent layers. The channels are 5–7 Å wide, and the void volume of each cell is 655 Å3, corresponding to 26.6% of the cell volume. Disordered guest mol­ecules, probably solvent and water mol­ecules, occupy these voids of the crystal; their contribution to the scattering was removed with the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] of PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

1. Chemical context

Gossypol [2,2′-bis­(8-formyl-1,6,7-trihy­droxy-5-isopropyl-3-methyl­naphthalene)] is a yellow pigment of cotton seeds (Adams et al., 1960[Adams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555-574.]). This compound was first isolated over 110 years ago (Marchlewski, 1899[Marchlewski, L. (1899). J. Prakt. Chem. 60, 84-90.]). Its study was initially important because the compound is associated with anti-nutritive or even toxic effects when cottonseed is overfed to animals. Many attempts have been made to either remove it from cottonseed or reduce its toxicity (Kenar, 2006[Kenar, J. A. (2006). J. Am. Oil Chem. Soc. 83, 269-302.]). However, the compound also has a wide range of biological action, including anti-HIV (Jian Yang et al., 2014[Yang, J., Li, J.-R., Yang, J.-X., Li, L.-L., Ouyang, W.-J., Wu, S.-W. & Zhang, F. (2014). Chin. Chem. Lett. 25, 1052-1056.]), anti­cancer (Zhan et al., 2009[Zhan, Y., Jia, G., Wu, D., Xu, Y. & Xu, L. (2009). Arch. Pharm. Chem. Life Sci. 342, 223-229.]) and anti­fertility (Coutinho, 2002[Coutinho, E. M. (2002). Contraception, 65, 259-263.]) effects. This inter­est has led to the synthesis and isolation of various gossypol derivatives, including many di­amine-based gossypol Schiff bases. Gossypol and its Schiff base formed with aniline have been previously reported to form inclusion compounds with many small organic compounds (Beketov et al., 1994[Beketov, K. M., Ibraimov, B. T. & Talipov, S. A. (1994). Chem. Nat. Compd. 30, 49-56.]; Gdaniec et al., 1996[Gdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, Solid-state Supramolecular Chemistry: Crystal Engineering, pp. 117-145. Oxford: Pergamon Press.]; Talipov et al., 2004[Talipov, S. A., Ibragimov, B. T., Beketov, K. M., Praliev, K. D. & Aripov, T. F. (2004). Crystallogr. Rep. 49, 752-757.]). Some gossypol polymorphs (referred to as the P3 polymorph; Ibragimov et al., 1994[Ibragimov, B. T., Talipov, S. A. & Aripov, T. F. (1994). J. Incl Phenom. Macrocycl Chem. 17, 317-324.]), dianhydro­gossypol (Talipov et al., 2009[Talipov, S. A., Mamadrakhimov, A. A., Tiljakov, Z. G., Dowd, M. K., Ibragimov, B. T. & Xonkeldieva, M. T. (2009). J. Am. Oil Chem. Soc. 86, 207-213.]) and gossypol tetra­methyl ether (Honkeldieva et al., 2015[Honkeldieva, M., Talipov, S., Mardanov, R. & Ibragimov, B. (2015). Acta Cryst. E71, 184-187.]) form open-channel structures with channels of 5–8 Å width. In this report, we demonstrate that the Schiff base of gossypol with p-anizidine also forms an open-channel structure when the compound is crystallized from solutions in di­chloro­methane.

[Scheme 1]

2. Structural commentary

Gossypol can exist in one of the following tautomeric forms: aldehyde, quinoid and lactol (Adams et al., 1960[Adams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555-574.]). In most solvents it is found in the aldehyde form; however, there are some reports that gossypol also exists in a pure lactol form (Reyes et al., 1986[Reyes, J., Wyrick, S. D., Borriero, L. & Benos, D. J. (1986). Biochim. Biophys. Acta, 863, 101-109.]) or as a dynamic equilibrium mixture of aldehyde and lactol forms in some highly polar solvents (Kamaev et al., 1979[Kamaev, F. G., Baram, N. I., Ismailov, A. I., Leont'ev, V. B. & Sadykov, A. S. (1979). Russ. Chem. Bull. 28, 938-944.]). In the structure described here, the title compound is in the enamine or quinoid form. The highest symmetry which the title compound mol­ecule can possess is C2 (twofold axis perpendicular to the C2—C12 bond). However, bis-p-anizidinegossypol crystallizes in a triclinic (P[\overline{1}]) space group and the symmetry of the mol­ecule is not retained in the crystal. An ORTEP diagram of the mol­ecule and the atom numbering in the structure are given in Fig. 1[link].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing 50% probability displacement ellipsoids.

The mol­ecule consists of four ring systems, two of which are naphthalene ring systems, and the other two are phenyl rings. The C1–C10 naphthyl unit is more planar then C11–C20 naphthyl one in which atoms C12, C16, C17, C18 and C19 deviate by 0.051 (3), 0.070 (3), 0.059 (3), 0.082 (3) and 0.054 (3) Å, respectively, from the mean plane. The two naphthyl moieties are inclined to one another by 72.08 (5)°. The phenyl rings are inclined at 22.26 (14) and 23.86 (13)° to the corresponding naphthyl rings. The bond lengths and angles are mostly in good agreement with those observed in the analogous fragments of the gossypol and dianilinegossypol mol­ecules (Gdaniec et al., 1996[Gdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, Solid-state Supramolecular Chemistry: Crystal Engineering, pp. 117-145. Oxford: Pergamon Press.]; Talipov et al., 2004[Talipov, S. A., Ibragimov, B. T., Beketov, K. M., Praliev, K. D. & Aripov, T. F. (2004). Crystallogr. Rep. 49, 752-757.]). However, there are notable differences in the lengths of some bonds compared with typical gossypol values. Compared with the relatively short C6—C7 (C16—C17) aromatic ring bonds of gossypol mol­ecules (1.40 Å), the corresponding bonds in the bis-p-anizidinegossypol mol­ecule are longer with lengths of 1.446 (4) and 1.476 (4) Å. In addition, the N1—C22 [1.332 (4) Å] and N2—C27 [1.319 (4) Å] bonds are shorter than N1—C31 [1.433 (4) Å] and N2—C38 [1.441 (4) Å], respectively. Contrarily, C7=O3 [1.289 (3) Å] and C17=O7 [1.275 (3) Å] bonds are longer than typical standard values.

There are two intra­molecular hydrogen bonds in the mol­ecule. The N1—H1A⋯O3 (and N2—H2⋯O7) bond closes a six-membered ring C7—C8—C22—N1—H1A⋯O3 (and C17—C18—C27—N2—H3⋯O7), while the other type of hydrogen bond O4—H4⋯O3 (and O8—H8⋯O7) forms a five-membered ring C6—C7—O3⋯H4—O4 (and C16—C17—O7⋯H8—O8) (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.95 (5) 1.83 (5) 2.538 (4) 129 (4)
N2—H2⋯O7 0.92 (3) 1.87 (3) 2.550 (3) 129 (3)
O1—H1⋯O6i 0.91 (4) 2.13 (4) 2.912 (3) 144 (3)
O4—H4⋯O3 0.86 (3) 2.04 (4) 2.574 (4) 119 (3)
O5—H5⋯O3ii 0.82 (3) 1.98 (3) 2.684 (3) 143 (3)
O8—H8⋯O7 0.98 (3) 2.17 (3) 2.601 (3) 105 (2)
O8—H8⋯O7iii 0.98 (3) 1.83 (3) 2.757 (3) 158 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z.

3. Supra­molecular features

The packing of the title mol­ecules in the crystal is shown in Fig. 2[link]. Bis-p-anizidinegossypol mol­ecules are incorporated into centrosymmetric dimers typical for gossypol and dianilinogossypol crystal structures by means of a pair of inversion-related hydrogen bonds O5—H5⋯O3 [graph set R22(20)]. By further centrosymmetric O8—H8⋯O7 hydrogen bonds [graph set R22(10)], mol­ecules are associated into columns running in the [1[\overline{1}][\overline{1}]] direction, as also seen for the dianilinegossypol clathrate with ethyl­acetate (Beketov et al., 1994[Beketov, K. M., Ibraimov, B. T. & Talipov, S. A. (1994). Chem. Nat. Compd. 30, 49-56.]). A layer parallel to (01[\overline{1}]) is formed by linking of the columns via translation-related hydrogen bonds O1—H1⋯O6 [graph set C11(15)] in the [100] direction. The layer features a O2⋯C7(−1 − x, 1 − y, 1 − z) contact [3.254 (4) Å] and a very weak aromatic ππ stacking inter­action with a CgCg(−1 − x, 1 − y, 1 − z) distance of 4.182 (2) Å where Cg is the centroid of the C31–C36 ring. The packing of these layers in the crystal structure gives rise to wide ragged channels in the [011] direction. The stabilization of the crystal structure is supported by hydro­phobic inter­actions between adjacent layers. The channels in the structure are 5-7 Å wide and the void volume of each cell is 655 Å3, corresponding to 26.6% of the cell volume. Disordered solvated mol­ecules, probably solvent and water mol­ecules, occupy these voids of the crystal; their contribution to the scattering was removed with the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 2]
Figure 2
A portion of the crystal packing viewed approximately along the a axis.

4. Database survey

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) indicated the presence of 198 entries for gossypol (137 entries) or gossypol derivatives. The 35 entries of revealed 50 entries for Schiff-base gossypol deriv­atives are related to dianilinegossypol clathrates and polymorphs. The dihedral angle between the naphthalene ring systems in the dianilinegossypol structures is in the range 78 to 90°. The dihedral angles between naphthalene ring systems and the corresponding benzyl rings of aniline substituents are in the range 4–49°. The dihedral angles between the naphthalene ring systems in the crystal structures of other Schiff base gossypol derivatives are in the range from ca 70 to 90°: IGAVAQ = 86.6°, LUHBIA = 89.6°, LUHBOG = 77.9°, MEXROY = 89.2°, MEXROY01 = 88.9°, NOQFIJ = 83.5°, POGHUF = 84.6°, QADQIX = 89.1°, SACXEB = 82.2°, TEFFEP = 70.6° and 83.4°, TIJNUX = 89.0°, XATPAK = 78.6°, VUXRIQ = 70.3°, VUXRIQ01 = 88.2° and 91.0° and YORNIW = 81.2°.

5. Synthesis and crystallization

Gossypol was obtained from the Experimental Plant of the Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences where it is produced from by-products of the cottonseed oil industry. To prepare the Schiff base complex, gossypol was mixed with p-anizidine in a 1:2 molar ratio in di­chloro­methane. This reaction solution was allowed to stand in the dark for some days, during which crystalline precipitates have been formed within the solution. The precipitate was recovered by filtration. Yield: 64%. After numerous attempts, a suitable crystal was selected from the precipitate and used for the diffraction study without additional recrystallization.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom of the hy­droxy substituent was located in an electron density map and its coordinates were freely refined with Uiso = 1.5Ueq(O). C-bound H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic, d(C—H) = 0.98 Å and Uiso = 1.2Ueq (C) for methine, d(C—H) = 0.96 Å and Uiso = 1.5Ueq (C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C44H44N2O8
Mr 728.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 11.6622 (9), 14.0738 (11), 15.6906 (10)
α, β, γ (°) 82.472 (6), 84.831 (6), 75.009 (7)
V3) 2462.0 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.55
Crystal size (mm) 0.40 × 0.32 × 0.27
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.811, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 18952, 9019, 2706
Rint 0.048
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 0.65
No. of reflections 9019
No. of parameters 519
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.17
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1',6,6'-Tetrahydroxy-5,5'-diisopropyl-8,8'-bis{[(4-methoxyphenyl)iminiumyl]methyl}-3,3'-dimethyl-2,2'-binaphthalene-7,7'-diolate top
Crystal data top
C44H44N2O8Z = 2
Mr = 728.81F(000) = 772
Triclinic, P1Dx = 0.983 Mg m3
a = 11.6622 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 14.0738 (11) ÅCell parameters from 2564 reflections
c = 15.6906 (10) Åθ = 3.9–70.6°
α = 82.472 (6)°µ = 0.55 mm1
β = 84.831 (6)°T = 293 K
γ = 75.009 (7)°Prism, broun
V = 2462.0 (3) Å30.40 × 0.32 × 0.27 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
9019 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.2576 pixels mm-1θmax = 70.6°, θmin = 3.9°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1616
Tmin = 0.811, Tmax = 0.862l = 1816
18952 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 0.65 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
9019 reflections(Δ/σ)max < 0.001
519 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction (2009), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06997 (18)0.40724 (17)0.33397 (13)0.0668 (6)
O20.6101 (2)0.2359 (2)0.58343 (19)0.1250 (10)
O30.23580 (18)0.62089 (16)0.58330 (12)0.0774 (6)
O40.1425 (2)0.7699 (2)0.55783 (17)0.0923 (8)
O50.27695 (17)0.35008 (18)0.24986 (14)0.0741 (7)
O60.97592 (18)0.21416 (17)0.27160 (14)0.0886 (7)
O70.46897 (19)0.06734 (18)0.07019 (15)0.1002 (9)
O80.3149 (2)0.06336 (18)0.03842 (14)0.0887 (8)
N10.2902 (2)0.4750 (2)0.53257 (17)0.0736 (8)
N20.5550 (2)0.1627 (2)0.16491 (18)0.0824 (9)
C10.0203 (2)0.4872 (2)0.32283 (17)0.0543 (7)
C20.0593 (2)0.4959 (2)0.25382 (17)0.0546 (8)
C30.1135 (3)0.5752 (2)0.24359 (18)0.0657 (9)
C40.0827 (3)0.6422 (2)0.30335 (19)0.0677 (9)
H4A0.11880.69460.29680.081*
C50.0267 (3)0.7112 (2)0.43314 (19)0.0680 (9)
C60.1066 (3)0.7018 (2)0.4998 (2)0.0681 (9)
C70.1641 (3)0.6211 (2)0.51583 (18)0.0627 (9)
C80.1427 (2)0.5498 (2)0.45576 (17)0.0570 (8)
C90.0561 (2)0.5568 (2)0.38381 (17)0.0537 (8)
C100.0002 (2)0.6367 (2)0.37361 (18)0.0600 (8)
C110.1982 (2)0.3535 (2)0.18905 (16)0.0563 (8)
C120.0890 (2)0.4206 (2)0.19037 (17)0.0587 (8)
C130.0074 (2)0.4204 (2)0.12890 (17)0.0615 (8)
C140.0405 (3)0.3496 (2)0.07254 (17)0.0688 (9)
H140.01490.34700.03440.083*
C150.1802 (2)0.2079 (2)0.00811 (18)0.0623 (8)
C160.2827 (3)0.1384 (2)0.01332 (18)0.0677 (9)
C170.3742 (3)0.1370 (3)0.07291 (19)0.0730 (10)
C180.3505 (2)0.2143 (2)0.12572 (17)0.0601 (8)
C190.2357 (2)0.2845 (2)0.12808 (17)0.0571 (8)
C200.1511 (2)0.2814 (2)0.06846 (17)0.0591 (8)
C210.1981 (3)0.5900 (2)0.16700 (19)0.0862 (11)
H21A0.21640.65290.16620.129*
H21B0.16160.58860.11490.129*
H21C0.27000.53810.17130.129*
C220.2114 (3)0.4812 (2)0.46653 (19)0.0642 (8)
H220.20170.43740.42540.077*
C230.0276 (4)0.7993 (3)0.4206 (2)0.0993 (13)
H230.09140.78490.37550.119*
C240.0868 (4)0.8144 (3)0.4976 (3)0.1269 (15)
H24A0.15430.84050.47850.190*
H24B0.11260.75220.53230.190*
H24C0.03130.86010.53120.190*
C250.0552 (5)0.8930 (4)0.3869 (3)0.192 (3)
H25A0.06640.89120.32740.288*
H25B0.02260.94780.39250.288*
H25C0.13040.90080.41920.288*
C260.1129 (3)0.4922 (2)0.12655 (19)0.0819 (10)
H26A0.15530.48030.08100.123*
H26B0.10350.55860.11660.123*
H26C0.15670.48360.18060.123*
C270.4492 (3)0.2255 (2)0.16703 (18)0.0742 (10)
H270.43850.28010.19720.089*
C280.0952 (3)0.2073 (3)0.0607 (2)0.0935 (13)
H280.03130.26810.05920.112*
C290.1528 (3)0.2089 (3)0.1511 (2)0.1217 (16)
H29A0.19180.26190.16180.183*
H29B0.09300.21870.19190.183*
H29C0.21010.14710.15710.183*
C300.0377 (4)0.1211 (4)0.0378 (3)0.1432 (19)
H30A0.01260.13100.01380.215*
H30B0.09850.06060.02870.215*
H30C0.00890.11740.08410.215*
C310.3701 (3)0.4116 (3)0.5449 (2)0.0736 (9)
C320.4309 (3)0.4051 (3)0.6236 (2)0.1032 (13)
H320.41780.43990.66680.124*
C330.5130 (3)0.3461 (3)0.6395 (3)0.1062 (13)
H330.55370.34080.69300.127*
C340.5315 (3)0.2971 (3)0.5753 (3)0.0971 (12)
C350.4745 (3)0.3059 (3)0.4958 (3)0.1026 (12)
H350.49030.27300.45230.123*
C360.3941 (3)0.3627 (3)0.4797 (2)0.0961 (12)
H360.35580.36860.42540.115*
C370.6735 (3)0.2272 (4)0.6640 (3)0.1379 (18)
H37A0.72920.18830.66090.207*
H37B0.71550.29190.67820.207*
H37C0.61880.19560.70740.207*
C380.6624 (3)0.1761 (3)0.1948 (2)0.0750 (10)
C390.6640 (3)0.2563 (3)0.2352 (2)0.1141 (15)
H390.59380.30320.24700.137*
C400.7716 (3)0.2665 (3)0.2581 (2)0.1103 (14)
H400.77400.32300.28210.132*
C410.8741 (3)0.1953 (3)0.24610 (19)0.0739 (10)
C420.8717 (3)0.1150 (3)0.2073 (2)0.0886 (11)
H420.94150.06690.19760.106*
C430.7637 (3)0.1053 (3)0.1821 (2)0.0935 (12)
H430.76160.04990.15650.112*
C441.0825 (3)0.1378 (2)0.2661 (2)0.0842 (10)
H44A1.14590.15760.28820.126*
H44B1.10240.12610.20700.126*
H44C1.07130.07830.29930.126*
H1A0.302 (4)0.518 (4)0.577 (3)0.20 (2)*
H20.571 (3)0.109 (2)0.1344 (19)0.095 (11)*
H10.023 (3)0.352 (3)0.313 (2)0.133 (16)*
H40.184 (3)0.745 (3)0.598 (2)0.122 (18)*
H50.243 (2)0.381 (2)0.2898 (17)0.071 (10)*
H80.397 (3)0.023 (3)0.037 (2)0.124 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (13)0.0589 (16)0.0781 (14)0.0206 (12)0.0069 (11)0.0238 (12)
O20.099 (2)0.146 (3)0.140 (3)0.063 (2)0.0104 (18)0.017 (2)
O30.0750 (14)0.0936 (19)0.0625 (13)0.0130 (12)0.0044 (11)0.0264 (12)
O40.0997 (19)0.099 (2)0.0850 (18)0.0209 (16)0.0106 (15)0.0536 (16)
O50.0574 (13)0.0986 (19)0.0710 (14)0.0096 (12)0.0063 (11)0.0454 (14)
O60.0646 (14)0.0966 (19)0.1167 (18)0.0211 (14)0.0188 (13)0.0442 (15)
O70.0664 (14)0.106 (2)0.130 (2)0.0146 (14)0.0295 (13)0.0754 (16)
O80.0720 (15)0.0960 (19)0.1022 (17)0.0015 (14)0.0224 (13)0.0600 (15)
N10.0690 (18)0.085 (2)0.0626 (18)0.0132 (16)0.0030 (15)0.0088 (16)
N20.0558 (17)0.091 (2)0.106 (2)0.0032 (16)0.0107 (14)0.0588 (19)
C10.0517 (17)0.050 (2)0.0596 (19)0.0086 (15)0.0007 (15)0.0118 (15)
C20.0550 (17)0.055 (2)0.0539 (18)0.0107 (16)0.0007 (15)0.0152 (15)
C30.0634 (19)0.074 (2)0.0596 (19)0.0141 (18)0.0024 (15)0.0169 (17)
C40.072 (2)0.056 (2)0.080 (2)0.0191 (17)0.0099 (18)0.0172 (18)
C50.083 (2)0.063 (2)0.061 (2)0.0160 (18)0.0017 (17)0.0223 (17)
C60.067 (2)0.070 (2)0.067 (2)0.0036 (18)0.0080 (17)0.0309 (18)
C70.0558 (19)0.068 (2)0.056 (2)0.0051 (17)0.0085 (16)0.0172 (17)
C80.0521 (17)0.060 (2)0.0576 (18)0.0088 (16)0.0031 (15)0.0136 (16)
C90.0474 (16)0.054 (2)0.0570 (18)0.0038 (15)0.0039 (14)0.0151 (15)
C100.0609 (19)0.057 (2)0.063 (2)0.0113 (16)0.0017 (16)0.0186 (16)
C110.0543 (18)0.067 (2)0.0513 (17)0.0173 (16)0.0010 (14)0.0202 (15)
C120.0559 (19)0.065 (2)0.0545 (18)0.0082 (16)0.0002 (15)0.0191 (16)
C130.0612 (19)0.061 (2)0.0595 (18)0.0050 (16)0.0022 (15)0.0184 (16)
C140.064 (2)0.085 (3)0.0593 (19)0.0121 (18)0.0081 (15)0.0252 (18)
C150.0551 (18)0.066 (2)0.067 (2)0.0084 (17)0.0084 (15)0.0228 (17)
C160.062 (2)0.074 (2)0.074 (2)0.0143 (18)0.0047 (16)0.0385 (18)
C170.061 (2)0.080 (3)0.082 (2)0.0069 (19)0.0089 (17)0.040 (2)
C180.0492 (17)0.070 (2)0.0641 (19)0.0088 (16)0.0069 (14)0.0295 (17)
C190.0486 (17)0.066 (2)0.0601 (18)0.0123 (15)0.0012 (14)0.0242 (16)
C200.0532 (18)0.064 (2)0.0594 (18)0.0062 (16)0.0010 (14)0.0234 (16)
C210.086 (2)0.088 (3)0.090 (2)0.034 (2)0.026 (2)0.028 (2)
C220.0582 (18)0.066 (2)0.066 (2)0.0066 (17)0.0035 (16)0.0186 (16)
C230.133 (3)0.092 (3)0.091 (3)0.053 (3)0.019 (2)0.043 (2)
C240.125 (3)0.111 (4)0.168 (4)0.061 (3)0.048 (3)0.013 (3)
C250.273 (7)0.104 (4)0.234 (6)0.104 (5)0.152 (5)0.065 (4)
C260.068 (2)0.094 (3)0.079 (2)0.0016 (19)0.0089 (17)0.026 (2)
C270.058 (2)0.083 (3)0.085 (2)0.0089 (18)0.0003 (17)0.0433 (19)
C280.076 (2)0.118 (3)0.086 (3)0.005 (2)0.026 (2)0.052 (2)
C290.148 (4)0.126 (4)0.082 (3)0.007 (3)0.035 (3)0.042 (2)
C300.101 (3)0.199 (5)0.166 (4)0.074 (3)0.020 (3)0.070 (4)
C310.060 (2)0.085 (3)0.073 (2)0.0167 (19)0.0062 (18)0.0060 (19)
C320.099 (3)0.129 (4)0.080 (3)0.035 (3)0.005 (2)0.002 (2)
C330.094 (3)0.134 (4)0.093 (3)0.046 (3)0.010 (2)0.006 (3)
C340.074 (2)0.105 (4)0.109 (3)0.032 (2)0.002 (2)0.012 (3)
C350.085 (3)0.112 (4)0.121 (3)0.045 (3)0.003 (2)0.015 (3)
C360.086 (3)0.114 (3)0.094 (3)0.036 (2)0.014 (2)0.025 (2)
C370.094 (3)0.185 (5)0.128 (4)0.057 (3)0.009 (3)0.054 (3)
C380.0506 (18)0.088 (3)0.093 (2)0.0087 (18)0.0132 (16)0.047 (2)
C390.069 (2)0.121 (3)0.164 (4)0.003 (2)0.015 (2)0.097 (3)
C400.071 (2)0.118 (3)0.161 (4)0.016 (2)0.021 (2)0.088 (3)
C410.061 (2)0.084 (3)0.084 (2)0.0150 (19)0.0073 (17)0.037 (2)
C420.056 (2)0.090 (3)0.125 (3)0.0051 (19)0.0157 (19)0.051 (2)
C430.063 (2)0.087 (3)0.140 (3)0.007 (2)0.015 (2)0.068 (2)
C440.064 (2)0.089 (3)0.105 (3)0.020 (2)0.0120 (19)0.023 (2)
Geometric parameters (Å, º) top
O1—C11.379 (3)C21—H21B0.9600
O1—H10.91 (4)C21—H21C0.9600
O2—C341.398 (4)C22—H220.9300
O2—C371.413 (4)C23—H230.9800
O3—C71.289 (3)C23—C241.508 (4)
O4—C61.371 (3)C23—C251.484 (5)
O4—H40.86 (3)C24—H24A0.9600
O5—C111.371 (3)C24—H24B0.9600
O5—H50.82 (3)C24—H24C0.9600
O6—C411.384 (3)C25—H25A0.9600
O6—C441.422 (3)C25—H25B0.9600
O7—C171.275 (3)C25—H25C0.9600
O8—C161.371 (3)C26—H26A0.9600
O8—H80.98 (3)C26—H26B0.9600
N1—C221.332 (4)C26—H26C0.9600
N1—C311.433 (4)C27—H270.9300
N1—H1A0.95 (5)C28—H280.9800
N2—C271.319 (4)C28—C291.514 (4)
N2—C381.441 (4)C28—C301.521 (5)
N2—H20.92 (3)C29—H29A0.9600
C1—C21.376 (3)C29—H29B0.9600
C1—C91.417 (3)C29—H29C0.9600
C2—C31.403 (4)C30—H30A0.9600
C2—C121.502 (4)C30—H30B0.9600
C3—C41.376 (4)C30—H30C0.9600
C3—C211.513 (4)C31—C321.373 (4)
C4—H4A0.9300C31—C361.391 (4)
C4—C101.404 (4)C32—H320.9300
C5—C61.353 (4)C32—C331.409 (5)
C5—C101.450 (4)C33—H330.9300
C5—C231.516 (5)C33—C341.354 (5)
C6—C71.446 (4)C34—C351.367 (5)
C7—C81.426 (4)C35—H350.9300
C8—C91.456 (4)C35—C361.368 (5)
C8—C221.390 (4)C36—H360.9300
C9—C101.428 (4)C37—H37A0.9600
C11—C121.376 (4)C37—H37B0.9600
C11—C191.414 (3)C37—H37C0.9600
C12—C131.415 (4)C38—C391.369 (4)
C13—C141.376 (3)C38—C431.353 (4)
C13—C261.502 (4)C39—H390.9300
C14—H140.9300C39—C401.383 (4)
C14—C201.397 (4)C40—H400.9300
C15—C161.336 (4)C40—C411.364 (4)
C15—C201.449 (3)C41—C421.359 (4)
C15—C281.532 (4)C42—H420.9300
C16—C171.476 (4)C42—C431.398 (4)
C17—C181.409 (4)C43—H430.9300
C18—C191.445 (4)C44—H44A0.9600
C18—C271.423 (4)C44—H44B0.9600
C19—C201.431 (4)C44—H44C0.9600
C21—H21A0.9600
C1—O1—H1114 (2)C23—C24—H24A109.5
C34—O2—C37116.4 (4)C23—C24—H24B109.5
C6—O4—H4107 (3)C23—C24—H24C109.5
C11—O5—H5110 (2)H24A—C24—H24B109.5
C41—O6—C44116.8 (2)H24A—C24—H24C109.5
C16—O8—H8117 (2)H24B—C24—H24C109.5
C22—N1—C31126.7 (3)C23—C25—H25A109.5
C22—N1—H1A121 (3)C23—C25—H25B109.5
C31—N1—H1A112 (3)C23—C25—H25C109.5
C27—N2—C38126.5 (3)H25A—C25—H25B109.5
C27—N2—H2122 (2)H25A—C25—H25C109.5
C38—N2—H2111 (2)H25B—C25—H25C109.5
O1—C1—C9117.2 (3)C13—C26—H26A109.5
C2—C1—O1119.0 (2)C13—C26—H26B109.5
C2—C1—C9123.8 (3)C13—C26—H26C109.5
C1—C2—C3119.4 (3)H26A—C26—H26B109.5
C1—C2—C12120.3 (3)H26A—C26—H26C109.5
C3—C2—C12120.2 (3)H26B—C26—H26C109.5
C2—C3—C21121.4 (3)N2—C27—C18123.6 (3)
C4—C3—C2117.8 (3)N2—C27—H27118.2
C4—C3—C21120.7 (3)C18—C27—H27118.2
C3—C4—H4A117.8C15—C28—H28106.9
C3—C4—C10124.3 (3)C29—C28—C15113.3 (3)
C10—C4—H4A117.8C29—C28—H28106.9
C6—C5—C10117.5 (3)C29—C28—C30112.2 (3)
C6—C5—C23120.2 (3)C30—C28—C15110.2 (3)
C10—C5—C23122.3 (3)C30—C28—H28106.9
O4—C6—C7113.5 (3)C28—C29—H29A109.5
C5—C6—O4122.6 (3)C28—C29—H29B109.5
C5—C6—C7123.9 (3)C28—C29—H29C109.5
O3—C7—C6116.7 (3)H29A—C29—H29B109.5
O3—C7—C8124.1 (3)H29A—C29—H29C109.5
C8—C7—C6119.2 (3)H29B—C29—H29C109.5
C7—C8—C9118.4 (3)C28—C30—H30A109.5
C22—C8—C7117.8 (3)C28—C30—H30B109.5
C22—C8—C9123.8 (3)C28—C30—H30C109.5
C1—C9—C8124.3 (3)H30A—C30—H30B109.5
C1—C9—C10116.4 (3)H30A—C30—H30C109.5
C10—C9—C8119.2 (2)H30B—C30—H30C109.5
C4—C10—C5120.2 (3)C32—C31—N1117.3 (3)
C4—C10—C9118.1 (3)C32—C31—C36119.3 (4)
C9—C10—C5121.7 (3)C36—C31—N1123.2 (3)
O5—C11—C12120.1 (2)C31—C32—H32119.8
O5—C11—C19116.3 (2)C31—C32—C33120.4 (4)
C12—C11—C19123.6 (2)C33—C32—H32119.8
C11—C12—C2120.2 (2)C32—C33—H33120.6
C11—C12—C13119.1 (2)C34—C33—C32118.7 (4)
C13—C12—C2120.7 (2)C34—C33—H33120.6
C12—C13—C26121.7 (2)C33—C34—O2124.0 (4)
C14—C13—C12117.6 (3)C33—C34—C35121.3 (4)
C14—C13—C26120.7 (3)C35—C34—O2114.7 (4)
C13—C14—H14117.6C34—C35—H35119.7
C13—C14—C20124.8 (3)C34—C35—C36120.5 (4)
C20—C14—H14117.6C36—C35—H35119.7
C16—C15—C20119.2 (3)C31—C36—H36120.1
C16—C15—C28119.3 (3)C35—C36—C31119.7 (4)
C20—C15—C28121.4 (3)C35—C36—H36120.1
O8—C16—C17113.5 (3)O2—C37—H37A109.5
C15—C16—O8123.2 (3)O2—C37—H37B109.5
C15—C16—C17123.4 (3)O2—C37—H37C109.5
O7—C17—C16116.9 (3)H37A—C37—H37B109.5
O7—C17—C18126.0 (3)H37A—C37—H37C109.5
C18—C17—C16117.1 (3)H37B—C37—H37C109.5
C17—C18—C19120.7 (2)C39—C38—N2122.5 (3)
C17—C18—C27116.1 (2)C43—C38—N2117.3 (3)
C27—C18—C19122.7 (2)C43—C38—C39120.2 (3)
C11—C19—C18124.1 (2)C38—C39—H39120.5
C11—C19—C20117.1 (2)C38—C39—C40119.0 (3)
C20—C19—C18118.7 (2)C40—C39—H39120.5
C14—C20—C15122.2 (3)C39—C40—H40119.5
C14—C20—C19117.6 (2)C41—C40—C39121.1 (3)
C19—C20—C15120.2 (2)C41—C40—H40119.5
C3—C21—H21A109.5C40—C41—O6115.6 (3)
C3—C21—H21B109.5C42—C41—O6124.7 (3)
C3—C21—H21C109.5C42—C41—C40119.5 (3)
H21A—C21—H21B109.5C41—C42—H42120.2
H21A—C21—H21C109.5C41—C42—C43119.6 (3)
H21B—C21—H21C109.5C43—C42—H42120.2
N1—C22—C8123.5 (3)C38—C43—C42120.3 (3)
N1—C22—H22118.3C38—C43—H43119.8
C8—C22—H22118.3C42—C43—H43119.8
C5—C23—H23105.6O6—C44—H44A109.5
C24—C23—C5115.0 (3)O6—C44—H44B109.5
C24—C23—H23105.6O6—C44—H44C109.5
C25—C23—C5113.6 (4)H44A—C44—H44B109.5
C25—C23—H23105.6H44A—C44—H44C109.5
C25—C23—C24110.6 (3)H44B—C44—H44C109.5
O1—C1—C2—C3177.8 (3)C12—C11—C19—C18179.5 (3)
O1—C1—C2—C121.6 (4)C12—C11—C19—C204.0 (5)
O1—C1—C9—C81.1 (4)C12—C13—C14—C203.7 (5)
O1—C1—C9—C10177.2 (2)C13—C14—C20—C15179.4 (3)
O2—C34—C35—C36179.2 (4)C13—C14—C20—C191.0 (5)
O3—C7—C8—C9177.9 (2)C15—C16—C17—O7178.8 (3)
O3—C7—C8—C226.1 (4)C15—C16—C17—C180.6 (5)
O4—C6—C7—O33.1 (4)C16—C15—C20—C14173.1 (3)
O4—C6—C7—C8174.5 (3)C16—C15—C20—C195.2 (5)
O5—C11—C12—C25.0 (4)C16—C15—C28—C2955.0 (5)
O5—C11—C12—C13177.7 (3)C16—C15—C28—C3071.5 (4)
O5—C11—C19—C181.5 (5)C16—C17—C18—C197.1 (5)
O5—C11—C19—C20175.0 (3)C16—C17—C18—C27165.5 (3)
O6—C41—C42—C43178.1 (3)C17—C18—C19—C11169.1 (3)
O7—C17—C18—C19174.9 (3)C17—C18—C19—C207.3 (5)
O7—C17—C18—C2712.5 (5)C17—C18—C27—N26.9 (5)
O8—C16—C17—O71.0 (5)C18—C19—C20—C14179.5 (3)
O8—C16—C17—C18177.2 (3)C18—C19—C20—C151.1 (5)
N1—C31—C32—C33178.5 (3)C19—C11—C12—C2176.0 (3)
N1—C31—C36—C35177.9 (3)C19—C11—C12—C131.3 (5)
N2—C38—C39—C40176.7 (4)C19—C18—C27—N2179.3 (3)
N2—C38—C43—C42178.2 (3)C20—C15—C16—O8176.9 (3)
C1—C2—C3—C40.9 (4)C20—C15—C16—C175.5 (5)
C1—C2—C3—C21177.7 (3)C20—C15—C28—C29125.8 (3)
C1—C2—C12—C11107.7 (3)C20—C15—C28—C30107.6 (4)
C1—C2—C12—C1375.0 (4)C21—C3—C4—C10176.5 (3)
C1—C9—C10—C42.1 (4)C22—N1—C31—C32169.9 (3)
C1—C9—C10—C5178.4 (3)C22—N1—C31—C3614.6 (5)
C2—C1—C9—C8178.3 (3)C22—C8—C9—C18.7 (4)
C2—C1—C9—C103.4 (4)C22—C8—C9—C10173.1 (3)
C2—C3—C4—C100.3 (5)C23—C5—C6—O40.4 (5)
C2—C12—C13—C14179.8 (3)C23—C5—C6—C7179.0 (3)
C2—C12—C13—C262.3 (5)C23—C5—C10—C42.7 (5)
C3—C2—C12—C1171.7 (4)C23—C5—C10—C9176.8 (3)
C3—C2—C12—C13105.6 (3)C26—C13—C14—C20178.4 (3)
C3—C4—C10—C5179.9 (3)C27—N2—C38—C394.3 (6)
C3—C4—C10—C90.3 (4)C27—N2—C38—C43176.1 (3)
C5—C6—C7—O3178.2 (3)C27—C18—C19—C1118.8 (5)
C5—C6—C7—C84.3 (5)C27—C18—C19—C20164.8 (3)
C6—C5—C10—C4179.8 (3)C28—C15—C16—O82.3 (5)
C6—C5—C10—C90.7 (4)C28—C15—C16—C17175.3 (3)
C6—C5—C23—C2454.8 (5)C28—C15—C20—C146.0 (5)
C6—C5—C23—C2574.1 (4)C28—C15—C20—C19175.6 (3)
C6—C7—C8—C94.7 (4)C31—N1—C22—C8175.1 (3)
C6—C7—C8—C22171.3 (3)C31—C32—C33—C340.8 (6)
C7—C8—C9—C1175.5 (3)C32—C31—C36—C352.5 (6)
C7—C8—C9—C102.7 (4)C32—C33—C34—O2179.6 (4)
C7—C8—C22—N14.3 (4)C32—C33—C34—C351.5 (7)
C8—C9—C10—C4179.5 (3)C33—C34—C35—C361.8 (6)
C8—C9—C10—C50.0 (4)C34—C35—C36—C310.2 (6)
C9—C1—C2—C32.9 (4)C36—C31—C32—C332.8 (6)
C9—C1—C2—C12177.7 (3)C37—O2—C34—C330.8 (6)
C9—C8—C22—N1179.9 (3)C37—O2—C34—C35178.2 (3)
C10—C5—C6—O4177.2 (3)C38—N2—C27—C18170.9 (3)
C10—C5—C6—C71.5 (5)C38—C39—C40—C414.2 (7)
C10—C5—C23—C24127.8 (3)C39—C38—C43—C422.2 (6)
C10—C5—C23—C25103.3 (4)C39—C40—C41—O6180.0 (4)
C11—C12—C13—C142.5 (5)C39—C40—C41—C423.1 (6)
C11—C12—C13—C26179.6 (3)C40—C41—C42—C431.6 (6)
C11—C19—C20—C142.8 (4)C41—C42—C43—C381.1 (6)
C11—C19—C20—C15175.6 (3)C43—C38—C39—C403.7 (6)
C12—C2—C3—C4179.7 (3)C44—O6—C41—C40175.3 (3)
C12—C2—C3—C212.9 (4)C44—O6—C41—C428.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.95 (5)1.83 (5)2.538 (4)129 (4)
N2—H2···O70.92 (3)1.87 (3)2.550 (3)129 (3)
O1—H1···O6i0.91 (4)2.13 (4)2.912 (3)144 (3)
O4—H4···O30.86 (3)2.04 (4)2.574 (4)119 (3)
O5—H5···O3ii0.82 (3)1.98 (3)2.684 (3)143 (3)
O8—H8···O70.98 (3)2.17 (3)2.601 (3)105 (2)
O8—H8···O7iii0.98 (3)1.83 (3)2.757 (3)158 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

Investigations were supported by research grants F7-T048 from Uzbek National Science Foundation.

References

First citationAdams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555–574.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBeketov, K. M., Ibraimov, B. T. & Talipov, S. A. (1994). Chem. Nat. Compd. 30, 49–56.  CrossRef Google Scholar
First citationCoutinho, E. M. (2002). Contraception, 65, 259–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, Solid-state Supramolecular Chemistry: Crystal Engineering, pp. 117–145. Oxford: Pergamon Press.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHonkeldieva, M., Talipov, S., Mardanov, R. & Ibragimov, B. (2015). Acta Cryst. E71, 184–187.  CSD CrossRef IUCr Journals Google Scholar
First citationIbragimov, B. T., Talipov, S. A. & Aripov, T. F. (1994). J. Incl Phenom. Macrocycl Chem. 17, 317–324.  CSD CrossRef CAS Web of Science Google Scholar
First citationKamaev, F. G., Baram, N. I., Ismailov, A. I., Leont'ev, V. B. & Sadykov, A. S. (1979). Russ. Chem. Bull. 28, 938–944.  CrossRef Web of Science Google Scholar
First citationKenar, J. A. (2006). J. Am. Oil Chem. Soc. 83, 269–302.  Web of Science CrossRef CAS Google Scholar
First citationMarchlewski, L. (1899). J. Prakt. Chem. 60, 84–90.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationReyes, J., Wyrick, S. D., Borriero, L. & Benos, D. J. (1986). Biochim. Biophys. Acta, 863, 101–109.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalipov, S. A., Ibragimov, B. T., Beketov, K. M., Praliev, K. D. & Aripov, T. F. (2004). Crystallogr. Rep. 49, 752–757.  Web of Science CrossRef CAS Google Scholar
First citationTalipov, S. A., Mamadrakhimov, A. A., Tiljakov, Z. G., Dowd, M. K., Ibragimov, B. T. & Xonkeldieva, M. T. (2009). J. Am. Oil Chem. Soc. 86, 207–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J., Li, J.-R., Yang, J.-X., Li, L.-L., Ouyang, W.-J., Wu, S.-W. & Zhang, F. (2014). Chin. Chem. Lett. 25, 1052–1056.  Web of Science CrossRef CAS Google Scholar
First citationZhan, Y., Jia, G., Wu, D., Xu, Y. & Xu, L. (2009). Arch. Pharm. Chem. Life Sci. 342, 223–229.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds