organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (7-fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, St Philomena's College (Autonomous), Mysore 570 015, Karnataka, India, cDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and dDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 November 2015; accepted 8 November 2015; online 14 November 2015)

In the title compound, C15H14FNO3S2, the 2H-chromene ring system is close to being planar (r.m.s. deviation = 0.024 Å) and the morpholine ring adopts a chair conformation. The dihedral angle between the 2H-chromene ring system and the morpholine ring (all atoms) is 88.21 (11)°. In the crystal, inversion dimers linked by pairs of very weak C—H⋯F hydrogen bonds generate R22(8) loops; C—H⋯O hydrogen bonds connect the dimers into [010] chains. Weak aromatic ππ stacking inter­actions between the pyran rings of the chromene systems [centroid–centroid distance = 3.6940 (16) Å] are also observed.

1. Related literature

For applications of coumarins, see: Starčević et al. (2011[Starčević, S., Brožič, P., Turk, S., Cesar, J., Lanišnik Rižner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248-261.]); Lodeiro et al. (2010[Lodeiro, C., Lippolis, V. & Mameli, M. (2010). Macrocycl. Chem. pp. 159-212.]); Danko et al. (2011[Danko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigm. 90, 129-138.]). For a related structure and further synthetic details, see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14FNO3S2

  • Mr = 339.39

  • Triclinic, [P \overline 1]

  • a = 7.0285 (3) Å

  • b = 7.8845 (3) Å

  • c = 14.8151 (6) Å

  • α = 74.779 (2)°

  • β = 87.653 (2)°

  • γ = 74.241 (2)°

  • V = 762.01 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 1.000

  • 10293 measured reflections

  • 2683 independent reflections

  • 1352 reflections with I > 2σ(I)

  • Rint = 0.171

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.09

  • 2683 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯F1i 0.93 2.56 3.451 (3) 161
C17—H17A⋯O5ii 0.97 2.45 3.346 (3) 153
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Coumarin derivatives have many uses as antibiotics, antiviral, antimicrobial and anticoagulants agents and as pH indicators in biological systems and medical sciences (Starčević et al., 2011; Lodeiro et al., 2010; Danko et al.,2011).

The asymmetric unit of (7-fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate is shown in Fig. 1. The 2H-chromene ring systems (O4/C8–C16) is nearly planar, with a maximum deviation of 0.0591 (30) Å for atoms C8 and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2H-chromene(O4/C8–C16) ring system and the morpholine (N7\O6\C19–C22) ring is 88.21 (11)°. In the crystal, inversion-related C14—H14···F1 hydrogen bonds, forming inversion dimers with an R2 2(8) ring motif. In the crystal, weak C—H···O hydrogen bonds (Table 1) with ππ interactions between pyran rings of chromene (C11—C16) [shortest centroid–centroid distance = 3.6940 (16) Å] are observed (Figure 2).

Related literature top

For applications of coumarins, see: Starčević et al. (2011); Lodeiro et al. (2010); Danko et al.,(2011). For a related structure and further synthetic details, see: Kant et al. (2012).

Experimental top

The title compound was synthesized according to the reported method (Rajni Kant et al., 2012). The compound is recrystallized from an ethanol-chloroform mixture as colourless needles. Yield = 77%. m.p.:413–415 K; IR (KBr, cm-1): 997, 1271, 1423, and 1716. GCMS: m/e: 339. 1H NMR (400 MHz, CDCl3, δ,.p.p.m): d 7.40 (dd, 1H, Ar—H), 7.31 (q, 1H, Ar—H), 7.24 (dd, 1H, Ar—H), 6.58 (s, 1H, Ar—H), 4.68 (s, 2H, CH2), 4.32 (s, 2H, CH2), 3.90 (s, 2H, CH2), 3.73 (s, 4H, CH2). Mol. Formula: C15H14FNO3S2. Elemental analysis: C, 53.08; H, 4.16; N, 4.13 (calculated); C, 53.12; H, 4.12; N, 4.18(found).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Structure description top

Coumarin derivatives have many uses as antibiotics, antiviral, antimicrobial and anticoagulants agents and as pH indicators in biological systems and medical sciences (Starčević et al., 2011; Lodeiro et al., 2010; Danko et al.,2011).

The asymmetric unit of (7-fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate is shown in Fig. 1. The 2H-chromene ring systems (O4/C8–C16) is nearly planar, with a maximum deviation of 0.0591 (30) Å for atoms C8 and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2H-chromene(O4/C8–C16) ring system and the morpholine (N7\O6\C19–C22) ring is 88.21 (11)°. In the crystal, inversion-related C14—H14···F1 hydrogen bonds, forming inversion dimers with an R2 2(8) ring motif. In the crystal, weak C—H···O hydrogen bonds (Table 1) with ππ interactions between pyran rings of chromene (C11—C16) [shortest centroid–centroid distance = 3.6940 (16) Å] are observed (Figure 2).

For applications of coumarins, see: Starčević et al. (2011); Lodeiro et al. (2010); Danko et al.,(2011). For a related structure and further synthetic details, see: Kant et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.
(7-Fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate top
Crystal data top
C15H14FNO3S2F(000) = 352
Mr = 339.39Dx = 1.479 Mg m3
Triclinic, P1Melting point: 413 K
a = 7.0285 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8845 (3) ÅCell parameters from 2683 reflections
c = 14.8151 (6) Åθ = 1.4–25.0°
α = 74.779 (2)°µ = 0.37 mm1
β = 87.653 (2)°T = 296 K
γ = 74.241 (2)°Plate, colourless
V = 762.01 (5) Å30.24 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2683 independent reflections
Radiation source: fine-focus sealed tube1352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.171
ω and φ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 88
Tmin = 0.770, Tmax = 1.000k = 98
10293 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2683 reflectionsΔρmax = 0.87 e Å3
199 parametersΔρmin = 1.15 e Å3
Crystal data top
C15H14FNO3S2γ = 74.241 (2)°
Mr = 339.39V = 762.01 (5) Å3
Triclinic, P1Z = 2
a = 7.0285 (3) ÅMo Kα radiation
b = 7.8845 (3) ŵ = 0.37 mm1
c = 14.8151 (6) ÅT = 296 K
α = 74.779 (2)°0.24 × 0.20 × 0.12 mm
β = 87.653 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1352 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.171
10293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.09Δρmax = 0.87 e Å3
2683 reflectionsΔρmin = 1.15 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.9653 (3)0.2708 (3)0.50738 (15)0.0859 (8)
S20.29218 (11)0.78840 (9)0.14758 (6)0.0461 (3)
S30.06235 (10)0.70598 (9)0.07735 (7)0.0518 (3)
O40.4232 (3)0.1520 (2)0.38952 (16)0.0527 (7)
O50.1885 (3)0.0795 (2)0.32697 (18)0.0719 (9)
O60.4365 (3)0.7772 (3)0.19559 (19)0.0646 (8)
N70.2427 (3)0.7703 (3)0.0227 (2)0.0398 (8)
C80.2533 (5)0.2013 (4)0.3352 (3)0.0501 (11)
C90.1673 (4)0.3931 (3)0.2956 (2)0.0439 (10)
H90.04520.43060.26400.053*
C100.2554 (4)0.5204 (3)0.3023 (2)0.0388 (9)
C110.4419 (4)0.4640 (3)0.3540 (2)0.0391 (9)
C120.5198 (4)0.2788 (3)0.3958 (2)0.0428 (9)
C130.5487 (5)0.5827 (4)0.3661 (2)0.0506 (10)
H130.49970.70740.33940.061*
C140.7248 (5)0.5187 (4)0.4167 (3)0.0581 (11)
H140.79590.59830.42370.070*
C150.7935 (5)0.3342 (5)0.4566 (3)0.0576 (11)
C160.6958 (4)0.2118 (4)0.4476 (2)0.0540 (11)
H160.74580.08760.47540.065*
C170.1662 (4)0.7184 (3)0.2536 (2)0.0455 (10)
H17A0.17440.79280.29530.055*
H17B0.02760.73770.23870.055*
C180.1546 (4)0.7529 (3)0.0590 (2)0.0358 (9)
C190.1388 (5)0.7751 (4)0.1081 (3)0.0513 (11)
H19A0.06970.90050.13870.062*
H19B0.04100.70680.09100.062*
C200.2771 (5)0.6969 (4)0.1743 (3)0.0647 (12)
H20A0.32950.56660.14730.078*
H20B0.20470.71390.23180.078*
C210.5445 (4)0.7488 (4)0.1116 (3)0.0568 (11)
H21A0.65690.79930.12620.068*
H21B0.59480.61870.08370.068*
C220.4230 (4)0.8337 (4)0.0435 (3)0.0468 (10)
H22A0.38570.96540.06830.056*
H22B0.50050.80420.01400.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0668 (14)0.1122 (16)0.077 (2)0.0272 (13)0.0263 (14)0.0140 (14)
S20.0509 (5)0.0439 (4)0.0471 (9)0.0193 (4)0.0053 (5)0.0104 (4)
S30.0364 (5)0.0581 (5)0.0627 (9)0.0154 (4)0.0008 (5)0.0158 (5)
O40.0643 (14)0.0439 (11)0.049 (2)0.0201 (11)0.0109 (13)0.0038 (11)
O50.0950 (19)0.0548 (12)0.077 (2)0.0418 (14)0.0197 (16)0.0102 (12)
O60.0576 (16)0.1042 (16)0.047 (2)0.0387 (13)0.0110 (14)0.0294 (15)
N70.0360 (15)0.0413 (13)0.047 (3)0.0110 (11)0.0068 (14)0.0177 (14)
C80.063 (2)0.0512 (18)0.043 (3)0.0255 (18)0.0008 (19)0.0129 (17)
C90.0493 (18)0.0480 (16)0.037 (3)0.0183 (14)0.0009 (17)0.0094 (15)
C100.0443 (17)0.0392 (14)0.034 (3)0.0112 (13)0.0029 (16)0.0113 (14)
C110.0480 (18)0.0463 (16)0.027 (3)0.0158 (14)0.0042 (17)0.0140 (15)
C120.0501 (19)0.0433 (16)0.038 (3)0.0154 (15)0.0008 (17)0.0130 (15)
C130.059 (2)0.0541 (17)0.044 (3)0.0217 (16)0.0030 (19)0.0158 (17)
C140.060 (2)0.076 (2)0.054 (3)0.0350 (19)0.001 (2)0.025 (2)
C150.048 (2)0.081 (2)0.046 (3)0.0198 (19)0.006 (2)0.019 (2)
C160.054 (2)0.0603 (19)0.041 (3)0.0108 (17)0.001 (2)0.0068 (18)
C170.0507 (19)0.0425 (14)0.047 (3)0.0081 (14)0.0015 (18)0.0221 (15)
C180.0373 (16)0.0292 (12)0.040 (3)0.0037 (12)0.0061 (16)0.0115 (14)
C190.0430 (19)0.0588 (18)0.057 (3)0.0119 (16)0.0049 (19)0.0240 (18)
C200.055 (2)0.087 (2)0.067 (4)0.030 (2)0.001 (2)0.036 (2)
C210.0397 (19)0.0622 (19)0.074 (4)0.0163 (16)0.000 (2)0.024 (2)
C220.0393 (17)0.0498 (16)0.058 (3)0.0168 (14)0.0002 (18)0.0195 (17)
Geometric parameters (Å, º) top
F1—C151.350 (3)C12—C161.382 (4)
S2—C181.783 (3)C13—C141.373 (4)
S2—C171.804 (3)C13—H130.9300
S3—C181.660 (3)C14—C151.374 (4)
O4—C81.374 (3)C14—H140.9300
O4—C121.375 (3)C15—C161.362 (4)
O5—C81.203 (3)C16—H160.9300
O6—C201.417 (3)C17—H17A0.9700
O6—C211.419 (4)C17—H17B0.9700
N7—C181.329 (4)C19—C201.484 (4)
N7—C191.473 (4)C19—H19A0.9700
N7—C221.478 (3)C19—H19B0.9700
C8—C91.437 (4)C20—H20A0.9700
C9—C101.340 (3)C20—H20B0.9700
C9—H90.9300C21—C221.472 (4)
C10—C111.446 (4)C21—H21A0.9700
C10—C171.504 (3)C21—H21B0.9700
C11—C121.390 (3)C22—H22A0.9700
C11—C131.398 (4)C22—H22B0.9700
C18—S2—C17104.01 (14)C10—C17—S2111.30 (19)
C8—O4—C12121.2 (2)C10—C17—H17A109.4
C20—O6—C21108.9 (3)S2—C17—H17A109.4
C18—N7—C19121.1 (2)C10—C17—H17B109.4
C18—N7—C22124.6 (3)S2—C17—H17B109.4
C19—N7—C22112.4 (3)H17A—C17—H17B108.0
O5—C8—O4116.7 (3)N7—C18—S3124.0 (3)
O5—C8—C9126.3 (3)N7—C18—S2113.0 (2)
O4—C8—C9117.0 (3)S3—C18—S2123.0 (2)
C10—C9—C8122.8 (3)N7—C19—C20111.8 (3)
C10—C9—H9118.6N7—C19—H19A109.2
C8—C9—H9118.6C20—C19—H19A109.2
C9—C10—C11119.0 (3)N7—C19—H19B109.2
C9—C10—C17120.7 (3)C20—C19—H19B109.2
C11—C10—C17120.3 (2)H19A—C19—H19B107.9
C12—C11—C13117.5 (3)O6—C20—C19112.9 (3)
C12—C11—C10117.9 (2)O6—C20—H20A109.0
C13—C11—C10124.6 (3)C19—C20—H20A109.0
O4—C12—C16116.1 (2)O6—C20—H20B109.0
O4—C12—C11121.7 (3)C19—C20—H20B109.0
C16—C12—C11122.1 (3)H20A—C20—H20B107.8
C14—C13—C11121.2 (3)O6—C21—C22112.4 (3)
C14—C13—H13119.4O6—C21—H21A109.1
C11—C13—H13119.4C22—C21—H21A109.1
C15—C14—C13118.5 (3)O6—C21—H21B109.1
C15—C14—H14120.7C22—C21—H21B109.1
C13—C14—H14120.7H21A—C21—H21B107.9
F1—C15—C16118.2 (3)C21—C22—N7111.6 (2)
F1—C15—C14118.8 (3)C21—C22—H22A109.3
C16—C15—C14123.0 (3)N7—C22—H22A109.3
C15—C16—C12117.6 (3)C21—C22—H22B109.3
C15—C16—H16121.2N7—C22—H22B109.3
C12—C16—H16121.2H22A—C22—H22B108.0
C12—O4—C8—O5173.5 (3)F1—C15—C16—C12179.7 (3)
C12—O4—C8—C98.1 (5)C14—C15—C16—C120.0 (6)
O5—C8—C9—C10175.2 (3)O4—C12—C16—C15178.9 (3)
O4—C8—C9—C106.6 (5)C11—C12—C16—C150.3 (5)
C8—C9—C10—C112.1 (5)C9—C10—C17—S2101.8 (3)
C8—C9—C10—C17175.5 (3)C11—C10—C17—S275.8 (4)
C9—C10—C11—C120.9 (5)C18—S2—C17—C1092.2 (2)
C17—C10—C11—C12178.5 (3)C19—N7—C18—S39.0 (3)
C9—C10—C11—C13179.9 (3)C22—N7—C18—S3172.21 (18)
C17—C10—C11—C132.3 (6)C19—N7—C18—S2170.17 (18)
C8—O4—C12—C16176.0 (3)C22—N7—C18—S27.0 (3)
C8—O4—C12—C115.4 (5)C17—S2—C18—N7170.21 (18)
C13—C11—C12—O4178.5 (3)C17—S2—C18—S310.60 (18)
C10—C11—C12—O40.7 (5)C18—N7—C19—C20149.2 (3)
C13—C11—C12—C160.1 (5)C22—N7—C19—C2045.7 (3)
C10—C11—C12—C16179.2 (3)C21—O6—C20—C1959.9 (4)
C12—C11—C13—C140.5 (5)N7—C19—C20—O653.0 (4)
C10—C11—C13—C14179.7 (3)C20—O6—C21—C2261.1 (3)
C11—C13—C14—C150.9 (6)O6—C21—C22—N755.4 (4)
C13—C14—C15—F1179.1 (3)C18—N7—C22—C21148.5 (3)
C13—C14—C15—C160.6 (6)C19—N7—C22—C2147.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.932.563.451 (3)161
C17—H17A···O5ii0.972.453.346 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.932.563.451 (3)161
C17—H17A···O5ii0.972.453.346 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities – X-ray data collection.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigm. 90, 129–138.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104–o1105.  CSD CrossRef IUCr Journals Google Scholar
First citationLodeiro, C., Lippolis, V. & Mameli, M. (2010). Macrocycl. Chem. pp. 159–212.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStarčević, S., Brožič, P., Turk, S., Cesar, J., Lanišnik Rižner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248–261.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds