organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[2-phenyl-1-(phenyl­sulfon­yl)eth­yl]-1-phenyl­sulfonyl-1H-indole

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 October 2015; accepted 14 October 2015; online 4 November 2015)

In the title compound, C28H23NO4S2, the indole ring system (r.m.s. deviation = 0.007 Å) subtends dihedral angles of 78.69 (13) and 38.97 (13)° with the planes of the N- and C-bonded sulfonyl­benzene rings, respectively, and these two benzene rings are inclined to each other at an angle of 65.45 (16)°. The methyl­ene-linked phenyl ring is twisted at an angle of 81.80 (13)° from the indole ring. The mol­ecular structure features two short intra­molecular C—H⋯O contacts, which both generate S(6) rings. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, generating a three-dimensional network.

1. Related literature

For the biological activity of indole derivatives, see: Chen et al. (2015[Chen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532-6544.]); Ferro et al. (2015[Ferro, S., Certo, G., De Luca, L., Germanò, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme Inhib. Med. Chem. 31, 1-6.]); Parrino et al. (2015[Parrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901-1924.]); Ma et al. (2015[Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173-186.]). For a related structure, see: Umadevi et al. (2015[Umadevi, M., Raju, P., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o756-o757.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H23NO4S2

  • Mr = 501.59

  • Triclinic, [P \overline 1]

  • a = 9.7485 (6) Å

  • b = 10.4930 (6) Å

  • c = 12.2879 (6) Å

  • α = 94.479 (3)°

  • β = 96.926 (3)°

  • γ = 102.253 (3)°

  • V = 1212.36 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.22 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.946

  • 28630 measured reflections

  • 5104 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.109

  • S = 1.07

  • 5104 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.43 3.009 (4) 121
C15—H15⋯O2 0.98 2.11 2.907 (3) 137
C4—H4⋯O3i 0.93 2.49 3.314 (3) 148
C13—H13⋯O3ii 0.93 2.50 3.240 (3) 137
C2—H2⋯Cg4 0.93 2.83 3.544 (3) 134
C19—H19⋯Cg2iii 0.93 2.91 3.620 (4) 134
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Structural commentary top

Indole derivatives are known to exhibit biological activities such as anti-proliferative (Parrino et al., 2015), potential mushroom tyrosinase inhibitors (Ferro et al., 2015), anti-inflammatory (Chen et al., 2015) and anti-tumor (Ma et al., 2015). We herein report the crystal structure of (I) (Fig. 1). The geometric parameters of the title compound agree well with a similar structure [Umadevi et al. 2015].

The indole moiety is almost planar (r.m.s deviation = 0.007 Å] and makes the dihedral angles of 78.69 (13)° with N-bound phenyl­sulfonyl ring (C1—C6), 38.97 (13)° with C-bound phenyl­sulfonyl ring (C23—C28) and 81.80 (13)° with phenyl ring (C17—C22). The N-bound and C-bound phenyl­sulfonyl rings are inclined at an angle of 65.45 (16)°. The molecular structure is stabilized by weak intra­molecular C—H···O hydrogen bond and C—H···π (Table 1) inter­action. The crystal structure is formed by weak inter­molecular C—H···O hydrogen bonds (Fig. 2 & Table 1) and C—H···π (Table 1) inter­actions.

Synthesis and crystallization top

To a solution of 1-(phenyl­sulfonyl)-2-(phenyl­sulfonyl­methyl)-1H-indole (0.5 g, 1.21 mmol) in dry DMF (10 ml) K2CO3 (0.33 g, 2.43 mmol) and benzyl chloride (0.20 g, 1.58 mmol) were added and the reaction mixture was stirred at room temperature for 12 h. after completion of starting material (monitored by TLC), the reaction mass was poured over crushed ice containing Conc. HCl (3 ml) and extracted with ethyl acetate (20 ml). The combined organic extracts were washed with water (3 ml), brine solution (3 ml) and dried (Na2SO4). Removal of solvent followed by recrystallization of the crude product from methanol (5 ml) afforded the title compound as colourless blocks.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.

Related literature top

For the biological activity of indole derivatives, see: Chen et al. (2015); Ferro et al. (2015); Parrino et al. (2015); Ma et al. (2015). For a related structure, see: Umadevi et al. (2015).

Structure description top

Indole derivatives are known to exhibit biological activities such as anti-proliferative (Parrino et al., 2015), potential mushroom tyrosinase inhibitors (Ferro et al., 2015), anti-inflammatory (Chen et al., 2015) and anti-tumor (Ma et al., 2015). We herein report the crystal structure of (I) (Fig. 1). The geometric parameters of the title compound agree well with a similar structure [Umadevi et al. 2015].

The indole moiety is almost planar (r.m.s deviation = 0.007 Å] and makes the dihedral angles of 78.69 (13)° with N-bound phenyl­sulfonyl ring (C1—C6), 38.97 (13)° with C-bound phenyl­sulfonyl ring (C23—C28) and 81.80 (13)° with phenyl ring (C17—C22). The N-bound and C-bound phenyl­sulfonyl rings are inclined at an angle of 65.45 (16)°. The molecular structure is stabilized by weak intra­molecular C—H···O hydrogen bond and C—H···π (Table 1) inter­action. The crystal structure is formed by weak inter­molecular C—H···O hydrogen bonds (Fig. 2 & Table 1) and C—H···π (Table 1) inter­actions.

For the biological activity of indole derivatives, see: Chen et al. (2015); Ferro et al. (2015); Parrino et al. (2015); Ma et al. (2015). For a related structure, see: Umadevi et al. (2015).

Synthesis and crystallization top

To a solution of 1-(phenyl­sulfonyl)-2-(phenyl­sulfonyl­methyl)-1H-indole (0.5 g, 1.21 mmol) in dry DMF (10 ml) K2CO3 (0.33 g, 2.43 mmol) and benzyl chloride (0.20 g, 1.58 mmol) were added and the reaction mixture was stirred at room temperature for 12 h. after completion of starting material (monitored by TLC), the reaction mass was poured over crushed ice containing Conc. HCl (3 ml) and extracted with ethyl acetate (20 ml). The combined organic extracts were washed with water (3 ml), brine solution (3 ml) and dried (Na2SO4). Removal of solvent followed by recrystallization of the crude product from methanol (5 ml) afforded the title compound as colourless blocks.

Refinement details top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
2-[2-Phenyl-1-(phenylsulfonyl)ethyl]-1-phenylsulfonyl-1H-indole top
Crystal data top
C28H23NO4S2Z = 2
Mr = 501.59F(000) = 524
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7485 (6) ÅCell parameters from 9872 reflections
b = 10.4930 (6) Åθ = 2.2–26.6°
c = 12.2879 (6) ŵ = 0.26 mm1
α = 94.479 (3)°T = 295 K
β = 96.926 (3)°Block, colourless
γ = 102.253 (3)°0.28 × 0.24 × 0.22 mm
V = 1212.36 (12) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5104 independent reflections
Radiation source: fine-focus sealed tube3744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 26.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.932, Tmax = 0.946k = 1313
28630 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0176P)2 + 1.3407P]
where P = (Fo2 + 2Fc2)/3
5104 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C28H23NO4S2γ = 102.253 (3)°
Mr = 501.59V = 1212.36 (12) Å3
Triclinic, P1Z = 2
a = 9.7485 (6) ÅMo Kα radiation
b = 10.4930 (6) ŵ = 0.26 mm1
c = 12.2879 (6) ÅT = 295 K
α = 94.479 (3)°0.28 × 0.24 × 0.22 mm
β = 96.926 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3744 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.946Rint = 0.030
28630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
5104 reflectionsΔρmin = 0.58 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7800 (2)0.2579 (2)0.49099 (18)0.0381 (5)
C20.7195 (3)0.1253 (3)0.4812 (2)0.0536 (7)
H20.70280.07540.41300.064*
C30.6844 (4)0.0681 (3)0.5743 (3)0.0672 (8)
H30.64310.02100.56900.081*
C40.7100 (4)0.1417 (4)0.6744 (2)0.0721 (10)
H40.68710.10240.73700.087*
C50.7693 (4)0.2735 (4)0.6827 (2)0.0719 (10)
H50.78560.32290.75110.086*
C60.8052 (3)0.3336 (3)0.5911 (2)0.0551 (7)
H60.84540.42300.59670.066*
C70.5685 (2)0.2997 (2)0.28275 (18)0.0364 (5)
C80.5302 (3)0.3979 (3)0.3462 (2)0.0565 (7)
H80.59730.46110.39310.068*
C90.3882 (4)0.3974 (3)0.3363 (3)0.0703 (9)
H90.35850.46150.37820.084*
C100.2879 (3)0.3042 (4)0.2659 (3)0.0677 (9)
H100.19280.30730.26130.081*
C110.3263 (3)0.2080 (3)0.2032 (2)0.0553 (7)
H110.25860.14600.15580.066*
C120.4692 (2)0.2047 (2)0.21191 (19)0.0391 (5)
C130.5447 (2)0.1211 (2)0.15991 (19)0.0395 (5)
H130.50400.04960.10800.047*
C140.6838 (2)0.1612 (2)0.19720 (17)0.0321 (5)
C150.8030 (3)0.1136 (2)0.15503 (18)0.0372 (5)
H150.88800.14400.20970.045*
C160.7758 (3)0.0364 (2)0.1323 (2)0.0487 (6)
H16A0.68540.06900.08570.058*
H16B0.84920.05920.09300.058*
C170.7744 (3)0.1007 (2)0.2368 (2)0.0464 (6)
C180.8982 (3)0.0935 (3)0.3066 (3)0.0713 (9)
H180.98380.04850.28830.086*
C190.8969 (4)0.1517 (4)0.4026 (3)0.0884 (12)
H190.98140.14450.44920.106*
C200.7738 (5)0.2196 (4)0.4301 (3)0.0833 (11)
H200.77410.26100.49430.100*
C210.6501 (4)0.2271 (3)0.3636 (3)0.0746 (10)
H210.56520.27190.38320.089*
C220.6499 (3)0.1682 (3)0.2671 (2)0.0588 (7)
H220.56460.17420.22180.071*
C230.8138 (3)0.3404 (2)0.03825 (19)0.0419 (6)
C240.9082 (3)0.4365 (3)0.1084 (2)0.0544 (7)
H240.98660.41760.14940.065*
C250.8843 (4)0.5624 (3)0.1169 (3)0.0716 (9)
H250.94500.62800.16610.086*
C260.7725 (4)0.5902 (3)0.0535 (3)0.0803 (11)
H260.75800.67510.05890.096*
C270.6815 (4)0.4954 (4)0.0176 (3)0.0806 (10)
H270.60670.51610.06190.097*
C280.7000 (3)0.3684 (3)0.0244 (3)0.0619 (8)
H280.63590.30250.07100.074*
N10.70401 (19)0.27497 (18)0.27447 (14)0.0333 (4)
O10.8486 (2)0.46961 (17)0.39621 (15)0.0570 (5)
O20.95665 (17)0.28679 (19)0.34733 (14)0.0507 (5)
O30.7321 (3)0.10587 (19)0.05895 (15)0.0762 (7)
O40.9842 (3)0.1806 (2)0.0183 (2)0.0821 (8)
S10.83746 (6)0.33264 (6)0.37640 (5)0.03940 (15)
S20.83884 (8)0.17893 (6)0.02663 (5)0.04973 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (12)0.0513 (14)0.0312 (11)0.0156 (11)0.0035 (9)0.0023 (10)
C20.0675 (19)0.0548 (16)0.0382 (14)0.0107 (14)0.0107 (13)0.0056 (12)
C30.077 (2)0.072 (2)0.0570 (18)0.0150 (17)0.0192 (16)0.0214 (16)
C40.066 (2)0.117 (3)0.0420 (16)0.029 (2)0.0174 (15)0.0277 (18)
C50.068 (2)0.115 (3)0.0307 (14)0.021 (2)0.0085 (13)0.0044 (16)
C60.0494 (16)0.0736 (19)0.0405 (14)0.0146 (14)0.0069 (12)0.0086 (13)
C70.0376 (13)0.0438 (13)0.0325 (11)0.0155 (10)0.0081 (9)0.0096 (10)
C80.0579 (18)0.0594 (17)0.0569 (17)0.0269 (14)0.0088 (14)0.0034 (13)
C90.072 (2)0.080 (2)0.076 (2)0.0471 (19)0.0254 (18)0.0069 (18)
C100.0442 (17)0.093 (2)0.079 (2)0.0337 (17)0.0154 (16)0.0245 (19)
C110.0361 (14)0.0706 (19)0.0612 (17)0.0141 (13)0.0068 (12)0.0138 (15)
C120.0326 (12)0.0494 (14)0.0365 (12)0.0084 (10)0.0072 (10)0.0110 (10)
C130.0374 (13)0.0417 (13)0.0357 (12)0.0016 (10)0.0060 (10)0.0005 (10)
C140.0382 (12)0.0329 (11)0.0269 (10)0.0084 (9)0.0090 (9)0.0053 (9)
C150.0406 (13)0.0378 (12)0.0351 (12)0.0103 (10)0.0118 (10)0.0016 (10)
C160.0622 (17)0.0389 (13)0.0497 (15)0.0161 (12)0.0205 (13)0.0010 (11)
C170.0542 (16)0.0372 (13)0.0540 (15)0.0201 (12)0.0144 (12)0.0044 (11)
C180.0500 (18)0.074 (2)0.101 (3)0.0284 (16)0.0145 (17)0.0323 (19)
C190.082 (3)0.091 (3)0.101 (3)0.041 (2)0.008 (2)0.037 (2)
C200.113 (3)0.068 (2)0.081 (2)0.035 (2)0.017 (2)0.0373 (19)
C210.083 (2)0.0584 (19)0.085 (2)0.0074 (17)0.024 (2)0.0262 (18)
C220.0602 (18)0.0491 (16)0.0636 (18)0.0035 (14)0.0073 (14)0.0107 (14)
C230.0491 (15)0.0422 (13)0.0344 (12)0.0027 (11)0.0176 (11)0.0066 (10)
C240.0609 (18)0.0486 (16)0.0498 (16)0.0019 (13)0.0098 (13)0.0077 (12)
C250.095 (3)0.0418 (16)0.071 (2)0.0038 (17)0.0230 (19)0.0002 (15)
C260.096 (3)0.054 (2)0.103 (3)0.027 (2)0.042 (2)0.017 (2)
C270.068 (2)0.089 (3)0.099 (3)0.036 (2)0.022 (2)0.031 (2)
C280.0578 (18)0.0658 (19)0.0601 (18)0.0080 (15)0.0097 (15)0.0074 (15)
N10.0338 (10)0.0360 (10)0.0296 (9)0.0078 (8)0.0050 (8)0.0000 (8)
O10.0690 (13)0.0390 (10)0.0527 (11)0.0034 (9)0.0004 (9)0.0035 (8)
O20.0323 (9)0.0753 (13)0.0435 (10)0.0100 (9)0.0073 (7)0.0017 (9)
O30.128 (2)0.0516 (12)0.0348 (10)0.0095 (12)0.0162 (11)0.0058 (9)
O40.0838 (16)0.0688 (14)0.1168 (19)0.0287 (12)0.0735 (15)0.0273 (13)
S10.0369 (3)0.0433 (3)0.0340 (3)0.0025 (3)0.0040 (2)0.0011 (2)
S20.0668 (5)0.0409 (3)0.0434 (4)0.0055 (3)0.0289 (3)0.0016 (3)
Geometric parameters (Å, º) top
C1—C61.376 (3)C16—C171.497 (4)
C1—C21.381 (4)C16—H16A0.9700
C1—S11.757 (2)C16—H16B0.9700
C2—C31.379 (4)C17—C181.377 (4)
C2—H20.9300C17—C221.378 (4)
C3—C41.366 (4)C18—C191.370 (5)
C3—H30.9300C18—H180.9300
C4—C51.371 (5)C19—C201.355 (5)
C4—H40.9300C19—H190.9300
C5—C61.379 (4)C20—C211.356 (5)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.380 (4)
C7—C81.385 (3)C21—H210.9300
C7—C121.392 (3)C22—H220.9300
C7—N11.413 (3)C23—C281.370 (4)
C8—C91.374 (4)C23—C241.373 (4)
C8—H80.9300C23—S21.760 (3)
C9—C101.385 (5)C24—C251.387 (4)
C9—H90.9300C24—H240.9300
C10—C111.365 (4)C25—C261.358 (5)
C10—H100.9300C25—H250.9300
C11—C121.392 (3)C26—C271.357 (5)
C11—H110.9300C26—H260.9300
C12—C131.421 (3)C27—C281.379 (5)
C13—C141.343 (3)C27—H270.9300
C13—H130.9300C28—H280.9300
C14—N11.429 (3)N1—S11.6679 (18)
C14—C151.490 (3)O1—S11.4176 (18)
C15—C161.536 (3)O2—S11.4211 (18)
C15—S21.812 (2)O3—S21.431 (2)
C15—H150.9800O4—S21.430 (2)
C6—C1—C2121.5 (2)H16A—C16—H16B108.0
C6—C1—S1118.0 (2)C18—C17—C22117.7 (3)
C2—C1—S1120.35 (18)C18—C17—C16120.9 (3)
C3—C2—C1118.9 (3)C22—C17—C16121.4 (3)
C3—C2—H2120.6C19—C18—C17120.9 (3)
C1—C2—H2120.6C19—C18—H18119.5
C4—C3—C2120.3 (3)C17—C18—H18119.5
C4—C3—H3119.9C20—C19—C18120.6 (3)
C2—C3—H3119.9C20—C19—H19119.7
C3—C4—C5120.2 (3)C18—C19—H19119.7
C3—C4—H4119.9C19—C20—C21119.8 (3)
C5—C4—H4119.9C19—C20—H20120.1
C4—C5—C6120.8 (3)C21—C20—H20120.1
C4—C5—H5119.6C20—C21—C22120.1 (3)
C6—C5—H5119.6C20—C21—H21119.9
C1—C6—C5118.3 (3)C22—C21—H21119.9
C1—C6—H6120.9C17—C22—C21120.8 (3)
C5—C6—H6120.9C17—C22—H22119.6
C8—C7—C12122.3 (2)C21—C22—H22119.6
C8—C7—N1129.9 (2)C28—C23—C24120.9 (3)
C12—C7—N1107.88 (19)C28—C23—S2119.0 (2)
C9—C8—C7116.6 (3)C24—C23—S2120.1 (2)
C9—C8—H8121.7C23—C24—C25118.7 (3)
C7—C8—H8121.7C23—C24—H24120.7
C8—C9—C10122.0 (3)C25—C24—H24120.7
C8—C9—H9119.0C26—C25—C24120.2 (3)
C10—C9—H9119.0C26—C25—H25119.9
C11—C10—C9121.1 (3)C24—C25—H25119.9
C11—C10—H10119.4C27—C26—C25120.8 (3)
C9—C10—H10119.4C27—C26—H26119.6
C10—C11—C12118.5 (3)C25—C26—H26119.6
C10—C11—H11120.7C26—C27—C28120.1 (3)
C12—C11—H11120.7C26—C27—H27120.0
C11—C12—C7119.5 (2)C28—C27—H27120.0
C11—C12—C13133.2 (2)C23—C28—C27119.3 (3)
C7—C12—C13107.3 (2)C23—C28—H28120.4
C14—C13—C12109.5 (2)C27—C28—H28120.4
C14—C13—H13125.2C7—N1—C14106.97 (18)
C12—C13—H13125.2C7—N1—S1120.12 (15)
C13—C14—N1108.34 (19)C14—N1—S1128.16 (15)
C13—C14—C15127.7 (2)O1—S1—O2118.97 (12)
N1—C14—C15123.26 (19)O1—S1—N1107.18 (11)
C14—C15—C16114.0 (2)O2—S1—N1107.21 (10)
C14—C15—S2110.79 (16)O1—S1—C1108.76 (11)
C16—C15—S2106.56 (15)O2—S1—C1109.44 (11)
C14—C15—H15108.4N1—S1—C1104.28 (10)
C16—C15—H15108.4O4—S2—O3118.72 (15)
S2—C15—H15108.4O4—S2—C23109.84 (12)
C17—C16—C15111.6 (2)O3—S2—C23106.77 (14)
C17—C16—H16A109.3O4—S2—C15106.67 (13)
C15—C16—H16A109.3O3—S2—C15107.65 (11)
C17—C16—H16B109.3C23—S2—C15106.58 (10)
C15—C16—H16B109.3
C6—C1—C2—C30.2 (4)S2—C23—C24—C25179.1 (2)
S1—C1—C2—C3175.7 (2)C23—C24—C25—C262.5 (5)
C1—C2—C3—C40.4 (5)C24—C25—C26—C270.9 (5)
C2—C3—C4—C50.8 (5)C25—C26—C27—C281.5 (6)
C3—C4—C5—C60.6 (5)C24—C23—C28—C270.8 (4)
C2—C1—C6—C50.4 (4)S2—C23—C28—C27178.5 (2)
S1—C1—C6—C5175.5 (2)C26—C27—C28—C232.4 (5)
C4—C5—C6—C10.0 (5)C8—C7—N1—C14179.9 (2)
C12—C7—C8—C90.2 (4)C12—C7—N1—C140.6 (2)
N1—C7—C8—C9179.6 (3)C8—C7—N1—S122.4 (3)
C7—C8—C9—C100.5 (5)C12—C7—N1—S1158.08 (16)
C8—C9—C10—C110.2 (5)C13—C14—N1—C70.9 (2)
C9—C10—C11—C120.4 (5)C15—C14—N1—C7171.90 (19)
C10—C11—C12—C70.7 (4)C13—C14—N1—S1156.01 (17)
C10—C11—C12—C13179.6 (3)C15—C14—N1—S133.0 (3)
C8—C7—C12—C110.4 (4)C7—N1—S1—O154.17 (19)
N1—C7—C12—C11179.1 (2)C14—N1—S1—O1153.59 (18)
C8—C7—C12—C13179.6 (2)C7—N1—S1—O2177.05 (17)
N1—C7—C12—C130.1 (2)C14—N1—S1—O224.8 (2)
C11—C12—C13—C14179.5 (3)C7—N1—S1—C161.05 (19)
C7—C12—C13—C140.5 (3)C14—N1—S1—C191.20 (19)
C12—C13—C14—N10.9 (3)C6—C1—S1—O123.8 (2)
C12—C13—C14—C15171.4 (2)C2—C1—S1—O1160.2 (2)
C13—C14—C15—C1644.7 (3)C6—C1—S1—O2107.6 (2)
N1—C14—C15—C16146.1 (2)C2—C1—S1—O268.4 (2)
C13—C14—C15—S275.5 (3)C6—C1—S1—N1137.9 (2)
N1—C14—C15—S293.7 (2)C2—C1—S1—N146.1 (2)
C14—C15—C16—C1769.2 (3)C28—C23—S2—O4134.5 (2)
S2—C15—C16—C17168.22 (19)C24—C23—S2—O444.9 (2)
C15—C16—C17—C1872.9 (3)C28—C23—S2—O34.5 (2)
C15—C16—C17—C22106.7 (3)C24—C23—S2—O3174.8 (2)
C22—C17—C18—C190.1 (5)C28—C23—S2—C15110.3 (2)
C16—C17—C18—C19179.6 (3)C24—C23—S2—C1570.3 (2)
C17—C18—C19—C201.1 (6)C14—C15—S2—O4154.36 (17)
C18—C19—C20—C211.9 (6)C16—C15—S2—O481.1 (2)
C19—C20—C21—C221.5 (6)C14—C15—S2—O377.20 (19)
C18—C17—C22—C210.4 (4)C16—C15—S2—O347.4 (2)
C16—C17—C22—C21180.0 (3)C14—C15—S2—C2337.04 (19)
C20—C21—C22—C170.3 (5)C16—C15—S2—C23161.59 (17)
C28—C23—C24—C251.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.433.009 (4)121
C15—H15···O20.982.112.907 (3)137
C4—H4···O3i0.932.493.314 (3)148
C13—H13···O3ii0.932.503.240 (3)137
C2—H2···Cg40.932.833.544 (3)134
C19—H19···Cg2iii0.932.913.620 (4)134
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.433.009 (4)121
C15—H15···O20.982.112.907 (3)137
C4—H4···O3i0.932.493.314 (3)148
C13—H13···O3ii0.932.503.240 (3)137
C2—H2···Cg40.932.833.544 (3)134
C19—H19···Cg2iii0.932.913.620 (4)134
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+2, y, z+1.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532–6544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerro, S., Certo, G., De Luca, L., Germanò, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme Inhib. Med. Chem. 31, 1–6.  CrossRef PubMed Google Scholar
First citationMa, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901–1924.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, M., Raju, P., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015). Acta Cryst. E71, o756–o757.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds