organic compounds
H-imidazol-2-yl)-4-phenyl-1H-1,2,3-triazole dihydrate
of 1-(1-methyl-1aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title compound, C12H11N5·2H2O, which crystallizes as a dihydrate, was obtained by CuI-catalysed azide–alkyne cycloaddition from 2-azido-1-methylimidazole and phenylethyne. The dihedral angles between the central triazole ring (r.m.s. deviation = 0.004 Å) and the pendant imidazole (r.m.s. deviation = 0.006 Å) and phenyl rings are 12.3 (2) and 2.54 (19)°, respectively. In the crystal, the water molecules are connected into [010] chains by O—H⋯O hydrogen bonds, while O—H⋯N hydrogen bonds connect the water molecules to the organic molecules, generating corrugated (100) sheets.
Keywords: crystal structure; 1H-imidazole; 1,2,3-triazole; hydrate; hydrogen bonding.
CCDC reference: 1434671
1. Related literature
For the synthesis and thermal cycloaddition of 2-azido-1-methylimidazole, see: Zanirato & Cerini (2005). For related structures, see: Ramana & Punniyamurthy (2012). For background to 1,2,3-triazoles as peptidomimetics, see: Angell & Burgess (2007); Pedersen & Abell (2011); Tron et al. (2008). For copper(I)-catalysed azide–alkyne cycloadditions, see: Haldón et al. (2015); Meldal & Tornoe (2008); Rostovtsev et al. (2002).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014.
Supporting information
CCDC reference: 1434671
https://doi.org/10.1107/S2056989015020721/hb7534sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020721/hb7534Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020721/hb7534Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020721/hb7534Isup4.cml
The thermal ν 1546, 1514, 1478, 1278, 1024, 1005, 762, 689 cm-1. 1H NMR (DMSO-d6, 300 MHz): δ 3.72(s, 3H), 7.06 (s, 1H), 7.39 (t, 1H; J = 7.6 Hz), 7.42 (s, 1H), 7.50 (t, 2H; J = 7.6 Hz), 7.99 (d, 2H; J = 7.6 Hz), 9.13 (s, 1H) p.p.m. 13C NMR (DMSO-d6, 75 MHz): δ 33.5, 122.8, 123.3, 125.5 (2 C), 126.3, 128.5, 129.0 (2 C), 129.8, 136.9, 146.4 p.p.m.
of azidoazoles with (trimethylsilyl)ethyne has been reported to require extraordinarily long reaction times and chromatographic separation of the resulting isomers (Zanirato & Cerini, 2005). On the other hand, copper(I)-catalysed azide-alkyne cycloadditions (Haldón et al., 2015; Meldal & Tornoe, 2008; Rostovtsev et al., 2002) exhibit more favorable rates and excellent selectivities. The 2-azido-1-methylimidazole was prepared by lithiation and azidation of 1-methylimidazole followed by fragmentation of the resulting tosyltriazenyl salt according to the literature (Zanirato & Cerini, 2005). Thus, the aqueous solution (20 ml) of 2-azido-1-methylimidazole (1.1 mmol) was deoxygenated in a stream of argon. Phenylethyne (0.14 ml, 1.2 mmol), CuSO4.5H2O (27 mg, 0.1 mmol) and sodium ascorbate (64 mg, 0.3 mmol) were subsequently added. This suspension was stirred at room temperature for 20 h. The white precipitate was collected by filtration and recrystallized from a mixture of acetone (10 ml) and H2O (0.5 ml) to yield colorless needles (47 mg, 20%). Melting point: 77 °C. IR (neat):Carbon-bound H atoms were placed in calculated positions and refined riding on their respective carbon atom. Methyl H atoms were fitted to the experimental electron density by allowing them to rotate around the C—C bond with a fixed angle (HFIX 137). Isotropic displacement parameters were constrained with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The H atoms of the water molecules were located from a Fourier map and restrained with a distance of O—H = 0.83 (2) Å.
Due to the structural and stereoelectronic similarity between 1,2,3-triazoles and amide bonds, this class of heterocycles holds promising potential as peptidomimetics (Angell & Burgess, 2007; Pedersen & Abell, 2011; Tron et al., 2008) with improved biological activities. The molecular structure of the title compound is shown in Figure 1. The interplanar angle between the imidazole and triazole rings is 12.3°, whereas the angle between the triazole and phenyl ring planes is only 2.5°. The two independent water molecules form infinite chains via O—H···O hydrogen bonds and donate O1—H···N2 and O2—H···N5 hydrogen bonds to the imidazole and triazole moieties (Figure 2). The hydrogen bond geometries are summarized in Table 1.
For the synthesis and thermal
of 2-azido-1-methylimidazole, see: Zanirato & Cerini (2005). For related structures, see: Ramana & Punniyamurthy (2012). For background to 1,2,3-triazoles as peptidomimetics, see: Angell & Burgess (2007); Pedersen & Abell (2011); Tron et al. (2008). For copper(I)-catalysed azide–alkyne cycloadditions, see: Haldón et al. (2015); Meldal & Tornoe (2008); Rostovtsev et al. (2002).Data collection: COLLECT (Hooft, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The water molecules are not shown. | |
Fig. 2. Infinite chains of hydrogen-bonded water molecules link the heterocyclic molecules. |
C12H11N5·2H2O | Dx = 1.332 Mg m−3 |
Mr = 261.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 18840 reflections |
a = 18.8585 (9) Å | θ = 1.0–25.2° |
b = 4.7884 (2) Å | µ = 0.10 mm−1 |
c = 14.4285 (6) Å | T = 233 K |
V = 1302.92 (10) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.05 × 0.05 mm |
F(000) = 552 |
Nonius KappaCCD diffractometer | Rint = 0.050 |
Detector resolution: 9.4 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
phi– and ω–scans | h = −18→22 |
6624 measured reflections | k = −5→5 |
2277 independent reflections | l = −17→17 |
1878 reflections with I > 2σ(I) |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2291P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.15 e Å−3 |
2277 reflections | Δρmin = −0.15 e Å−3 |
190 parameters | Extinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.018 (3) |
C12H11N5·2H2O | V = 1302.92 (10) Å3 |
Mr = 261.29 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 18.8585 (9) Å | µ = 0.10 mm−1 |
b = 4.7884 (2) Å | T = 233 K |
c = 14.4285 (6) Å | 0.40 × 0.05 × 0.05 mm |
Nonius KappaCCD diffractometer | 1878 reflections with I > 2σ(I) |
6624 measured reflections | Rint = 0.050 |
2277 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 5 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.15 e Å−3 |
2277 reflections | Δρmin = −0.15 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Hydrogen atoms at water molecules were found and refined isotropically with a bond restraint, d = 0.83 (2) Å. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.71035 (16) | 0.4793 (6) | 1.0472 (2) | 0.0432 (7) | |
N2 | 0.69605 (16) | 0.5200 (6) | 0.89493 (19) | 0.0439 (7) | |
N3 | 0.62108 (14) | 0.8035 (6) | 0.98838 (18) | 0.0384 (7) | |
N4 | 0.58989 (17) | 0.8522 (7) | 1.0712 (2) | 0.0504 (8) | |
N5 | 0.54108 (16) | 1.0443 (6) | 1.0565 (2) | 0.0491 (8) | |
C1 | 0.67522 (16) | 0.6024 (7) | 0.9768 (3) | 0.0387 (8) | |
C2 | 0.75758 (19) | 0.2996 (8) | 1.0060 (3) | 0.0484 (9) | |
H2 | 0.7900 | 0.1815 | 1.0361 | 0.058* | |
C3 | 0.74817 (19) | 0.3260 (7) | 0.9139 (3) | 0.0487 (9) | |
H3 | 0.7736 | 0.2260 | 0.8687 | 0.058* | |
C4 | 0.7052 (2) | 0.5242 (10) | 1.1475 (3) | 0.0698 (13) | |
H4A | 0.6585 | 0.4685 | 1.1688 | 0.105* | |
H4B | 0.7127 | 0.7203 | 1.1612 | 0.105* | |
H4C | 0.7409 | 0.4133 | 1.1788 | 0.105* | |
C5 | 0.59235 (19) | 0.9645 (7) | 0.9213 (3) | 0.0404 (9) | |
H5 | 0.6047 | 0.9694 | 0.8582 | 0.048* | |
C6 | 0.54150 (17) | 1.1183 (7) | 0.9651 (2) | 0.0368 (8) | |
C7 | 0.49322 (18) | 1.3296 (7) | 0.9261 (2) | 0.0387 (8) | |
C8 | 0.49478 (18) | 1.3869 (8) | 0.8321 (2) | 0.0446 (9) | |
H8 | 0.5263 | 1.2892 | 0.7935 | 0.054* | |
C9 | 0.4501 (2) | 1.5875 (8) | 0.7944 (3) | 0.0523 (10) | |
H9 | 0.4516 | 1.6260 | 0.7306 | 0.063* | |
C10 | 0.4035 (2) | 1.7299 (8) | 0.8506 (3) | 0.0525 (10) | |
H10 | 0.3732 | 1.8651 | 0.8250 | 0.063* | |
C11 | 0.4012 (2) | 1.6750 (8) | 0.9445 (3) | 0.0492 (10) | |
H11 | 0.3690 | 1.7716 | 0.9826 | 0.059* | |
C12 | 0.44632 (18) | 1.4772 (6) | 0.9824 (3) | 0.0442 (9) | |
H12 | 0.4453 | 1.4423 | 1.0465 | 0.053* | |
O1 | 0.66022 (15) | 0.5304 (6) | 0.70215 (18) | 0.0527 (8) | |
O2 | 0.59225 (17) | 1.0282 (6) | 0.6683 (2) | 0.0566 (8) | |
H1A | 0.675 (3) | 0.533 (11) | 0.758 (2) | 0.12 (2)* | |
H1B | 0.641 (2) | 0.371 (7) | 0.692 (3) | 0.079 (15)* | |
H2A | 0.5546 (17) | 1.019 (9) | 0.640 (3) | 0.077 (16)* | |
H2B | 0.608 (2) | 0.869 (7) | 0.680 (4) | 0.081 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0357 (16) | 0.0487 (17) | 0.0453 (18) | −0.0013 (15) | −0.0035 (14) | 0.0036 (14) |
N2 | 0.0433 (17) | 0.0464 (17) | 0.0419 (18) | −0.0012 (14) | 0.0035 (15) | −0.0052 (13) |
N3 | 0.0364 (15) | 0.0410 (16) | 0.0377 (16) | −0.0046 (13) | 0.0002 (15) | −0.0002 (14) |
N4 | 0.0510 (18) | 0.0620 (19) | 0.0384 (17) | 0.0082 (17) | 0.0022 (15) | 0.0006 (15) |
N5 | 0.0471 (18) | 0.057 (2) | 0.0431 (17) | 0.0070 (16) | 0.0016 (15) | −0.0006 (15) |
C1 | 0.0302 (17) | 0.0374 (18) | 0.048 (2) | −0.0061 (15) | 0.0008 (16) | 0.0014 (17) |
C2 | 0.0373 (19) | 0.047 (2) | 0.061 (2) | 0.0046 (18) | 0.0009 (19) | 0.0036 (19) |
C3 | 0.040 (2) | 0.045 (2) | 0.061 (3) | 0.0021 (17) | 0.0027 (19) | −0.005 (2) |
C4 | 0.059 (3) | 0.105 (4) | 0.045 (3) | 0.014 (3) | −0.003 (2) | 0.006 (2) |
C5 | 0.042 (2) | 0.0401 (19) | 0.0391 (19) | −0.0072 (17) | 0.0023 (17) | 0.0005 (17) |
C6 | 0.0364 (18) | 0.0347 (18) | 0.0394 (18) | −0.0070 (15) | 0.0018 (16) | −0.0004 (16) |
C7 | 0.0355 (19) | 0.0357 (19) | 0.0449 (19) | −0.0075 (16) | 0.0023 (16) | −0.0023 (17) |
C8 | 0.040 (2) | 0.048 (2) | 0.045 (2) | 0.0015 (18) | 0.0019 (18) | −0.0053 (17) |
C9 | 0.050 (2) | 0.062 (3) | 0.044 (2) | −0.005 (2) | −0.0038 (19) | 0.006 (2) |
C10 | 0.049 (2) | 0.045 (2) | 0.064 (3) | 0.0005 (19) | −0.008 (2) | 0.004 (2) |
C11 | 0.048 (2) | 0.041 (2) | 0.059 (3) | 0.0023 (19) | 0.0046 (17) | −0.0021 (17) |
C12 | 0.050 (2) | 0.040 (2) | 0.043 (2) | −0.0013 (17) | 0.0071 (18) | 0.0018 (17) |
O1 | 0.0603 (19) | 0.0462 (17) | 0.0514 (19) | −0.0029 (14) | −0.0028 (14) | 0.0066 (13) |
O2 | 0.062 (2) | 0.0472 (17) | 0.0608 (18) | 0.0040 (15) | −0.0141 (16) | −0.0078 (14) |
N1—C1 | 1.347 (5) | C5—H5 | 0.9400 |
N1—C2 | 1.374 (4) | C6—C7 | 1.472 (5) |
N1—C4 | 1.467 (5) | C7—C8 | 1.385 (5) |
N2—C1 | 1.306 (5) | C7—C12 | 1.393 (5) |
N2—C3 | 1.380 (5) | C8—C9 | 1.389 (5) |
N3—C5 | 1.350 (4) | C8—H8 | 0.9400 |
N3—N4 | 1.352 (4) | C9—C10 | 1.376 (5) |
N3—C1 | 1.413 (4) | C9—H9 | 0.9400 |
N4—N5 | 1.318 (4) | C10—C11 | 1.380 (5) |
N5—C6 | 1.366 (5) | C10—H10 | 0.9400 |
C2—C3 | 1.347 (5) | C11—C12 | 1.386 (5) |
C2—H2 | 0.9400 | C11—H11 | 0.9400 |
C3—H3 | 0.9400 | C12—H12 | 0.9400 |
C4—H4A | 0.9700 | O1—H1A | 0.85 (3) |
C4—H4B | 0.9700 | O1—H1B | 0.86 (3) |
C4—H4C | 0.9700 | O2—H2A | 0.82 (3) |
C5—C6 | 1.364 (5) | O2—H2B | 0.84 (3) |
C1—N1—C2 | 105.5 (3) | N3—C5—H5 | 127.5 |
C1—N1—C4 | 130.3 (3) | C6—C5—H5 | 127.5 |
C2—N1—C4 | 124.2 (3) | C5—C6—N5 | 108.1 (3) |
C1—N2—C3 | 103.8 (3) | C5—C6—C7 | 129.0 (3) |
C5—N3—N4 | 111.1 (3) | N5—C6—C7 | 122.9 (3) |
C5—N3—C1 | 126.5 (3) | C8—C7—C12 | 118.9 (3) |
N4—N3—C1 | 122.4 (3) | C8—C7—C6 | 119.8 (3) |
N5—N4—N3 | 106.4 (3) | C12—C7—C6 | 121.3 (3) |
N4—N5—C6 | 109.4 (3) | C7—C8—C9 | 120.5 (3) |
N2—C1—N1 | 113.7 (3) | C7—C8—H8 | 119.7 |
N2—C1—N3 | 122.0 (3) | C9—C8—H8 | 119.7 |
N1—C1—N3 | 124.4 (3) | C10—C9—C8 | 120.0 (4) |
C3—C2—N1 | 106.4 (3) | C10—C9—H9 | 120.0 |
C3—C2—H2 | 126.8 | C8—C9—H9 | 120.0 |
N1—C2—H2 | 126.8 | C9—C10—C11 | 120.3 (4) |
C2—C3—N2 | 110.6 (3) | C9—C10—H10 | 119.9 |
C2—C3—H3 | 124.7 | C11—C10—H10 | 119.9 |
N2—C3—H3 | 124.7 | C10—C11—C12 | 119.8 (4) |
N1—C4—H4A | 109.5 | C10—C11—H11 | 120.1 |
N1—C4—H4B | 109.5 | C12—C11—H11 | 120.1 |
H4A—C4—H4B | 109.5 | C11—C12—C7 | 120.5 (3) |
N1—C4—H4C | 109.5 | C11—C12—H12 | 119.8 |
H4A—C4—H4C | 109.5 | C7—C12—H12 | 119.8 |
H4B—C4—H4C | 109.5 | H1A—O1—H1B | 108 (5) |
N3—C5—C6 | 105.0 (3) | H2A—O2—H2B | 111 (5) |
C5—N3—N4—N5 | 0.2 (4) | C1—N3—C5—C6 | 178.4 (3) |
C1—N3—N4—N5 | −178.3 (3) | N3—C5—C6—N5 | −0.3 (4) |
N3—N4—N5—C6 | −0.4 (4) | N3—C5—C6—C7 | 180.0 (3) |
C3—N2—C1—N1 | 0.8 (4) | N4—N5—C6—C5 | 0.4 (4) |
C3—N2—C1—N3 | −179.6 (3) | N4—N5—C6—C7 | −179.8 (3) |
C2—N1—C1—N2 | −0.6 (4) | C5—C6—C7—C8 | 2.1 (5) |
C4—N1—C1—N2 | 176.7 (4) | N5—C6—C7—C8 | −177.6 (3) |
C2—N1—C1—N3 | 179.8 (3) | C5—C6—C7—C12 | −177.0 (3) |
C4—N1—C1—N3 | −2.9 (6) | N5—C6—C7—C12 | 3.3 (5) |
C5—N3—C1—N2 | −10.9 (5) | C12—C7—C8—C9 | −0.2 (5) |
N4—N3—C1—N2 | 167.3 (3) | C6—C7—C8—C9 | −179.4 (3) |
C5—N3—C1—N1 | 168.6 (3) | C7—C8—C9—C10 | −0.4 (5) |
N4—N3—C1—N1 | −13.2 (5) | C8—C9—C10—C11 | 0.2 (6) |
C1—N1—C2—C3 | 0.2 (4) | C9—C10—C11—C12 | 0.5 (6) |
C4—N1—C2—C3 | −177.4 (4) | C10—C11—C12—C7 | −1.1 (5) |
N1—C2—C3—N2 | 0.3 (4) | C8—C7—C12—C11 | 1.0 (5) |
C1—N2—C3—C2 | −0.6 (4) | C6—C7—C12—C11 | −179.9 (3) |
N4—N3—C5—C6 | 0.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N2 | 0.85 (3) | 2.02 (3) | 2.863 (4) | 172 (4) |
O1—H1B···O2i | 0.86 (3) | 1.91 (4) | 2.768 (4) | 176 (4) |
O2—H2A···N5ii | 0.82 (4) | 2.19 (4) | 3.007 (4) | 174 (4) |
O2—H2B···O1 | 0.84 (4) | 1.92 (4) | 2.750 (4) | 170 (4) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N2 | 0.85 (3) | 2.02 (3) | 2.863 (4) | 172 (4) |
O1—H1B···O2i | 0.86 (3) | 1.91 (4) | 2.768 (4) | 176 (4) |
O2—H2A···N5ii | 0.82 (4) | 2.19 (4) | 3.007 (4) | 174 (4) |
O2—H2B···O1 | 0.84 (4) | 1.92 (4) | 2.750 (4) | 170 (4) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, z−1/2. |
References
Angell, Y. L. & Burgess, K. (2007). Chem. Soc. Rev. 36, 1674–1689. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Haldón, E., Nicasio, M. C. & Pérez, P. J. (2015). Org. Biomol. Chem. 13, 9528–9550. Web of Science PubMed Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meldal, M. & Tornøe, C. W. (2008). Chem. Rev. 108, 2952–3015. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pedersen, D. S. & Abell, A. (2011). Eur. J. Org. Chem. pp. 2399–2411. Web of Science CrossRef Google Scholar
Ramana, T. & Punniyamurthy, T. (2012). Chem. Eur. J. 18, 13279–13283. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G. & Genazzani, A. A. (2008). Med. Res. Rev. 28, 278–308. Web of Science CrossRef PubMed CAS Google Scholar
Zanirato, P. & Cerini, S. (2005). Org. Biomol. Chem. 3, 1508–1513. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to the structural and stereoelectronic similarity between 1,2,3-triazoles and amide bonds, this class of heterocycles holds promising potential as peptidomimetics (Angell & Burgess, 2007; Pedersen & Abell, 2011; Tron et al., 2008) with improved biological activities. The molecular structure of the title compound is shown in Figure 1. The interplanar angle between the imidazole and triazole rings is 12.3°, whereas the angle between the triazole and phenyl ring planes is only 2.5°. The two independent water molecules form infinite chains via O—H···O hydrogen bonds and donate O1—H···N2 and O2—H···N5 hydrogen bonds to the imidazole and triazole moieties (Figure 2). The hydrogen bond geometries are summarized in Table 1.