organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4,4,4-tri­fluoro-3-phenyl­but-2-enoic acid

aDepartment of Chemistry, Institute of Natural Sciences, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
*Correspondence e-mail: alexey0077@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 October 2015; accepted 10 December 2015; online 31 December 2015)

In the title compound, C10H7F3O2, the dihedral angle between the benzene ring and the ethyl­ene plane is 76.34 (11)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [010].

1. Scheme

The title compound is shown below.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H7F3O2

  • Mr = 216.16

  • Monoclinic, P 21 /c

  • a = 11.4093 (9) Å

  • b = 5.7749 (4) Å

  • c = 14.7469 (8) Å

  • β = 96.300 (6)°

  • V = 965.77 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 K

  • 0.25 × 0.12 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.835, Tmax = 1.000

  • 3799 measured reflections

  • 1960 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.171

  • S = 1.02

  • 1960 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.97 (3) 1.77 (3) 2.715 (2) 166 (3)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Related literature top

Please add background reference(s) e.g. to this class of compound, related structure(s), the synthesis. Please also supply figure caption including probability level.

Refinement top

The OH H atom was freely refined. C-bound H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Please add background reference(s) e.g. to this class of compound, related structure(s), the synthesis. Please also supply figure caption including probability level.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
(E)-4,4,4-Trifluoro-3-phenylbut-2-enoic acid top
Crystal data top
C10H7F3O2F(000) = 440
Mr = 216.16Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 11.4093 (9) ÅCell parameters from 816 reflections
b = 5.7749 (4) Åθ = 2.8–24.2°
c = 14.7469 (8) ŵ = 0.14 mm1
β = 96.300 (6)°T = 295 K
V = 965.77 (11) Å3Plate, colourless
Z = 40.25 × 0.12 × 0.03 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
1960 independent reflections
Radiation source: Enhance (Mo) X-ray Source1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9555 pixels mm-1θmax = 26.4°, θmin = 1.8°
ω scansh = 1411
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 76
Tmin = 0.835, Tmax = 1.000l = 1818
3799 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H7F3O2V = 965.77 (11) Å3
Mr = 216.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4093 (9) ŵ = 0.14 mm1
b = 5.7749 (4) ÅT = 295 K
c = 14.7469 (8) Å0.25 × 0.12 × 0.03 mm
β = 96.300 (6)°
Data collection top
Agilent Xcalibur, Eos
diffractometer
1960 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1252 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 1.000Rint = 0.022
3799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
1960 reflectionsΔρmin = 0.25 e Å3
140 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.33889 (15)0.9642 (4)0.53424 (11)0.0878 (6)
F20.16331 (17)1.0064 (3)0.47259 (11)0.0956 (7)
F30.23597 (19)1.2390 (3)0.57582 (12)0.0938 (6)
O10.01828 (17)0.4089 (3)0.62622 (12)0.0651 (6)
H10.042 (3)0.311 (6)0.674 (2)0.101 (11)*
O20.06645 (14)0.5790 (3)0.75208 (10)0.0510 (5)
C10.04817 (19)0.5707 (4)0.66953 (15)0.0439 (6)
C20.0965 (2)0.7311 (4)0.60493 (15)0.0484 (6)
H20.05810.73940.54600.058*
C30.19045 (19)0.8642 (4)0.62488 (14)0.0435 (5)
C40.2304 (2)1.0167 (5)0.55131 (17)0.0565 (7)
C50.26860 (18)0.8691 (4)0.71297 (14)0.0408 (5)
C60.3474 (2)0.6892 (4)0.73361 (17)0.0536 (6)
H60.34930.56570.69330.064*
C70.4226 (2)0.6914 (5)0.81282 (19)0.0683 (8)
H70.47530.56990.82580.082*
C80.4205 (3)0.8706 (6)0.87260 (18)0.0703 (8)
H80.47130.87060.92640.084*
C90.3438 (3)1.0505 (5)0.85370 (18)0.0719 (8)
H90.34281.17280.89470.086*
C100.2672 (2)1.0519 (4)0.77358 (17)0.0555 (7)
H100.21531.17480.76080.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0745 (12)0.1200 (16)0.0741 (11)0.0052 (10)0.0318 (9)0.0103 (10)
F20.1015 (14)0.1180 (16)0.0611 (10)0.0450 (11)0.0194 (9)0.0354 (10)
F30.1397 (17)0.0535 (10)0.0926 (13)0.0185 (10)0.0318 (11)0.0081 (10)
O10.0751 (13)0.0738 (13)0.0452 (9)0.0342 (10)0.0011 (8)0.0002 (9)
O20.0586 (11)0.0528 (10)0.0413 (9)0.0007 (7)0.0039 (7)0.0017 (7)
C10.0409 (13)0.0449 (13)0.0454 (12)0.0004 (9)0.0022 (9)0.0006 (10)
C20.0481 (14)0.0533 (14)0.0424 (11)0.0035 (11)0.0016 (9)0.0031 (11)
C30.0436 (13)0.0414 (12)0.0452 (12)0.0013 (10)0.0039 (9)0.0006 (10)
C40.0573 (16)0.0594 (16)0.0526 (14)0.0103 (12)0.0050 (11)0.0034 (12)
C50.0394 (12)0.0399 (12)0.0435 (11)0.0034 (9)0.0068 (9)0.0021 (10)
C60.0513 (14)0.0470 (14)0.0605 (14)0.0025 (11)0.0030 (11)0.0087 (12)
C70.0594 (17)0.0656 (18)0.0750 (18)0.0028 (13)0.0138 (13)0.0047 (16)
C80.0666 (19)0.087 (2)0.0536 (15)0.0150 (17)0.0080 (13)0.0038 (16)
C90.084 (2)0.077 (2)0.0546 (15)0.0144 (17)0.0094 (14)0.0261 (15)
C100.0611 (16)0.0498 (14)0.0566 (14)0.0052 (12)0.0114 (11)0.0091 (12)
Geometric parameters (Å, º) top
F1—C41.326 (3)C5—C61.386 (3)
F2—C41.320 (3)C5—C101.385 (3)
F3—C41.333 (3)C6—H60.9300
O1—H10.96 (3)C6—C71.371 (3)
O1—C11.323 (3)C7—H70.9300
O2—C11.213 (2)C7—C81.361 (4)
C1—C21.478 (3)C8—H80.9300
C2—H20.9300C8—C91.367 (4)
C2—C31.326 (3)C9—H90.9300
C3—C41.506 (3)C9—C101.390 (4)
C3—C51.493 (3)C10—H100.9300
C1—O1—H1105.0 (18)C10—C5—C3121.9 (2)
O1—C1—C2111.47 (19)C10—C5—C6118.9 (2)
O2—C1—O1122.6 (2)C5—C6—H6119.7
O2—C1—C2125.9 (2)C7—C6—C5120.7 (2)
C1—C2—H2117.6C7—C6—H6119.7
C3—C2—C1124.7 (2)C6—C7—H7119.8
C3—C2—H2117.6C8—C7—C6120.3 (3)
C2—C3—C4118.7 (2)C8—C7—H7119.8
C2—C3—C5126.5 (2)C7—C8—H8119.9
C5—C3—C4114.63 (19)C7—C8—C9120.1 (3)
F1—C4—F3104.7 (2)C9—C8—H8119.9
F1—C4—C3111.4 (2)C8—C9—H9119.8
F2—C4—F1106.6 (2)C8—C9—C10120.4 (2)
F2—C4—F3106.7 (2)C10—C9—H9119.8
F2—C4—C3114.5 (2)C5—C10—C9119.6 (2)
F3—C4—C3112.2 (2)C5—C10—H10120.2
C6—C5—C3119.22 (19)C9—C10—H10120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.97 (3)1.77 (3)2.715 (2)166 (3)
Symmetry code: (i) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.97 (3)1.77 (3)2.715 (2)166 (3)
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The work was supported by Act 211 Government of the Russian Federation (contract No. 02.A03.21.0006).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds