organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(E)-(4-fluoro­benzyl­­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, P A College of Engineering, Nadupadavu 574 153, D.K., Mangaluru, India, bDepartment of Industrial Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, cDepartment of Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, dDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, and ePURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madanmx@mangaloreuniversity.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 October 2015; accepted 25 October 2015; online 4 November 2015)

The title compound, C10H9FN4S, crystallizes with two mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the planes of the trizole and fluoro­benzene rings is 7.3 (3)° in mol­ecule A and 41.1 (3)° in mol­ecule B. Mol­ecule A features an intra­molecular C—H⋯S hydrogen bond, which closes an S(6) ring. In the crystal, A+B dimers linked by pairs of N—H⋯S hydrogen bonds occur, generating R22(8) loops. Weak ππ stacking contacts [centroid–centroid separation = 3.739 (6) Å] are also observed.

1. Related literature

For a related structure, see: Manjula et al. (2015[Manjula, P. S., Sarojini, B. K., Yathirajan, H. S., Akkurt, M., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. E71, 1003-1009.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H9FN4S

  • Mr = 236.27

  • Triclinic, [P \overline 1]

  • a = 9.1878 (13) Å

  • b = 11.0083 (16) Å

  • c = 12.9851 (18) Å

  • α = 99.526 (6)°

  • β = 104.963 (13)°

  • γ = 113.202 (19)°

  • V = 1112.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 K

  • 0.46 × 0.27 × 0.14 mm

2.2. Data collection

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.913, Tmax = 0.961

  • 7140 measured reflections

  • 3864 independent reflections

  • 2129 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.241

  • S = 1.14

  • 3864 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8A⋯S1A 0.93 2.47 3.232 (5) 139
N12A—H12A⋯S1Bi 0.86 2.54 3.391 (4) 173
N12B—H12B⋯S1Aii 0.86 2.49 3.326 (4) 163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x-1, y-1, z-1.

Data collection: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear SM Expert; data reduction: CrystalClear SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

As part of our crystal structural studies of new Schiff base derivatives useful for the preparation of biologically active 5-membered heterocyclic rings such as 3-methyl-1H-1,2,4-triazole-5(4H)-thione (Manjula et al., 2015). We now elucidate the crystal structure of the title molecule.

The asymmetric unit consists of two symmetry-independent molecules (A and B) of the title compound as shown in Fig. 1. The conformation of the molecules are different as evidenced by the dihedral angles [7.3 (3) ° and 41.1 (3) ° between triazole and flurobenzene moiety for molecules A and B, respectively]. An intramolecular interaction of the type C8A—H8A···S1A is observed in molecule A and is absent in molecule B (Fig. 1).

The packing of the molecules is as shown in figure 2. The molecules are linked through the N—H···S hydrogen bonds (Fig. 2) forming R22(8) ring motifs. A ππ interaction exists between centroid s: Cg1 A···Cg2 A (distance = 3.739 (6) Å) and Cg2 A···Cg1 A (distance = 3.740 (6) Å). Where, Cg1 A is N10A/C11A/N12A/N13A/C14A.

Related literature top

For a related structure, see: Manjula et al. (2015).

Experimental top

For the synthesis of titled compound (3), a suspension of 4-fluoro benzaldehyde (2) (0.01 mol) in ethanol (15 ml) was added to 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione (1) (0.01 mol) and heated to get a clear solution (scheme). To this few drops of conc·H2SO4 were added as a catalyst and refluxed for 36hrs on water bath. The precipitate formed was filtered and recrystallized from suitable reagent to get the titled compound. Single crystals were obtained from acetic acid. (mp. 431–433 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms were fixed geometrically (C—H = 0.93–0.96 Å, N—H = 0.98 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N).

Structure description top

As part of our crystal structural studies of new Schiff base derivatives useful for the preparation of biologically active 5-membered heterocyclic rings such as 3-methyl-1H-1,2,4-triazole-5(4H)-thione (Manjula et al., 2015). We now elucidate the crystal structure of the title molecule.

The asymmetric unit consists of two symmetry-independent molecules (A and B) of the title compound as shown in Fig. 1. The conformation of the molecules are different as evidenced by the dihedral angles [7.3 (3) ° and 41.1 (3) ° between triazole and flurobenzene moiety for molecules A and B, respectively]. An intramolecular interaction of the type C8A—H8A···S1A is observed in molecule A and is absent in molecule B (Fig. 1).

The packing of the molecules is as shown in figure 2. The molecules are linked through the N—H···S hydrogen bonds (Fig. 2) forming R22(8) ring motifs. A ππ interaction exists between centroid s: Cg1 A···Cg2 A (distance = 3.739 (6) Å) and Cg2 A···Cg1 A (distance = 3.740 (6) Å). Where, Cg1 A is N10A/C11A/N12A/N13A/C14A.

For a related structure, see: Manjula et al. (2015).

Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level and an intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A viewed along the c axis of the crystal packing of the title compound. Hydrogen bonds are drawn as a dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
4-[(E)-(4-Fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H9FN4SZ = 4
Mr = 236.27F(000) = 488
Triclinic, P1Dx = 1.411 Mg m3
a = 9.1878 (13) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.0083 (16) Åθ = 3.1–50.2°
c = 12.9851 (18) ŵ = 0.28 mm1
α = 99.526 (6)°T = 273 K
β = 104.963 (13)°Block, colourless
γ = 113.202 (19)°0.46 × 0.27 × 0.14 mm
V = 1112.1 (3) Å3
Data collection top
Rigaku Saturn724+
diffractometer
3864 independent reflections
Radiation source: Sealed tube2129 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 7.111 pixels mm-1θmax = 25.1°, θmin = 3.1°
profile data from ω scansh = 1010
Absorption correction: numerical
(NUMABS; Rigaku 1999)
k = 1313
Tmin = 0.913, Tmax = 0.961l = 1515
7140 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.241 w = 1/[σ2(Fo2) + (0.1091P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3864 reflectionsΔρmax = 0.38 e Å3
291 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C10H9FN4Sγ = 113.202 (19)°
Mr = 236.27V = 1112.1 (3) Å3
Triclinic, P1Z = 4
a = 9.1878 (13) ÅMo Kα radiation
b = 11.0083 (16) ŵ = 0.28 mm1
c = 12.9851 (18) ÅT = 273 K
α = 99.526 (6)°0.46 × 0.27 × 0.14 mm
β = 104.963 (13)°
Data collection top
Rigaku Saturn724+
diffractometer
3864 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku 1999)
2129 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.961Rint = 0.042
7140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 1.14Δρmax = 0.38 e Å3
3864 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.39859 (16)1.12479 (13)1.02659 (11)0.0573 (5)
F7A0.4939 (4)0.8642 (3)0.4693 (2)0.0760 (10)
N9A0.0027 (5)0.8484 (4)0.9077 (3)0.0473 (10)
N10A0.1291 (4)0.8735 (4)1.0034 (3)0.0432 (10)
N12A0.3539 (5)0.9370 (4)1.1424 (3)0.0561 (12)
H12A0.45520.98451.19080.067*
N13A0.2420 (5)0.8131 (4)1.1474 (3)0.0554 (12)
C1A0.1016 (6)1.0207 (5)0.7051 (4)0.0500 (13)
H1A0.00181.10370.73680.060*
C2A0.2264 (6)1.0043 (5)0.6090 (4)0.0530 (13)
H2A0.21201.07530.57640.064*
C3A0.3703 (6)0.8814 (5)0.5640 (4)0.0522 (13)
C4A0.3998 (6)0.7748 (5)0.6106 (4)0.0552 (14)
H4A0.50110.69310.57850.066*
C5A0.2734 (6)0.7923 (5)0.7079 (4)0.0536 (14)
H5A0.29020.72150.74090.064*
C6A0.1226 (6)0.9155 (5)0.7551 (4)0.0454 (12)
C8A0.0114 (6)0.9380 (5)0.8561 (4)0.0510 (13)
H8A0.11101.02110.88370.061*
C11A0.2945 (6)0.9791 (5)1.0568 (4)0.0446 (12)
C14A0.1047 (6)0.7753 (5)1.0609 (4)0.0526 (13)
C15A0.0608 (6)0.6508 (5)1.0301 (4)0.0719 (18)
H15A0.14730.67901.02940.108*
H15B0.05290.60111.08380.108*
H15C0.08890.59180.95720.108*
S1B0.26267 (16)0.12273 (14)0.35120 (11)0.0610 (5)
F7B0.5646 (4)0.4091 (3)0.9385 (2)0.0814 (11)
N9B0.1189 (5)0.4053 (4)0.4714 (3)0.0496 (11)
N10B0.0075 (5)0.3641 (4)0.3610 (3)0.0484 (10)
N12B0.2067 (5)0.2789 (4)0.2102 (3)0.0521 (11)
H12B0.30360.22430.15870.063*
N13B0.0935 (5)0.3990 (4)0.1997 (4)0.0613 (13)
C1B0.2667 (6)0.2306 (5)0.6557 (4)0.0508 (13)
H1B0.20790.14150.60580.061*
C2B0.3733 (6)0.2533 (5)0.7627 (4)0.0512 (13)
H2B0.38690.18110.78490.061*
C3B0.4578 (6)0.3861 (5)0.8343 (4)0.0562 (14)
C4B0.4449 (7)0.4946 (5)0.8038 (4)0.0625 (15)
H4B0.50820.58380.85340.075*
C5B0.3360 (6)0.4708 (5)0.6976 (4)0.0555 (14)
H5B0.32300.54390.67680.067*
C6B0.2462 (6)0.3377 (5)0.6221 (4)0.0451 (12)
C8B0.1354 (6)0.3082 (5)0.5079 (4)0.0475 (12)
H8B0.07590.21750.46080.057*
C11B0.1542 (6)0.2535 (5)0.3070 (4)0.0470 (12)
C14B0.0355 (6)0.4495 (5)0.2934 (4)0.0574 (14)
C15B0.1950 (7)0.5814 (6)0.3281 (5)0.087 (2)
H15D0.20520.64370.39380.130*
H15E0.19220.62320.26880.130*
H15F0.29040.56220.34390.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0503 (8)0.0540 (8)0.0611 (10)0.0180 (7)0.0128 (7)0.0283 (7)
F7A0.065 (2)0.094 (2)0.061 (2)0.0378 (18)0.0029 (16)0.0320 (18)
N9A0.044 (2)0.050 (2)0.041 (2)0.021 (2)0.0039 (19)0.015 (2)
N10A0.044 (2)0.048 (2)0.038 (2)0.022 (2)0.0117 (19)0.0175 (19)
N12A0.049 (3)0.062 (3)0.057 (3)0.022 (2)0.016 (2)0.032 (2)
N13A0.054 (3)0.056 (3)0.050 (3)0.018 (2)0.014 (2)0.024 (2)
C1A0.050 (3)0.051 (3)0.041 (3)0.016 (2)0.012 (2)0.016 (2)
C2A0.064 (3)0.052 (3)0.039 (3)0.025 (3)0.011 (3)0.018 (3)
C3A0.050 (3)0.061 (3)0.047 (3)0.027 (3)0.014 (3)0.020 (3)
C4A0.043 (3)0.059 (3)0.049 (3)0.019 (3)0.005 (2)0.010 (3)
C5A0.050 (3)0.048 (3)0.056 (3)0.015 (3)0.016 (3)0.022 (3)
C6A0.045 (3)0.057 (3)0.043 (3)0.029 (3)0.019 (2)0.019 (3)
C8A0.044 (3)0.053 (3)0.053 (3)0.020 (2)0.015 (2)0.020 (3)
C11A0.046 (3)0.045 (3)0.046 (3)0.023 (2)0.015 (2)0.018 (2)
C14A0.053 (3)0.054 (3)0.061 (4)0.029 (3)0.022 (3)0.030 (3)
C15A0.066 (4)0.064 (4)0.073 (4)0.015 (3)0.020 (3)0.037 (3)
S1B0.0540 (9)0.0608 (9)0.0584 (10)0.0150 (7)0.0144 (7)0.0318 (7)
F7B0.085 (2)0.078 (2)0.050 (2)0.0233 (18)0.0030 (17)0.0199 (17)
N9B0.050 (2)0.047 (2)0.036 (2)0.015 (2)0.0017 (19)0.015 (2)
N10B0.051 (2)0.042 (2)0.043 (2)0.016 (2)0.008 (2)0.019 (2)
N12B0.044 (2)0.052 (2)0.051 (3)0.014 (2)0.011 (2)0.022 (2)
N13B0.055 (3)0.058 (3)0.067 (3)0.017 (2)0.017 (2)0.037 (2)
C1B0.058 (3)0.046 (3)0.041 (3)0.021 (2)0.013 (2)0.012 (2)
C2B0.060 (3)0.045 (3)0.042 (3)0.023 (3)0.011 (3)0.013 (3)
C3B0.052 (3)0.064 (4)0.038 (3)0.014 (3)0.011 (2)0.020 (3)
C4B0.074 (4)0.042 (3)0.045 (3)0.016 (3)0.005 (3)0.004 (3)
C5B0.070 (4)0.048 (3)0.058 (4)0.032 (3)0.026 (3)0.023 (3)
C6B0.045 (3)0.045 (3)0.047 (3)0.019 (2)0.016 (2)0.021 (2)
C8B0.052 (3)0.047 (3)0.050 (3)0.027 (2)0.020 (2)0.014 (3)
C11B0.052 (3)0.045 (3)0.043 (3)0.020 (2)0.015 (2)0.020 (2)
C14B0.052 (3)0.054 (3)0.062 (4)0.018 (3)0.015 (3)0.032 (3)
C15B0.067 (4)0.071 (4)0.083 (5)0.001 (3)0.002 (3)0.047 (3)
Geometric parameters (Å, º) top
S1A—C11A1.683 (5)S1B—C11B1.684 (4)
F7A—C3A1.367 (5)F7B—C3B1.365 (5)
N9A—N10A1.390 (5)N9B—N10B1.404 (5)
N9A—C8A1.266 (5)N9B—C8B1.283 (5)
N10A—C11A1.393 (5)N10B—C11B1.391 (5)
N10A—C14A1.392 (5)N10B—C14B1.386 (6)
N12A—H12A0.8600N12B—H12B0.8600
N12A—N13A1.371 (5)N12B—N13B1.377 (5)
N12A—C11A1.344 (5)N12B—C11B1.341 (5)
N13A—C14A1.314 (6)N13B—C14B1.307 (6)
C1A—H1A0.9300C1B—H1B0.9300
C1A—C2A1.389 (6)C1B—C2B1.393 (6)
C1A—C6A1.391 (6)C1B—C6B1.386 (6)
C2A—H2A0.9300C2B—H2B0.9300
C2A—C3A1.360 (6)C2B—C3B1.374 (6)
C3A—C4A1.373 (6)C3B—C4B1.356 (7)
C4A—H4A0.9300C4B—H4B0.9300
C4A—C5A1.402 (6)C4B—C5B1.391 (6)
C5A—H5A0.9300C5B—H5B0.9300
C5A—C6A1.393 (6)C5B—C6B1.393 (6)
C6A—C8A1.454 (6)C6B—C8B1.464 (6)
C8A—H8A0.9300C8B—H8B0.9300
C14A—C15A1.488 (6)C14B—C15B1.491 (6)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C8A—N9A—N10A120.5 (4)C8B—N9B—N10B116.0 (4)
N9A—N10A—C11A133.3 (4)C11B—N10B—N9B129.7 (4)
N9A—N10A—C14A118.5 (4)C14B—N10B—N9B121.4 (4)
C14A—N10A—C11A108.1 (4)C14B—N10B—C11B108.0 (4)
N13A—N12A—H12A122.3N13B—N12B—H12B122.5
C11A—N12A—H12A122.3C11B—N12B—H12B122.5
C11A—N12A—N13A115.4 (4)C11B—N12B—N13B114.9 (4)
C14A—N13A—N12A103.5 (4)C14B—N13B—N12B103.4 (4)
C2A—C1A—H1A119.3C2B—C1B—H1B119.3
C2A—C1A—C6A121.4 (4)C6B—C1B—H1B119.3
C6A—C1A—H1A119.3C6B—C1B—C2B121.5 (5)
C1A—C2A—H2A121.0C1B—C2B—H2B121.2
C3A—C2A—C1A118.1 (4)C3B—C2B—C1B117.6 (4)
C3A—C2A—H2A121.0C3B—C2B—H2B121.2
F7A—C3A—C4A118.2 (4)F7B—C3B—C2B117.7 (4)
C2A—C3A—F7A118.5 (4)C4B—C3B—F7B119.4 (5)
C2A—C3A—C4A123.3 (5)C4B—C3B—C2B122.8 (5)
C3A—C4A—H4A120.8C3B—C4B—H4B120.4
C3A—C4A—C5A118.3 (5)C3B—C4B—C5B119.2 (5)
C5A—C4A—H4A120.8C5B—C4B—H4B120.4
C4A—C5A—H5A119.9C4B—C5B—H5B119.9
C6A—C5A—C4A120.2 (4)C4B—C5B—C6B120.2 (4)
C6A—C5A—H5A119.9C6B—C5B—H5B119.9
C1A—C6A—C5A118.8 (4)C1B—C6B—C5B118.6 (4)
C1A—C6A—C8A119.3 (4)C1B—C6B—C8B119.1 (4)
C5A—C6A—C8A121.9 (4)C5B—C6B—C8B122.3 (4)
N9A—C8A—C6A122.3 (4)N9B—C8B—C6B121.2 (4)
N9A—C8A—H8A118.9N9B—C8B—H8B119.4
C6A—C8A—H8A118.9C6B—C8B—H8B119.4
N10A—C11A—S1A130.5 (3)N10B—C11B—S1B129.7 (3)
N12A—C11A—S1A127.4 (4)N12B—C11B—S1B127.8 (4)
N12A—C11A—N10A102.2 (4)N12B—C11B—N10B102.4 (4)
N10A—C14A—C15A122.8 (4)N10B—C14B—C15B122.2 (4)
N13A—C14A—N10A110.9 (4)N13B—C14B—N10B111.2 (4)
N13A—C14A—C15A126.2 (4)N13B—C14B—C15B126.6 (4)
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
F7A—C3A—C4A—C5A179.9 (4)F7B—C3B—C4B—C5B180.0 (4)
N9A—N10A—C11A—S1A2.6 (8)N9B—N10B—C11B—S1B7.1 (8)
N9A—N10A—C11A—N12A178.2 (4)N9B—N10B—C11B—N12B171.0 (4)
N9A—N10A—C14A—N13A178.6 (4)N9B—N10B—C14B—N13B171.9 (4)
N9A—N10A—C14A—C15A5.3 (7)N9B—N10B—C14B—C15B7.9 (8)
N10A—N9A—C8A—C6A179.4 (4)N10B—N9B—C8B—C6B179.2 (4)
N12A—N13A—C14A—N10A0.4 (5)N12B—N13B—C14B—N10B0.9 (6)
N12A—N13A—C14A—C15A176.4 (5)N12B—N13B—C14B—C15B178.9 (6)
N13A—N12A—C11A—S1A179.8 (3)N13B—N12B—C11B—S1B176.2 (4)
N13A—N12A—C11A—N10A0.9 (5)N13B—N12B—C11B—N10B1.9 (5)
C1A—C2A—C3A—F7A179.9 (5)C1B—C2B—C3B—F7B178.9 (4)
C1A—C2A—C3A—C4A1.8 (8)C1B—C2B—C3B—C4B2.0 (8)
C1A—C6A—C8A—N9A177.3 (5)C1B—C6B—C8B—N9B176.7 (5)
C2A—C1A—C6A—C5A0.8 (7)C2B—C1B—C6B—C5B0.4 (8)
C2A—C1A—C6A—C8A179.6 (5)C2B—C1B—C6B—C8B178.6 (4)
C2A—C3A—C4A—C5A1.7 (8)C2B—C3B—C4B—C5B3.1 (9)
C3A—C4A—C5A—C6A0.2 (8)C3B—C4B—C5B—C6B2.4 (8)
C4A—C5A—C6A—C1A1.0 (7)C4B—C5B—C6B—C1B0.7 (8)
C4A—C5A—C6A—C8A179.8 (5)C4B—C5B—C6B—C8B177.4 (5)
C5A—C6A—C8A—N9A1.4 (8)C5B—C6B—C8B—N9B1.4 (7)
C6A—C1A—C2A—C3A0.5 (8)C6B—C1B—C2B—C3B0.2 (8)
C8A—N9A—N10A—C11A6.6 (8)C8B—N9B—N10B—C11B45.3 (7)
C8A—N9A—N10A—C14A176.6 (4)C8B—N9B—N10B—C14B147.4 (5)
C11A—N10A—C14A—N13A1.0 (6)C11B—N10B—C14B—N13B2.1 (6)
C11A—N10A—C14A—C15A177.1 (5)C11B—N10B—C14B—C15B177.7 (5)
C11A—N12A—N13A—C14A0.3 (6)C11B—N12B—N13B—C14B0.7 (6)
C14A—N10A—C11A—S1A179.7 (4)C14B—N10B—C11B—S1B175.8 (4)
C14A—N10A—C11A—N12A1.1 (5)C14B—N10B—C11B—N12B2.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A···S1A0.932.473.232 (5)139
N12A—H12A···S1Bi0.862.543.391 (4)173
N12B—H12B···S1Aii0.862.493.326 (4)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A···S1A0.932.473.232 (5)139
N12A—H12A···S1Bi0.862.543.391 (4)173
N12B—H12B···S1Aii0.862.493.326 (4)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManjula, P. S., Sarojini, B. K., Yathirajan, H. S., Akkurt, M., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. E71, 1003–1009.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds