organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-benzyl-1-[(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)amino]­thio­urea

aFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 November 2015; accepted 5 November 2015; online 21 November 2015)

In the title compound, C18H19N3S, the dihedral angle between the planes of the benzene rings is 58.63 (8)°. The six-membered ring bonded to the thio­semicarbazide group (r.m.s. deviation = 0.038 Å) adopts a sofa conformation, with one of the methyl­ene-group C atoms as the flap. A short intra­molecular N—H⋯N contact is observed. In the crystal, mol­ecules are linked by weak N—H⋯S inter­actions to generate C(4) chains propagating in the [010] direction, with adjacent mol­ecules related by glide symmetry.

1. Related literature

For the anti­tumour activities of thio­semicarbazides, see: Vandresen et al. (2014[Vandresen, F., Falzirolli, H., Batista, S. A. A., Silva-Giardini, A. P. B., Oliveira, D. N., Catharino, R. R., Ruiz, A. L. T. G., Carvalho, J. E., Foglio, M. A. & Silva, C. C. (2014). Eur. J. Med. Chem. 79, 110-116.]); Xie et al. (2014[Xie, W., Xie, S., Zhou, Y., Tang, X., Liu, J., Yang, W. & Qiu, M. (2014). Eur. J. Med. Chem. 81, 22-27.]); Gan et al. (2014[Gan, C., Cui, J., Su, S., Lin, Q., Jia, L., Fan, L. & Huang, Y. (2014). Steroids, 87, 99-107.]). For the synthesis of the title compound, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H19N3S

  • Mr = 309.42

  • Orthorhombic, P b c a

  • a = 11.9129 (5) Å

  • b = 9.6914 (4) Å

  • c = 27.8220 (11) Å

  • V = 3212.1 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.77 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.05 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.91

  • 61936 measured reflections

  • 3155 independent reflections

  • 2795 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.06

  • 3155 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.91 2.20 2.6219 (16) 108
N1—H1A⋯S1i 0.91 2.85 3.5790 (13) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Recently, several kinds of thiosemicarbazone derivatives were synthesized and their antitumor activities were also reported (Vandresen et al., 2014; Xie et al., 2014; Gan et al., 2014). As part of our studies in this area, we report here the synthesis and crystal structural determination of the title compound.

In the title molecule (Fig. 1), the dihedral angle between the phenyl ring (C1–C6) and the aromatic portion of the tetrahydronaphthylidene unit (C13–C18) is 58.64 (5)°. A Cremer-Pople analysis of the conformation of the C9–C13,C18 ring gave puckering parameters Q = 0.434 (2) Å, θ = 126.2 (2)° and φ = 305.1 (2)°. The molecules pack in chains running parallel to the b axis assisted by weak N1—H1A···S1i (i: 1/2 - x, -1/2 + y, z) interactions (Table 1, Fig. 2).

Related literature top

For the antitumour activities of thiosemicarbazides, see: Vandresen et al. (2014); Xie et al. (2014); Gan et al. (2014). For the synthesis of the title compound, see: Mague et al. (2014)

Experimental top

The title compound was prepared according to our recently reported method (Mague et al., 2014). The product was recrystallized from ethanol solution to afford colorless tablets (90% yield) M.p. 413 - 414 K.

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.95–0.99 Å) while those attached to N atoms were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Structure description top

Recently, several kinds of thiosemicarbazone derivatives were synthesized and their antitumor activities were also reported (Vandresen et al., 2014; Xie et al., 2014; Gan et al., 2014). As part of our studies in this area, we report here the synthesis and crystal structural determination of the title compound.

In the title molecule (Fig. 1), the dihedral angle between the phenyl ring (C1–C6) and the aromatic portion of the tetrahydronaphthylidene unit (C13–C18) is 58.64 (5)°. A Cremer-Pople analysis of the conformation of the C9–C13,C18 ring gave puckering parameters Q = 0.434 (2) Å, θ = 126.2 (2)° and φ = 305.1 (2)°. The molecules pack in chains running parallel to the b axis assisted by weak N1—H1A···S1i (i: 1/2 - x, -1/2 + y, z) interactions (Table 1, Fig. 2).

For the antitumour activities of thiosemicarbazides, see: Vandresen et al. (2014); Xie et al. (2014); Gan et al. (2014). For the synthesis of the title compound, see: Mague et al. (2014)

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2014).

Figures top
[Figure 1] Fig. 1. The title molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the b axis. N—H···S interactions are shown by dotted lines.
3-Benzyl-1-[(1,2,3,4-tetrahydronaphthalen-1-ylidene)amino]thiourea top
Crystal data top
C18H19N3SDx = 1.280 Mg m3
Mr = 309.42Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9005 reflections
a = 11.9129 (5) Åθ = 4.9–72.0°
b = 9.6914 (4) ŵ = 1.77 mm1
c = 27.8220 (11) ÅT = 150 K
V = 3212.1 (2) Å3Tablet, colourless
Z = 80.22 × 0.18 × 0.05 mm
F(000) = 1312
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3155 independent reflections
Radiation source: INCOATEC IµS micro–focus source2795 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.84, Tmax = 0.91l = 3434
61936 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.4441P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H19N3SV = 3212.1 (2) Å3
Mr = 309.42Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.9129 (5) ŵ = 1.77 mm1
b = 9.6914 (4) ÅT = 150 K
c = 27.8220 (11) Å0.22 × 0.18 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2795 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.91Rint = 0.050
61936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
3155 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08381 (3)0.69807 (4)0.37402 (2)0.02936 (13)
N10.23130 (10)0.48914 (12)0.37501 (4)0.0250 (3)
H1A0.27890.43400.35810.030*
N20.18664 (10)0.57805 (12)0.30147 (4)0.0243 (3)
H2A0.14580.63610.28270.029*
N30.27037 (9)0.49802 (12)0.28232 (4)0.0223 (3)
C10.29867 (14)0.56296 (15)0.45561 (5)0.0287 (3)
C20.41047 (15)0.57894 (19)0.44281 (6)0.0388 (4)
H20.43860.53430.41490.047*
C30.48124 (18)0.6596 (2)0.47050 (7)0.0524 (5)
H30.55780.66950.46160.063*
C40.4413 (2)0.7256 (2)0.51086 (7)0.0588 (6)
H40.49000.78170.52960.071*
C50.3306 (2)0.7102 (2)0.52401 (7)0.0578 (6)
H50.30300.75510.55200.069*
C60.25919 (18)0.62890 (19)0.49641 (5)0.0421 (4)
H60.18290.61850.50560.051*
C70.22186 (13)0.47002 (15)0.42688 (5)0.0286 (3)
H7A0.23940.37270.43470.034*
H7B0.14330.48780.43670.034*
C80.17257 (12)0.58125 (14)0.35015 (5)0.0231 (3)
C90.27768 (11)0.49111 (13)0.23608 (5)0.0206 (3)
C100.19577 (13)0.55643 (16)0.20165 (5)0.0298 (3)
H10A0.21610.65460.19710.036*
H10B0.11960.55310.21580.036*
C110.19402 (14)0.48477 (18)0.15289 (6)0.0356 (4)
H11A0.16200.39110.15640.043*
H11B0.14590.53740.13040.043*
C120.31195 (14)0.47477 (18)0.13267 (5)0.0339 (4)
H12A0.30990.42310.10200.041*
H12B0.34040.56870.12580.041*
C130.39089 (12)0.40340 (15)0.16706 (5)0.0247 (3)
C140.48145 (13)0.32664 (16)0.14988 (6)0.0305 (3)
H140.49260.31880.11620.037*
C150.55529 (13)0.26181 (16)0.18071 (6)0.0328 (3)
H150.61540.20820.16830.039*
C160.54132 (12)0.27535 (15)0.22997 (6)0.0299 (3)
H160.59280.23250.25140.036*
C170.45229 (12)0.35136 (14)0.24798 (5)0.0242 (3)
H170.44360.36130.28170.029*
C180.37478 (11)0.41390 (13)0.21678 (5)0.0206 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0343 (2)0.0285 (2)0.0252 (2)0.00308 (14)0.00802 (14)0.00293 (13)
N10.0291 (6)0.0258 (6)0.0200 (6)0.0001 (5)0.0013 (5)0.0034 (5)
N20.0271 (6)0.0254 (6)0.0204 (6)0.0045 (5)0.0021 (5)0.0016 (5)
N30.0219 (6)0.0218 (6)0.0232 (6)0.0000 (4)0.0021 (4)0.0022 (4)
C10.0406 (8)0.0263 (7)0.0192 (6)0.0016 (6)0.0040 (6)0.0049 (6)
C20.0412 (9)0.0445 (9)0.0308 (8)0.0055 (8)0.0046 (7)0.0048 (7)
C30.0518 (11)0.0630 (12)0.0425 (10)0.0206 (10)0.0188 (9)0.0151 (9)
C40.0905 (16)0.0536 (12)0.0325 (10)0.0305 (12)0.0287 (10)0.0096 (8)
C50.0977 (18)0.0514 (12)0.0244 (8)0.0166 (12)0.0052 (10)0.0066 (8)
C60.0599 (11)0.0423 (9)0.0242 (7)0.0045 (8)0.0025 (8)0.0027 (7)
C70.0368 (8)0.0273 (7)0.0217 (7)0.0036 (6)0.0024 (6)0.0023 (6)
C80.0248 (7)0.0235 (7)0.0209 (6)0.0058 (5)0.0023 (5)0.0023 (5)
C90.0220 (7)0.0183 (6)0.0214 (6)0.0013 (5)0.0002 (5)0.0013 (5)
C100.0322 (8)0.0321 (8)0.0250 (7)0.0105 (6)0.0022 (6)0.0015 (6)
C110.0356 (8)0.0438 (9)0.0275 (8)0.0066 (7)0.0063 (6)0.0026 (7)
C120.0364 (9)0.0453 (9)0.0202 (7)0.0052 (7)0.0011 (6)0.0011 (6)
C130.0248 (7)0.0248 (7)0.0244 (7)0.0029 (6)0.0024 (5)0.0022 (5)
C140.0297 (8)0.0322 (8)0.0297 (7)0.0028 (6)0.0098 (6)0.0042 (6)
C150.0243 (7)0.0279 (7)0.0463 (9)0.0019 (6)0.0096 (7)0.0046 (7)
C160.0232 (7)0.0248 (7)0.0417 (8)0.0014 (6)0.0010 (6)0.0028 (6)
C170.0234 (7)0.0220 (7)0.0270 (7)0.0026 (6)0.0002 (5)0.0007 (6)
C180.0208 (6)0.0171 (6)0.0239 (7)0.0028 (5)0.0017 (5)0.0007 (5)
Geometric parameters (Å, º) top
S1—C81.6855 (14)C9—C181.4786 (18)
N1—C81.3285 (19)C9—C101.5069 (19)
N1—C71.4592 (17)C10—C111.524 (2)
N1—H1A0.9098C10—H10A0.9900
N2—C81.3651 (18)C10—H10B0.9900
N2—N31.3713 (16)C11—C121.516 (2)
N2—H2A0.9099C11—H11A0.9900
N3—C91.2913 (18)C11—H11B0.9900
C1—C61.385 (2)C12—C131.509 (2)
C1—C21.387 (2)C12—H12A0.9900
C1—C71.512 (2)C12—H12B0.9900
C2—C31.384 (3)C13—C141.395 (2)
C2—H20.9500C13—C181.4004 (19)
C3—C41.377 (3)C14—C151.380 (2)
C3—H30.9500C14—H140.9500
C4—C51.377 (3)C15—C161.387 (2)
C4—H40.9500C15—H150.9500
C5—C61.391 (3)C16—C171.385 (2)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—C181.405 (2)
C7—H7A0.9900C17—H170.9500
C7—H7B0.9900
C8—N1—C7124.03 (12)C9—C10—C11112.53 (12)
C8—N1—H1A116.9C9—C10—H10A109.1
C7—N1—H1A119.0C11—C10—H10A109.1
C8—N2—N3119.18 (12)C9—C10—H10B109.1
C8—N2—H2A119.4C11—C10—H10B109.1
N3—N2—H2A121.0H10A—C10—H10B107.8
C9—N3—N2117.74 (12)C12—C11—C10110.29 (13)
C6—C1—C2119.00 (16)C12—C11—H11A109.6
C6—C1—C7120.17 (15)C10—C11—H11A109.6
C2—C1—C7120.77 (14)C12—C11—H11B109.6
C3—C2—C1120.34 (18)C10—C11—H11B109.6
C3—C2—H2119.8H11A—C11—H11B108.1
C1—C2—H2119.8C13—C12—C11111.79 (12)
C4—C3—C2120.4 (2)C13—C12—H12A109.3
C4—C3—H3119.8C11—C12—H12A109.3
C2—C3—H3119.8C13—C12—H12B109.3
C5—C4—C3119.80 (18)C11—C12—H12B109.3
C5—C4—H4120.1H12A—C12—H12B107.9
C3—C4—H4120.1C14—C13—C18118.90 (13)
C4—C5—C6120.06 (19)C14—C13—C12120.60 (13)
C4—C5—H5120.0C18—C13—C12120.50 (13)
C6—C5—H5120.0C15—C14—C13121.51 (14)
C1—C6—C5120.40 (19)C15—C14—H14119.2
C1—C6—H6119.8C13—C14—H14119.2
C5—C6—H6119.8C14—C15—C16119.66 (14)
N1—C7—C1113.61 (12)C14—C15—H15120.2
N1—C7—H7A108.8C16—C15—H15120.2
C1—C7—H7A108.8C17—C16—C15119.98 (14)
N1—C7—H7B108.8C17—C16—H16120.0
C1—C7—H7B108.8C15—C16—H16120.0
H7A—C7—H7B107.7C16—C17—C18120.62 (14)
N1—C8—N2115.89 (12)C16—C17—H17119.7
N1—C8—S1125.21 (10)C18—C17—H17119.7
N2—C8—S1118.90 (11)C13—C18—C17119.28 (13)
N3—C9—C18116.15 (12)C13—C18—C9120.18 (12)
N3—C9—C10124.61 (12)C17—C18—C9120.54 (12)
C18—C9—C10119.23 (12)
C8—N2—N3—C9176.26 (12)C9—C10—C11—C1252.80 (18)
C6—C1—C2—C30.0 (3)C10—C11—C12—C1355.55 (19)
C7—C1—C2—C3177.27 (16)C11—C12—C13—C14149.52 (14)
C1—C2—C3—C40.4 (3)C11—C12—C13—C1830.9 (2)
C2—C3—C4—C50.6 (3)C18—C13—C14—C150.3 (2)
C3—C4—C5—C60.4 (3)C12—C13—C14—C15179.30 (15)
C2—C1—C6—C50.2 (3)C13—C14—C15—C161.5 (2)
C7—C1—C6—C5177.49 (16)C14—C15—C16—C171.3 (2)
C4—C5—C6—C10.0 (3)C15—C16—C17—C180.8 (2)
C8—N1—C7—C187.70 (17)C14—C13—C18—C172.3 (2)
C6—C1—C7—N1136.73 (15)C12—C13—C18—C17177.28 (13)
C2—C1—C7—N146.0 (2)C14—C13—C18—C9178.21 (13)
C7—N1—C8—N2175.61 (13)C12—C13—C18—C92.2 (2)
C7—N1—C8—S14.1 (2)C16—C17—C18—C132.6 (2)
N3—N2—C8—N19.87 (18)C16—C17—C18—C9177.96 (13)
N3—N2—C8—S1170.43 (10)N3—C9—C18—C13178.67 (13)
N2—N3—C9—C18174.84 (11)C10—C9—C18—C130.82 (19)
N2—N3—C9—C104.6 (2)N3—C9—C18—C170.80 (19)
N3—C9—C10—C11155.52 (14)C10—C9—C18—C17179.72 (13)
C18—C9—C10—C1125.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.912.202.6219 (16)108
N1—H1A···S1i0.912.853.5790 (13)138
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.912.202.6219 (16)108
N1—H1A···S1i0.912.853.5790 (13)138
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGan, C., Cui, J., Su, S., Lin, Q., Jia, L., Fan, L. & Huang, Y. (2014). Steroids, 87, 99–107.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVandresen, F., Falzirolli, H., Batista, S. A. A., Silva-Giardini, A. P. B., Oliveira, D. N., Catharino, R. R., Ruiz, A. L. T. G., Carvalho, J. E., Foglio, M. A. & Silva, C. C. (2014). Eur. J. Med. Chem. 79, 110–116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXie, W., Xie, S., Zhou, Y., Tang, X., Liu, J., Yang, W. & Qiu, M. (2014). Eur. J. Med. Chem. 81, 22–27.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds