organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,4-di­methyl 2-(tert-butyl­amino)-5-[2-oxo-4-(thio­morpholin-4-yl)-2H-chromen-3-yl]furan-3,4-di­carboxyl­ate ethyl acetate hemisolvate

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan, and bJapan Bruker AXS K.K.3-9, Moriya-cho Kanagawaku Yokohama 221-0022, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 October 2015; accepted 18 November 2015; online 28 November 2015)

In the title hemisolvate, C25H28N2O7S·0.5C4H8O2, the thio­morpholine ring adopts a chair conformation, with the exocyclic N—C bond in an equatorial orientation. The dihedral angle between the coumarin ring system (r.m.s. deviation = 0.044 Å) and the furan ring is 64.84 (6)°. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. The ethyl acetate solvent mol­ecule is disordered about a crystallographic inversion centre. In the crystal, the components are linked by C—H⋯O and C—H⋯S hydrogen bonds, generating a three-dimensional network.

1. Related literature

For the syntheses and properties of coumarins, see: Arango et al. (2010[Arango, V., Robledo, S., Séon-Méniel, B., Figadère, B., Cardona, W., Sáez, J. & Otálvaro, F. (2010). J. Nat. Prod. 73, 1012-1014.]); Chodankar & Seshadri (1985[Chodankar, N. K. (1985). Dyes Pigm. 6, 331-340.]); Khan & Kulkarni (1999[Khan, I. A. & Kulkarni, M. V. (1999). Indian. J. Chem. Sect. B, 38, 491-494.]); Kitamura et al. (2005[Kitamura, N., Kohtani, S. & Nakagaki, R. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 168-185.]); Luo et al. (2012[Luo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. & Zhang, S. (2012). Molecules, 17, 6944-6952.]); Sawa et al. (2006[Sawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K. & Wong, C. H. (2006). Proc. Natl Acad. Sci. USA, 103, 12371-12376.]); Schiedel et al. (2001[Schiedel, M. S., Briehn, C. A. & Bäuerle, P. (2001). Angew. Chem. Int. Ed. 40, 4677-4680.]); Udaya Kumari et al. (2000[Udaya Kumari, T., David Krupadanam, G. L. & Srimannarayana, G. (2000). Indian. J. Chem. Sect. B, 39, 62-64.]); Zen et al. (2014[Zen, A. Z., Aylott, J. W. & Chan, W. C. (2014). Tetrahedron Lett. 55, 5521-5524.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H28N2O7S·0.5C4H8O2

  • Mr = 544.61

  • Monoclinic, P 21 /c

  • a = 14.3733 (17) Å

  • b = 16.1159 (19) Å

  • c = 11.7019 (14) Å

  • β = 95.007 (1)°

  • V = 2700.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 90 K

  • 0.50 × 0.40 × 0.25 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.958

  • 25410 measured reflections

  • 4757 independent reflections

  • 4316 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.02

  • 4757 reflections

  • 375 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H13⋯O4 0.86 2.25 2.8255 (17) 125
C3—H2⋯O6i 0.93 2.41 3.325 (2) 167
C12—H9⋯O4ii 0.97 2.44 3.1531 (18) 130
C12—H10⋯O1Siii 0.97 2.48 3.208 (5) 132
C19—H15⋯O3 0.96 2.42 3.0090 (19) 119
C23—H23⋯S1iv 0.96 2.78 3.5639 (17) 139
C25—H26⋯S1v 0.96 2.83 3.7406 (18) 159
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z; (iii) x, y, z-1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

Coumarins analogs having furan heterocycle have gained significant importance because of their properties as anti-leishmania panamensis, dyes and fluorescent sensors. For the activity related reports of furyl coumarins, see: Arango et al. (2010); Zen et al. (2014); Schiedel et al. (2001); Kitamura et al. (2005). Natural furyl coumarin derivatives extracted from plants such as microminutin, micromelin, psoralen, 8-meth­oxy­psoralen have important properties in medicinal chemistry and bio photochemistry. For the activity related reports of natural furyl coumarins, see: Luo et al. (2012). It was well documented that by introducing a heteroaromatic substituent at 3-position the absorption and emission maxima of coumarin scaffold can be improved because of extended π conjugation and consequently their optoelectronic properties can be improved. Due to their versatile properties a variety of 3-hetero­aryl coumarin derivatives have been synthesized and tested for their optoelectronic properties. For the optoelectronic properties of coumarin derivatives, see: Sawa et al. (2006). For the synthesis related reports of 3-furyl coumarin derivatives, see: Chodankar et al. (1985); Khan & Kulkarni (1999); Udaya Kumari et al. (2000). Thus, the elucidation of the crystal structures of coumarin derivatives has attracted much attention. Here,we report the crystal structure of the title compound, (I).

Synthesis and crystallization, top

A solution of 4-thio­morpholino-3-formyl coumarin (1 mmol), dmethyl acetyl­enedi­carboxyl­ate (1 mmol), t-butyl isocyanide (1 mmol) were refluxed at 80°C for 3h. The volatiles were removed under reduced pressure. The crude reaction mixture was subjected to column chromatography using EtOAc/Hexane mobile phase. The title compound was isolated as yellow color solid with 80% yield. Yellow prisms were obtained by vapour diffusion method at room temperature, i.e., hexane vapour was allowed to diffuse into an EtOAc solution of 4-thio­morpholino-3-(2-N-t-butyl­amino-3,4-di­methyl­carboxyl­ate-5-furyl) 2H-1-benzo­pyran-2-one at room temperature.

mp 107-109 °C; IR; νmax(KBr) 3288, 1732, 1728, 1667, 1658, 1618, 1418, 1240, 1041 cm-1; δH (500 MHz CDCl3) 7.69 (1 H, d), 7.52 (1 H, t), 7.28-7.33 (2 H, dd), 7.05 (1 H, s), 3.78 (3 H, s), 3.75 (3 H, s), 3.39-3.48 (4 H, m), 2.77-2.81 (4 H, m), 1.44 (9 H, s); δC (125 MHz, CDCl3) 165.6, 163.9, 163.0, 161.2, 160.6, 153.4, 138.2, 132.4, 125.1, 123.7, 118.7, 118.1, 117.7, 103.6, 87.8, 53.2, 52.7, 51.8, 51.3, 28.0; LCMS: MH+, 501.

Related literature top

For the syntheses and properties of coumarins, see: Arango et al. (2010); Chodankar & Seshadri (1985); Khan & Kulkarni (1999); Kitamura et al. (2005); Luo et al. (2012); Sawa et al. (2006); Schiedel et al. (2001); Udaya Kumari et al. (2000); Zen et al. (2014).

Structure description top

Coumarins analogs having furan heterocycle have gained significant importance because of their properties as anti-leishmania panamensis, dyes and fluorescent sensors. For the activity related reports of furyl coumarins, see: Arango et al. (2010); Zen et al. (2014); Schiedel et al. (2001); Kitamura et al. (2005). Natural furyl coumarin derivatives extracted from plants such as microminutin, micromelin, psoralen, 8-meth­oxy­psoralen have important properties in medicinal chemistry and bio photochemistry. For the activity related reports of natural furyl coumarins, see: Luo et al. (2012). It was well documented that by introducing a heteroaromatic substituent at 3-position the absorption and emission maxima of coumarin scaffold can be improved because of extended π conjugation and consequently their optoelectronic properties can be improved. Due to their versatile properties a variety of 3-hetero­aryl coumarin derivatives have been synthesized and tested for their optoelectronic properties. For the optoelectronic properties of coumarin derivatives, see: Sawa et al. (2006). For the synthesis related reports of 3-furyl coumarin derivatives, see: Chodankar et al. (1985); Khan & Kulkarni (1999); Udaya Kumari et al. (2000). Thus, the elucidation of the crystal structures of coumarin derivatives has attracted much attention. Here,we report the crystal structure of the title compound, (I).

For the syntheses and properties of coumarins, see: Arango et al. (2010); Chodankar & Seshadri (1985); Khan & Kulkarni (1999); Kitamura et al. (2005); Luo et al. (2012); Sawa et al. (2006); Schiedel et al. (2001); Udaya Kumari et al. (2000); Zen et al. (2014).

Synthesis and crystallization top

A solution of 4-thio­morpholino-3-formyl coumarin (1 mmol), dmethyl acetyl­enedi­carboxyl­ate (1 mmol), t-butyl isocyanide (1 mmol) were refluxed at 80°C for 3h. The volatiles were removed under reduced pressure. The crude reaction mixture was subjected to column chromatography using EtOAc/Hexane mobile phase. The title compound was isolated as yellow color solid with 80% yield. Yellow prisms were obtained by vapour diffusion method at room temperature, i.e., hexane vapour was allowed to diffuse into an EtOAc solution of 4-thio­morpholino-3-(2-N-t-butyl­amino-3,4-di­methyl­carboxyl­ate-5-furyl) 2H-1-benzo­pyran-2-one at room temperature.

mp 107-109 °C; IR; νmax(KBr) 3288, 1732, 1728, 1667, 1658, 1618, 1418, 1240, 1041 cm-1; δH (500 MHz CDCl3) 7.69 (1 H, d), 7.52 (1 H, t), 7.28-7.33 (2 H, dd), 7.05 (1 H, s), 3.78 (3 H, s), 3.75 (3 H, s), 3.39-3.48 (4 H, m), 2.77-2.81 (4 H, m), 1.44 (9 H, s); δC (125 MHz, CDCl3) 165.6, 163.9, 163.0, 161.2, 160.6, 153.4, 138.2, 132.4, 125.1, 123.7, 118.7, 118.1, 117.7, 103.6, 87.8, 53.2, 52.7, 51.8, 51.3, 28.0; LCMS: MH+, 501.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound.
[Figure 3] Fig. 3. Chemical scheme of title compound with solvent molecule. In the cystal system the main molecule and solvent molecule was found in 1:0.5 ratio.
[Figure 4] Fig. 4. Synthesis of title compound (I).
3,4-Dimethyl 2-(tert-butylamino)-5-[2-oxo-4-(thiomorpholin-4-yl)-2H-chromen-3-yl]furan-3,4-dicarboxylate ethyl acetate hemisolvate top
Crystal data top
C25H28N2O7S·0.5C4H8O2F(000) = 1152
Mr = 544.61Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25410 reflections
a = 14.3733 (17) Åθ = 1.4–25.0°
b = 16.1159 (19) ŵ = 0.17 mm1
c = 11.7019 (14) ÅT = 90 K
β = 95.007 (1)°Prism, yellow
V = 2700.3 (6) Å30.50 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4757 independent reflections
Radiation source: fine-focus sealed tube4316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1919
Tmin = 0.853, Tmax = 0.958l = 1313
25410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.040P)2 + 1.5222P]
where P = (Fo2 + 2Fc2)/3
4757 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.26 e Å3
30 restraintsΔρmin = 0.23 e Å3
Crystal data top
C25H28N2O7S·0.5C4H8O2V = 2700.3 (6) Å3
Mr = 544.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3733 (17) ŵ = 0.17 mm1
b = 16.1159 (19) ÅT = 90 K
c = 11.7019 (14) Å0.50 × 0.40 × 0.25 mm
β = 95.007 (1)°
Data collection top
Bruker APEXII
diffractometer
4757 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4316 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.958Rint = 0.022
25410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03230 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4757 reflectionsΔρmin = 0.23 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.99995 (10)0.03172 (9)0.34623 (12)0.0231 (3)
C21.08898 (11)0.03216 (10)0.40315 (13)0.0282 (3)
H11.11510.08150.43210.034*
C31.13819 (11)0.04082 (11)0.41634 (14)0.0316 (4)
H21.1970.04130.45630.038*
C41.09998 (11)0.11405 (11)0.36986 (14)0.0310 (4)
H31.13430.1630.37590.037*
C51.01118 (10)0.11389 (10)0.31490 (13)0.0257 (3)
H40.98640.16310.28370.031*
C60.95710 (10)0.04105 (9)0.30487 (12)0.0208 (3)
C70.86234 (9)0.03596 (9)0.24765 (11)0.0190 (3)
C80.82094 (10)0.04097 (9)0.23612 (12)0.0199 (3)
C90.87117 (10)0.11639 (9)0.27233 (13)0.0239 (3)
C100.81001 (10)0.18053 (9)0.27629 (12)0.0215 (3)
H50.74590.18250.29620.026*
H60.85020.17450.34680.026*
C110.83315 (11)0.26140 (9)0.21796 (12)0.0242 (3)
H70.82640.30730.27030.029*
H80.89760.26010.19930.029*
C120.77517 (10)0.17887 (9)0.02143 (12)0.0238 (3)
H100.83910.17570.00110.029*
H90.73420.17480.04880.029*
C130.75641 (10)0.10617 (9)0.09892 (12)0.0217 (3)
H110.76350.05450.05810.026*
H120.69280.10920.12050.026*
C140.72271 (10)0.05441 (8)0.19528 (12)0.0201 (3)
C150.64058 (9)0.03168 (8)0.23338 (12)0.0185 (3)
C160.56676 (10)0.06269 (9)0.15304 (12)0.0194 (3)
C170.61162 (10)0.10511 (9)0.07106 (12)0.0214 (3)
C180.62518 (11)0.20817 (9)0.09030 (12)0.0243 (3)
C190.68655 (12)0.26826 (10)0.01648 (14)0.0323 (4)
H140.64950.2960.03630.048*
H160.71280.30860.06480.048*
H150.7360.23810.02550.048*
C200.54811 (12)0.25574 (10)0.16032 (14)0.0320 (4)
H170.50630.21720.20070.048*
H180.57540.29110.21440.048*
H190.51420.28890.10990.048*
C210.68273 (12)0.15921 (10)0.17061 (14)0.0323 (4)
H200.7270.12490.12620.048*
H220.71540.1970.21630.048*
H210.6420.12490.21980.048*
C220.46747 (10)0.06935 (9)0.16008 (12)0.0204 (3)
C230.34095 (10)0.05062 (10)0.27252 (14)0.0297 (4)
H230.32760.10890.27470.045*
H240.32630.02530.3430.045*
H250.30390.02560.20950.045*
C240.62849 (9)0.01445 (9)0.34073 (12)0.0200 (3)
C250.55129 (12)0.12568 (10)0.42109 (13)0.0298 (4)
H260.6050.13570.47390.045*
H270.5220.17750.39940.045*
H280.50780.09120.4570.045*
C1S1.0683 (9)0.1031 (8)1.0236 (11)0.059 (3)0.5
H1SA1.10730.07841.08520.088*0.5
H1SB1.10570.11810.96280.088*0.5
H1SC1.03880.15171.05110.088*0.5
C2S0.994 (2)0.041 (2)0.979 (2)0.0624 (17)0.5
C3S0.9217 (9)0.0898 (7)0.9635 (11)0.0506 (17)0.5
H3SA0.86790.07391.00310.061*0.5
H3SB0.90730.08150.88170.061*0.5
C4S0.9519 (2)0.1897 (2)0.9924 (3)0.0399 (9)0.5
H4SA0.90240.22570.96270.06*0.5
H4SB1.00790.20280.95690.06*0.5
H4SC0.96270.19711.07380.06*0.5
N10.82204 (8)0.10814 (7)0.20229 (10)0.0197 (3)
N20.57584 (9)0.15043 (8)0.01773 (11)0.0286 (3)
H130.51670.14550.03490.034*
O10.95818 (7)0.10811 (6)0.32980 (9)0.0263 (2)
O20.84156 (8)0.18618 (7)0.25827 (10)0.0324 (3)
O30.70539 (7)0.09935 (6)0.09266 (8)0.0223 (2)
O40.41429 (7)0.10217 (7)0.08665 (9)0.0299 (3)
O50.43880 (7)0.03856 (6)0.25799 (8)0.0226 (2)
O60.65724 (8)0.00853 (8)0.43480 (9)0.0370 (3)
O70.57991 (7)0.08439 (6)0.32009 (8)0.0235 (2)
O1S0.9264 (3)0.0628 (3)0.9137 (4)0.1025 (13)0.5
O2S1.0034 (13)0.0428 (14)1.0052 (12)0.0550 (15)0.5
S10.75716 (3)0.27772 (2)0.08816 (3)0.02791 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (7)0.0277 (8)0.0213 (7)0.0025 (6)0.0037 (6)0.0008 (6)
C20.0218 (8)0.0373 (9)0.0252 (8)0.0098 (7)0.0001 (6)0.0009 (7)
C30.0166 (7)0.0500 (10)0.0272 (8)0.0029 (7)0.0034 (6)0.0055 (7)
C40.0216 (8)0.0390 (9)0.0317 (9)0.0058 (7)0.0020 (6)0.0040 (7)
C50.0219 (7)0.0290 (8)0.0256 (8)0.0008 (6)0.0010 (6)0.0000 (6)
C60.0177 (7)0.0277 (8)0.0171 (7)0.0014 (6)0.0015 (5)0.0016 (6)
C70.0177 (7)0.0236 (7)0.0159 (7)0.0013 (6)0.0026 (5)0.0023 (5)
C80.0178 (7)0.0231 (7)0.0191 (7)0.0012 (6)0.0031 (5)0.0015 (6)
C90.0219 (7)0.0257 (8)0.0245 (8)0.0017 (6)0.0043 (6)0.0002 (6)
C100.0219 (7)0.0227 (7)0.0194 (7)0.0020 (6)0.0001 (6)0.0041 (6)
C110.0270 (8)0.0221 (7)0.0229 (7)0.0015 (6)0.0020 (6)0.0043 (6)
C120.0228 (7)0.0283 (8)0.0194 (7)0.0022 (6)0.0035 (6)0.0008 (6)
C130.0210 (7)0.0228 (7)0.0202 (7)0.0006 (6)0.0046 (6)0.0018 (6)
C140.0224 (7)0.0175 (7)0.0200 (7)0.0018 (6)0.0002 (6)0.0034 (5)
C150.0191 (7)0.0168 (7)0.0194 (7)0.0016 (5)0.0004 (5)0.0004 (5)
C160.0189 (7)0.0200 (7)0.0187 (7)0.0018 (5)0.0008 (5)0.0010 (5)
C170.0195 (7)0.0226 (7)0.0218 (7)0.0028 (6)0.0004 (6)0.0019 (6)
C180.0309 (8)0.0213 (7)0.0209 (7)0.0007 (6)0.0030 (6)0.0039 (6)
C190.0402 (9)0.0246 (8)0.0314 (9)0.0006 (7)0.0010 (7)0.0005 (7)
C200.0425 (10)0.0277 (8)0.0251 (8)0.0061 (7)0.0007 (7)0.0049 (6)
C210.0378 (9)0.0299 (8)0.0300 (8)0.0010 (7)0.0075 (7)0.0007 (7)
C220.0203 (7)0.0194 (7)0.0209 (7)0.0005 (6)0.0003 (6)0.0014 (6)
C230.0207 (8)0.0340 (9)0.0353 (9)0.0037 (6)0.0082 (6)0.0009 (7)
C240.0148 (6)0.0229 (7)0.0219 (7)0.0010 (5)0.0006 (5)0.0021 (6)
C250.0328 (9)0.0313 (8)0.0249 (8)0.0065 (7)0.0008 (6)0.0099 (7)
C1S0.036 (4)0.090 (5)0.055 (4)0.004 (3)0.028 (3)0.002 (3)
C2S0.049 (3)0.082 (3)0.060 (4)0.003 (2)0.026 (3)0.013 (3)
C3S0.036 (3)0.070 (3)0.047 (3)0.013 (3)0.007 (2)0.020 (3)
C4S0.0258 (17)0.052 (2)0.044 (2)0.0120 (15)0.0153 (15)0.0192 (17)
N10.0199 (6)0.0199 (6)0.0185 (6)0.0012 (5)0.0039 (5)0.0028 (5)
N20.0200 (6)0.0372 (8)0.0280 (7)0.0004 (5)0.0007 (5)0.0136 (6)
O10.0223 (5)0.0244 (5)0.0319 (6)0.0049 (4)0.0000 (4)0.0021 (4)
O20.0326 (6)0.0207 (6)0.0437 (7)0.0006 (5)0.0019 (5)0.0024 (5)
O30.0185 (5)0.0251 (5)0.0232 (5)0.0016 (4)0.0023 (4)0.0073 (4)
O40.0204 (5)0.0408 (7)0.0277 (6)0.0047 (5)0.0027 (4)0.0086 (5)
O50.0175 (5)0.0271 (5)0.0236 (5)0.0021 (4)0.0035 (4)0.0028 (4)
O60.0417 (7)0.0463 (7)0.0214 (6)0.0190 (6)0.0069 (5)0.0048 (5)
O70.0284 (5)0.0218 (5)0.0202 (5)0.0045 (4)0.0014 (4)0.0039 (4)
O1S0.104 (3)0.113 (3)0.094 (3)0.019 (3)0.029 (2)0.021 (3)
O2S0.0419 (18)0.0739 (19)0.052 (4)0.0088 (17)0.017 (3)0.014 (3)
S10.0304 (2)0.0225 (2)0.0294 (2)0.00151 (15)0.00565 (16)0.00288 (15)
Geometric parameters (Å, º) top
C1—O11.3759 (18)C18—N21.4817 (19)
C1—C21.390 (2)C18—C211.525 (2)
C1—C61.392 (2)C18—C201.526 (2)
C2—C31.374 (2)C18—C191.526 (2)
C2—H10.93C19—H140.96
C3—C41.392 (2)C19—H160.96
C3—H20.93C19—H150.96
C4—C51.378 (2)C20—H170.96
C4—H30.93C20—H180.96
C5—C61.407 (2)C20—H190.96
C5—H40.93C21—H200.96
C6—C71.4667 (19)C21—H220.96
C7—C81.377 (2)C21—H210.96
C7—N11.3844 (18)C22—O41.2197 (17)
C8—C91.458 (2)C22—O51.3457 (17)
C8—C141.467 (2)C23—O51.4444 (17)
C9—O21.2088 (19)C23—H230.96
C9—O11.3737 (18)C23—H240.96
C10—N11.4721 (18)C23—H250.96
C10—C111.521 (2)C24—O61.2001 (18)
C10—H50.97C24—O71.3367 (17)
C10—H60.97C25—O71.4469 (18)
C11—S11.8110 (15)C25—H260.96
C11—H70.97C25—H270.96
C11—H80.97C25—H280.96
C12—C131.520 (2)C1S—C2S1.51 (3)
C12—S11.8027 (15)C1S—H1SA0.96
C12—H100.97C1S—H1SB0.96
C12—H90.97C1S—H1SC0.96
C13—N11.4680 (17)C2S—O1S1.23 (3)
C13—H110.97C2S—O2S1.396 (16)
C13—H120.97C3S—O2S1.446 (19)
C14—C151.348 (2)C3S—C4S1.693 (13)
C14—O31.4058 (17)C3S—H3SA0.97
C15—C161.4440 (19)C3S—H3SB0.97
C15—C241.4830 (19)C4S—H4SA0.96
C16—C171.383 (2)C4S—H4SB0.96
C16—C221.441 (2)C4S—H4SC0.96
C17—N21.3357 (19)N2—H130.86
C17—O31.3527 (17)
O1—C1—C2115.75 (13)C18—C19—H14109.5
O1—C1—C6122.08 (13)C18—C19—H16109.5
C2—C1—C6122.13 (14)H14—C19—H16109.5
C3—C2—C1119.52 (15)C18—C19—H15109.5
C3—C2—H1120.2H14—C19—H15109.5
C1—C2—H1120.2H16—C19—H15109.5
C2—C3—C4120.00 (14)C18—C20—H17109.5
C2—C3—H2120.0C18—C20—H18109.5
C4—C3—H2120.0H17—C20—H18109.5
C5—C4—C3119.90 (15)C18—C20—H19109.5
C5—C4—H3120.1H17—C20—H19109.5
C3—C4—H3120.1H18—C20—H19109.5
C4—C5—C6121.52 (15)C18—C21—H20109.5
C4—C5—H4119.2C18—C21—H22109.5
C6—C5—H4119.2H20—C21—H22109.5
C1—C6—C5116.71 (13)C18—C21—H21109.5
C1—C6—C7118.48 (13)H20—C21—H21109.5
C5—C6—C7124.67 (13)H22—C21—H21109.5
C8—C7—N1123.80 (12)O4—C22—O5122.69 (13)
C8—C7—C6118.12 (13)O4—C22—C16123.71 (13)
N1—C7—C6117.96 (12)O5—C22—C16113.56 (12)
C7—C8—C9121.56 (13)O5—C23—H23109.5
C7—C8—C14124.09 (13)O5—C23—H24109.5
C9—C8—C14114.21 (12)H23—C23—H24109.5
O2—C9—O1116.85 (13)O5—C23—H25109.5
O2—C9—C8125.21 (14)H23—C23—H25109.5
O1—C9—C8117.91 (12)H24—C23—H25109.5
N1—C10—C11111.94 (11)O6—C24—O7123.96 (13)
N1—C10—H5109.2O6—C24—C15124.46 (13)
C11—C10—H5109.2O7—C24—C15111.57 (12)
N1—C10—H6109.2O7—C25—H26109.5
C11—C10—H6109.2O7—C25—H27109.5
H5—C10—H6107.9H26—C25—H27109.5
C10—C11—S1111.17 (10)O7—C25—H28109.5
C10—C11—H7109.4H26—C25—H28109.5
S1—C11—H7109.4H27—C25—H28109.5
C10—C11—H8109.4C2S—C1S—H1SA109.5
S1—C11—H8109.4C2S—C1S—H1SB109.5
H7—C11—H8108.0H1SA—C1S—H1SB109.5
C13—C12—S1112.52 (10)C2S—C1S—H1SC109.5
C13—C12—H10109.1H1SA—C1S—H1SC109.5
S1—C12—H10109.1H1SB—C1S—H1SC109.5
C13—C12—H9109.1O1S—C2S—O2S117 (2)
S1—C12—H9109.1O1S—C2S—C1S122 (3)
H10—C12—H9107.8O2S—C2S—C1S120.8 (16)
N1—C13—C12109.89 (11)O2S—C3S—C4S104.1 (11)
N1—C13—H11109.7O2S—C3S—H3SA110.9
C12—C13—H11109.7C4S—C3S—H3SA110.9
N1—C13—H12109.7O2S—C3S—H3SB110.9
C12—C13—H12109.7C4S—C3S—H3SB110.9
H11—C13—H12108.2H3SA—C3S—H3SB109.0
C15—C14—O3109.12 (12)C3S—C4S—H4SA109.5
C15—C14—C8134.25 (13)C3S—C4S—H4SB109.5
O3—C14—C8116.62 (12)H4SA—C4S—H4SB109.5
C14—C15—C16107.78 (12)C3S—C4S—H4SC109.5
C14—C15—C24125.94 (13)H4SA—C4S—H4SC109.5
C16—C15—C24126.25 (12)H4SB—C4S—H4SC109.5
C17—C16—C22121.81 (13)C7—N1—C13121.00 (11)
C17—C16—C15105.20 (12)C7—N1—C10120.47 (11)
C22—C16—C15131.59 (13)C13—N1—C10113.69 (11)
N2—C17—O3119.51 (13)C17—N2—C18128.18 (13)
N2—C17—C16129.71 (13)C17—N2—H13115.9
O3—C17—C16110.72 (12)C18—N2—H13115.9
N2—C18—C21109.92 (13)C9—O1—C1121.51 (11)
N2—C18—C20105.19 (12)C17—O3—C14107.11 (11)
C21—C18—C20109.66 (13)C22—O5—C23115.10 (11)
N2—C18—C19110.86 (12)C24—O7—C25114.92 (11)
C21—C18—C19111.06 (13)C2S—O2S—C3S112.1 (10)
C20—C18—C19109.99 (13)C12—S1—C1197.82 (7)
O1—C1—C2—C3175.67 (13)C15—C16—C17—O32.48 (16)
C6—C1—C2—C32.1 (2)C17—C16—C22—O410.8 (2)
C1—C2—C3—C41.9 (2)C15—C16—C22—O4175.22 (15)
C2—C3—C4—C52.8 (2)C17—C16—C22—O5166.81 (13)
C3—C4—C5—C60.4 (2)C15—C16—C22—O52.4 (2)
O1—C1—C6—C5172.56 (13)C14—C15—C24—O658.0 (2)
C2—C1—C6—C55.1 (2)C16—C15—C24—O6119.79 (17)
O1—C1—C6—C73.4 (2)C14—C15—C24—O7123.19 (15)
C2—C1—C6—C7178.92 (13)C16—C15—C24—O759.05 (18)
C4—C5—C6—C14.2 (2)C8—C7—N1—C1328.2 (2)
C4—C5—C6—C7179.92 (14)C6—C7—N1—C13147.75 (13)
C1—C6—C7—C80.98 (19)C8—C7—N1—C10125.64 (15)
C5—C6—C7—C8174.66 (13)C6—C7—N1—C1058.43 (17)
C1—C6—C7—N1177.15 (12)C12—C13—N1—C7139.30 (13)
C5—C6—C7—N11.5 (2)C12—C13—N1—C1065.24 (15)
N1—C7—C8—C9171.86 (13)C11—C10—N1—C7138.82 (13)
C6—C7—C8—C94.1 (2)C11—C10—N1—C1365.57 (15)
N1—C7—C8—C1412.7 (2)O3—C17—N2—C1810.2 (2)
C6—C7—C8—C14171.36 (12)C16—C17—N2—C18166.87 (15)
C7—C8—C9—O2175.03 (15)C21—C18—N2—C1773.7 (2)
C14—C8—C9—O29.1 (2)C20—C18—N2—C17168.28 (15)
C7—C8—C9—O16.8 (2)C19—C18—N2—C1749.4 (2)
C14—C8—C9—O1169.05 (12)O2—C9—O1—C1177.30 (13)
N1—C10—C11—S160.96 (14)C8—C9—O1—C14.37 (19)
S1—C12—C13—N162.57 (14)C2—C1—O1—C9178.43 (13)
C7—C8—C14—C1561.3 (2)C6—C1—O1—C90.6 (2)
C9—C8—C14—C15114.41 (18)N2—C17—O3—C14175.06 (13)
C7—C8—C14—O3117.28 (15)C16—C17—O3—C142.50 (16)
C9—C8—C14—O366.99 (16)C15—C14—O3—C171.49 (15)
O3—C14—C15—C160.03 (16)C8—C14—O3—C17179.57 (12)
C8—C14—C15—C16178.64 (15)O4—C22—O5—C232.8 (2)
O3—C14—C15—C24178.07 (12)C16—C22—O5—C23174.87 (12)
C8—C14—C15—C243.3 (3)O6—C24—O7—C259.0 (2)
C14—C15—C16—C171.50 (16)C15—C24—O7—C25169.88 (12)
C24—C15—C16—C17176.60 (13)O1S—C2S—O2S—C3S9.0 (14)
C14—C15—C16—C22167.79 (15)C1S—C2S—O2S—C3S175 (2)
C24—C15—C16—C2210.3 (2)C4S—C3S—O2S—C2S174.6 (5)
C22—C16—C17—N26.8 (2)C13—C12—S1—C1153.91 (11)
C15—C16—C17—N2174.76 (15)C10—C11—S1—C1252.18 (11)
C22—C16—C17—O3170.45 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H13···O40.862.252.8255 (17)125
C3—H2···O6i0.932.413.325 (2)167
C12—H9···O4ii0.972.443.1531 (18)130
C12—H10···O1Siii0.972.483.208 (5)132
C19—H15···O30.962.423.0090 (19)119
C23—H23···S1iv0.962.783.5639 (17)139
C25—H26···S1v0.962.833.7406 (18)159
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H13···O40.862.252.8255 (17)125
C3—H2···O6i0.932.413.325 (2)167
C12—H9···O4ii0.972.443.1531 (18)130
C12—H10···O1Siii0.972.483.208 (5)132
C19—H15···O30.962.423.0090 (19)119
C23—H23···S1iv0.962.783.5639 (17)139
C25—H26···S1v0.962.833.7406 (18)159
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA) for the X-ray analysis. This research was supported financially by JSPS KAKENH grant No. 15 K05611.

References

First citationArango, V., Robledo, S., Séon-Méniel, B., Figadère, B., Cardona, W., Sáez, J. & Otálvaro, F. (2010). J. Nat. Prod. 73, 1012–1014.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChodankar, N. K. (1985). Dyes Pigm. 6, 331–340.  CrossRef CAS Web of Science Google Scholar
First citationKhan, I. A. & Kulkarni, M. V. (1999). Indian. J. Chem. Sect. B, 38, 491–494.  Google Scholar
First citationKitamura, N., Kohtani, S. & Nakagaki, R. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 168–185.  Web of Science CrossRef CAS Google Scholar
First citationLuo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. & Zhang, S. (2012). Molecules, 17, 6944–6952.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K. & Wong, C. H. (2006). Proc. Natl Acad. Sci. USA, 103, 12371–12376.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchiedel, M. S., Briehn, C. A. & Bäuerle, P. (2001). Angew. Chem. Int. Ed. 40, 4677–4680.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdaya Kumari, T., David Krupadanam, G. L. & Srimannarayana, G. (2000). Indian. J. Chem. Sect. B, 39, 62–64.  Google Scholar
First citationZen, A. Z., Aylott, J. W. & Chan, W. C. (2014). Tetrahedron Lett. 55, 5521–5524.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds