organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(2-hy­dr­oxy-5-methyl­phen­yl)benzamide

aDepartamento de Química – Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 October 2015; accepted 29 October 2015; online 14 November 2015)

In the title compound, C14H13NO2, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C (r.m.s. deviation = 0.029 Å) forms dihedral angles of 5.63 (6) and 10.20 (5)° with the phenyl and hy­droxy­phenyl rings, respectively. A short intra­molecular N—H⋯O contact is present. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds to generate C(7) chains along [100]. The chains are reinforced by weak C—H⋯O contacts, which together with the O—H⋯O bonds lead to R22(7) loops. Very weak N—H⋯O inter­actions link the mol­ecules into inversion dimers.

1. Related literature

For the biological activity of benzanilide derivatives, see Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]). For related structures, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o541.]); Rodrigues et al. (2011[Rodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3147.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /n

  • a = 7.2263 (3) Å

  • b = 21.7442 (7) Å

  • c = 7.4747 (3) Å

  • β = 110.280 (5)°

  • V = 1101.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.40 × 0.35 × 0.25 mm

2.2. Data collection

  • Oxford Diffraction Gemini S CCD diffractometer

  • 10254 measured reflections

  • 2795 independent reflections

  • 2332 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.03

  • 2795 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.889 (18) 2.173 (16) 2.6153 (15) 110.0 (13)
N1—H1⋯O2i 0.889 (18) 2.518 (17) 3.1928 (14) 133.1 (14)
O2—H20⋯O1ii 0.89 (2) 1.75 (2) 2.6390 (12) 171.3 (19)
C6—H6⋯O2iii 0.95 2.59 3.4197 (15) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure determination of N-(2-hydroxy-5-methylphenyl)benzamide (I), is part of a study on phenylbenzamides carried out in our research group, and it was synthesized from the reaction between of 2-amino-4-methylphenol and benzoyl chloride in acetonitrile. Benzanilide systems have a wide range of biological properties such as potassium channel activators (Calderone et al., 2006). Similar compounds to (I) have been reported in the literature: 2-Methyl-N-(m-tolyl)benzamide (II) (Gowda et al., 2008) and N-(3,5-Dimethylphenyl)-4-methylbenzamide (III) (Rodrigues et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(O1)—C1, is close to planar (r.m.s. deviation for all non-H atoms = 0.0291 Å) and it forms dihedral angles of 5.63 (6)° with the C1-C6 and 10.20 (5)° with the C8-C13 rings respectively. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II) and (III). The conformation of the N—H group is syn to the –OH substituent in the benzoyl ring, which results in a short intramolecular N—H···O contact. In the crystal (Fig. 2), molecules are linked by strong O-H···O hydrogen bonds and weak C-H···O intermolecular contacts. Indeed, the O2-H20 at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (x+1,+y,+z) and the C6-H6 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (x-1,+y,+z). These interactions generate C(7) chains of molecules and R22(7) rings (See Fig. 2), running along [100]. Additionally, the molecules are linked by N-H···O interactions. N1-H1 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (-x+1,-y,-z+1), forming inversion dimers (Fig. 3).

Related literature top

For the biological activity of benzanilide derivatives, see Calderone et al. (2006). For related structures, see: Gowda et al. (2008); Rodrigues et al. (2011).

Experimental top

The title molecule was synthesized taking 0.100 g (0.812 mmol) of 2-amino-4-methylphenol dissolved in acetonitrile (10 mL), and then was added benzoyl chloride (0.100 mL, 0.860 mmol). The solution was placed under reflux and constant stirring for 3 hours at 150°C. The solid was filtered and recrystallized from methanol. The solvent was evaporated at room temperature and pink crystals were obtained (m.p. 448 (1)K).

Refinement top

All H-atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom. H1 atom was found from the Fourier maps and its coordinates were refined freely.

Structure description top

The crystal structure determination of N-(2-hydroxy-5-methylphenyl)benzamide (I), is part of a study on phenylbenzamides carried out in our research group, and it was synthesized from the reaction between of 2-amino-4-methylphenol and benzoyl chloride in acetonitrile. Benzanilide systems have a wide range of biological properties such as potassium channel activators (Calderone et al., 2006). Similar compounds to (I) have been reported in the literature: 2-Methyl-N-(m-tolyl)benzamide (II) (Gowda et al., 2008) and N-(3,5-Dimethylphenyl)-4-methylbenzamide (III) (Rodrigues et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(O1)—C1, is close to planar (r.m.s. deviation for all non-H atoms = 0.0291 Å) and it forms dihedral angles of 5.63 (6)° with the C1-C6 and 10.20 (5)° with the C8-C13 rings respectively. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II) and (III). The conformation of the N—H group is syn to the –OH substituent in the benzoyl ring, which results in a short intramolecular N—H···O contact. In the crystal (Fig. 2), molecules are linked by strong O-H···O hydrogen bonds and weak C-H···O intermolecular contacts. Indeed, the O2-H20 at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (x+1,+y,+z) and the C6-H6 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (x-1,+y,+z). These interactions generate C(7) chains of molecules and R22(7) rings (See Fig. 2), running along [100]. Additionally, the molecules are linked by N-H···O interactions. N1-H1 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (-x+1,-y,-z+1), forming inversion dimers (Fig. 3).

For the biological activity of benzanilide derivatives, see Calderone et al. (2006). For related structures, see: Gowda et al. (2008); Rodrigues et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of C(7) chains of molecules along [100] [Symmetry codes: (i) x + 1, +y, +z; (ii) x - 1, +y, +z].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of dimers along [001]. [Symmetry codes: (iii) -x + 1, -y, -z + 1].
N-(2-Hydroxy-5-methylphenyl)benzamide top
Crystal data top
C14H13NO2Dx = 1.370 Mg m3
Mr = 227.25Melting point: 448(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2263 (3) ÅCell parameters from 10254 reflections
b = 21.7442 (7) Åθ = 3.4–29.4°
c = 7.4747 (3) ŵ = 0.09 mm1
β = 110.280 (5)°T = 123 K
V = 1101.69 (8) Å3Block, pink
Z = 40.40 × 0.35 × 0.25 mm
F(000) = 480
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
2332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 29.4°, θmin = 3.4°
ω scansh = 99
10254 measured reflectionsk = 3030
2795 independent reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5141P]
where P = (Fo2 + 2Fc2)/3
2795 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H13NO2V = 1101.69 (8) Å3
Mr = 227.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2263 (3) ŵ = 0.09 mm1
b = 21.7442 (7) ÅT = 123 K
c = 7.4747 (3) Å0.40 × 0.35 × 0.25 mm
β = 110.280 (5)°
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
2332 reflections with I > 2σ(I)
10254 measured reflectionsRint = 0.032
2795 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
2795 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Experimental. The IR spectrum was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm-1, 3395 (amide N-H); 3073 (Hydroxyl O-H), 1643 (amide, C=O); 1593 (C=C).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.55117 (13)0.05937 (4)0.41236 (14)0.0204 (2)
O10.14306 (13)0.07692 (4)0.30232 (14)0.0214 (2)
N10.17579 (15)0.05132 (5)0.36397 (15)0.0166 (2)
C10.07846 (17)0.02289 (5)0.20522 (16)0.0153 (2)
C20.05257 (19)0.06486 (6)0.17363 (18)0.0192 (3)
H20.18920.05540.21360.023*
C30.0159 (2)0.12053 (6)0.08386 (19)0.0222 (3)
H30.07430.14900.06320.027*
C40.2145 (2)0.13469 (6)0.02438 (18)0.0217 (3)
H40.26070.17280.03710.026*
C50.34605 (19)0.09320 (6)0.05467 (19)0.0224 (3)
H50.48270.10280.01360.027*
C60.27845 (18)0.03785 (6)0.14471 (18)0.0193 (3)
H60.36930.00970.16560.023*
C70.01844 (17)0.03897 (5)0.29485 (17)0.0150 (2)
C80.26922 (17)0.10733 (5)0.43855 (17)0.0149 (2)
C130.17867 (18)0.15716 (6)0.48997 (17)0.0172 (3)
H130.04300.15470.47560.021*
C120.28408 (19)0.21075 (6)0.56243 (18)0.0186 (3)
C110.48182 (19)0.21370 (6)0.58174 (18)0.0202 (3)
H110.55480.25010.63010.024*
C100.57479 (18)0.16395 (6)0.53108 (18)0.0195 (3)
H100.71040.16660.54520.023*
C90.46985 (17)0.11075 (5)0.46028 (17)0.0157 (2)
C140.1817 (2)0.26392 (6)0.6182 (2)0.0258 (3)
H1410.27880.29560.68120.039*
H1420.11680.24950.70590.039*
H1430.08270.28130.50380.039*
H10.258 (2)0.0217 (8)0.357 (2)0.031 (4)*
H200.658 (3)0.0685 (9)0.383 (3)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0158 (4)0.0173 (4)0.0316 (5)0.0009 (3)0.0126 (4)0.0013 (4)
O10.0150 (4)0.0177 (4)0.0333 (5)0.0005 (3)0.0108 (4)0.0022 (4)
N10.0129 (5)0.0147 (5)0.0224 (5)0.0010 (4)0.0063 (4)0.0027 (4)
C10.0170 (6)0.0148 (5)0.0142 (5)0.0004 (4)0.0056 (4)0.0008 (4)
C20.0161 (6)0.0200 (6)0.0210 (6)0.0009 (5)0.0056 (5)0.0008 (5)
C30.0235 (7)0.0188 (6)0.0240 (6)0.0027 (5)0.0078 (5)0.0030 (5)
C40.0267 (7)0.0172 (6)0.0190 (6)0.0028 (5)0.0051 (5)0.0012 (5)
C50.0186 (6)0.0230 (6)0.0238 (6)0.0047 (5)0.0051 (5)0.0013 (5)
C60.0162 (6)0.0197 (6)0.0220 (6)0.0008 (5)0.0065 (5)0.0002 (5)
C70.0143 (5)0.0156 (6)0.0164 (5)0.0010 (4)0.0069 (4)0.0014 (4)
C80.0145 (6)0.0150 (5)0.0146 (5)0.0003 (4)0.0043 (4)0.0009 (4)
C130.0161 (6)0.0180 (6)0.0180 (6)0.0012 (4)0.0065 (5)0.0001 (4)
C120.0227 (6)0.0155 (6)0.0178 (6)0.0015 (5)0.0073 (5)0.0006 (4)
C110.0230 (7)0.0149 (6)0.0222 (6)0.0034 (5)0.0071 (5)0.0006 (5)
C100.0152 (6)0.0195 (6)0.0238 (6)0.0019 (5)0.0069 (5)0.0027 (5)
C90.0153 (6)0.0156 (5)0.0172 (6)0.0022 (4)0.0070 (5)0.0022 (4)
C140.0297 (7)0.0184 (6)0.0308 (7)0.0023 (5)0.0125 (6)0.0044 (5)
Geometric parameters (Å, º) top
O2—C91.3667 (14)C5—H50.9500
O2—H200.89 (2)C6—H60.9500
O1—C71.2369 (14)C8—C131.3871 (16)
N1—C71.3440 (15)C8—C91.4038 (16)
N1—C81.4103 (15)C13—C121.3949 (17)
N1—H10.889 (18)C13—H130.9500
C1—C21.3929 (17)C12—C111.3870 (18)
C1—C61.3949 (17)C12—C141.5074 (17)
C1—C71.4984 (16)C11—C101.3933 (18)
C2—C31.3893 (17)C11—H110.9500
C2—H20.9500C10—C91.3838 (17)
C3—C41.3818 (19)C10—H100.9500
C3—H30.9500C14—H1410.9800
C4—C51.3849 (19)C14—H1420.9800
C4—H40.9500C14—H1430.9800
C5—C61.3829 (18)
C9—O2—H20111.6 (12)C13—C8—C9119.61 (11)
C7—N1—C8128.14 (10)C13—C8—N1125.23 (11)
C7—N1—H1117.3 (11)C9—C8—N1115.16 (10)
C8—N1—H1114.4 (11)C8—C13—C12120.90 (11)
C2—C1—C6118.75 (11)C8—C13—H13119.5
C2—C1—C7123.75 (11)C12—C13—H13119.5
C6—C1—C7117.46 (10)C11—C12—C13118.90 (11)
C3—C2—C1120.22 (12)C11—C12—C14121.51 (12)
C3—C2—H2119.9C13—C12—C14119.59 (11)
C1—C2—H2119.9C12—C11—C10120.82 (11)
C4—C3—C2120.39 (12)C12—C11—H11119.6
C4—C3—H3119.8C10—C11—H11119.6
C2—C3—H3119.8C9—C10—C11120.07 (11)
C3—C4—C5119.83 (12)C9—C10—H10120.0
C3—C4—H4120.1C11—C10—H10120.0
C5—C4—H4120.1O2—C9—C10123.73 (11)
C6—C5—C4119.99 (12)O2—C9—C8116.55 (10)
C6—C5—H5120.0C10—C9—C8119.71 (11)
C4—C5—H5120.0C12—C14—H141109.5
C5—C6—C1120.81 (12)C12—C14—H142109.5
C5—C6—H6119.6H141—C14—H142109.5
C1—C6—H6119.6C12—C14—H143109.5
O1—C7—N1121.94 (11)H141—C14—H143109.5
O1—C7—C1121.11 (11)H142—C14—H143109.5
N1—C7—C1116.95 (10)
C6—C1—C2—C30.16 (18)C7—N1—C8—C9166.27 (11)
C7—C1—C2—C3177.86 (11)C9—C8—C13—C120.22 (18)
C1—C2—C3—C40.27 (19)N1—C8—C13—C12179.91 (11)
C2—C3—C4—C50.10 (19)C8—C13—C12—C110.28 (18)
C3—C4—C5—C60.2 (2)C8—C13—C12—C14179.59 (12)
C4—C5—C6—C10.3 (2)C13—C12—C11—C100.44 (19)
C2—C1—C6—C50.12 (18)C14—C12—C11—C10179.44 (12)
C7—C1—C6—C5177.72 (11)C12—C11—C10—C90.08 (19)
C8—N1—C7—O15.48 (19)C11—C10—C9—O2178.11 (11)
C8—N1—C7—C1173.71 (10)C11—C10—C9—C80.44 (18)
C2—C1—C7—O1172.66 (12)C13—C8—C9—O2178.06 (11)
C6—C1—C7—O15.06 (17)N1—C8—C9—O21.82 (15)
C2—C1—C7—N16.54 (17)C13—C8—C9—C100.59 (17)
C6—C1—C7—N1175.74 (11)N1—C8—C9—C10179.54 (11)
C7—N1—C8—C1313.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.889 (18)2.173 (16)2.6153 (15)110.0 (13)
N1—H1···O2i0.889 (18)2.518 (17)3.1928 (14)133.1 (14)
O2—H20···O1ii0.89 (2)1.75 (2)2.6390 (12)171.3 (19)
C6—H6···O2iii0.952.593.4197 (15)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.889 (18)2.173 (16)2.6153 (15)110.0 (13)
N1—H1···O2i0.889 (18)2.518 (17)3.1928 (14)133.1 (14)
O2—H20···O1ii0.89 (2)1.75 (2)2.6390 (12)171.3 (19)
C6—H6···O2iii0.952.593.4197 (15)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds