organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 3-(4-chloro­phen­yl)-5-[(E)-2-(di­methyl­amino)­ethen­yl]-1,2-oxazole-4-carboxyl­ate

aUral Federal University, Mira 19 Ekaterinburg 620002, Russian Federation, and bI. Postovsky Institute of Organic Synthesis, Kovalevskoy 22 Ekaterinburg 620090, Russian Federation
*Correspondence e-mail: aspirant_efimov@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 November 2015; accepted 3 December 2015; online 9 December 2015)

In the title compound, C16H17ClN2O3, two mol­ecules, A and B, with different conformations, comprise the asymmetric unit. In mol­ecule A, the C=O group of the ester points away from the benzene ring [C—C—C=O = −170.8 (3)°], whereas in mol­ecule B, it points back towards the benzene ring [C—C—C=O = 17.9 (4)°]. The dihedral angles betweeen the oxazole and benzene rings also differ somewhat [46.26 (13) for mol­ecule A and 41.59 (13) for mol­ecule B]. Each mol­ecule features an intra­molecular C—H⋯O inter­action, which closes an S(6) ring. In the crystal, the B mol­ecules are linked into [001] C(12) chains by weak C—H⋯Cl inter­actions.

1. Related literature

For related literature, see: Bakulev et al. (2012[Bakulev, V. A., Efimov, I. V., Belyaev, N. A., Rozin, Yu. A., Volkova, N. N. & El'tsov, O. S. (2012). Chem. Heterocycl. Compd, 47, 1593-1595.], 2013[Bakulev, V. A., Efimov, I. V., Belyaev, N. A., Zhidovinov, S. S., Rozin, Y. A., Volkova, N. N., Khabarova, A. A. & El?tsov, O. S. (2013). Chem. Heterocycl. Compd, 48, 1880-1882.]); Bredereck et al. (1967[Bredereck, H., Simchen, G., Hoffmann, H., Horn, P. & Wahl, R. (1967). Angew. Chem. 79, 311.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17ClN2O3

  • Mr = 320.77

  • Triclinic, [P \overline 1]

  • a = 11.5494 (13) Å

  • b = 12.474 (2) Å

  • c = 13.0430 (13) Å

  • α = 102.369 (11)°

  • β = 105.501 (9)°

  • γ = 109.001 (13)°

  • V = 1615.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.]) Tmin = 0.061, Tmax = 0.962

  • 14310 measured reflections

  • 6536 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.082

  • S = 1.00

  • 6536 reflections

  • 414 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2 0.95 (2) 2.425 (18) 3.025 (3) 121.1 (13)
C4A—H4A⋯O3A 0.91 (2) 2.409 (19) 2.996 (3) 122.7 (14)
C16A—H16F⋯Cl1Ai 0.96 2.74 3.607 (3) 151
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Chemical context top

This enamine was synthesized for the reactions [3+2] cyclo­addition with azides [3] and hydroxamoylchlorides [4].

Structural commentary top

In according XRD data, two independent molecules are cristallised in the centrosymmetric unit cell. The independent molecules are distinguishes in the orientation of the COOEt-groups and some insignificant details; the general view of the molecules and numeration of the atoms are presented on the fig.1. The bonds lengths and angles in both molecules are in good agreement with standards. The 4-ClPh-substituents are turned toward the heterocyclic planes on the angle 41 and 46o. The non-hydrogen atoms of the =C-NMe2 groups are placed in the plane in the limits 0.04 Å. The bond lengths in the enamine moieties (N(2)—C(5)= 1.336 (3), N(2A)—C(5A)= 1.326 (2), C(4)—C(5)= 1.355 (3), C(4A)—C(5A)= 1.354 (3)Å) show a strong conjugation in the N—C=C group. No any shortened inter­molecular contacts in the crystal are observed.

Synthesis and crystallization top

The Bredereck reagent [1] (0.553 g, 3 mmol) was added to ethyl 3-(4-chloro­phenyl)-5-methyl-1,2-oxazole-4-carboxyl­ate (0.266 g, 1 mmol) and heated for 2 h at 50°C. The reaction product was cooled and hexane was added. The precipitate was filtered off, dried, and recrystallized from EtOH.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related literature [on what subject(s)?], see: Bakulev et al. (2012, 2013); Bredereck et al. (1967).

Structure description top

This enamine was synthesized for the reactions [3+2] cyclo­addition with azides [3] and hydroxamoylchlorides [4].

In according XRD data, two independent molecules are cristallised in the centrosymmetric unit cell. The independent molecules are distinguishes in the orientation of the COOEt-groups and some insignificant details; the general view of the molecules and numeration of the atoms are presented on the fig.1. The bonds lengths and angles in both molecules are in good agreement with standards. The 4-ClPh-substituents are turned toward the heterocyclic planes on the angle 41 and 46o. The non-hydrogen atoms of the =C-NMe2 groups are placed in the plane in the limits 0.04 Å. The bond lengths in the enamine moieties (N(2)—C(5)= 1.336 (3), N(2A)—C(5A)= 1.326 (2), C(4)—C(5)= 1.355 (3), C(4A)—C(5A)= 1.354 (3)Å) show a strong conjugation in the N—C=C group. No any shortened inter­molecular contacts in the crystal are observed.

For related literature [on what subject(s)?], see: Bakulev et al. (2012, 2013); Bredereck et al. (1967).

Synthesis and crystallization top

The Bredereck reagent [1] (0.553 g, 3 mmol) was added to ethyl 3-(4-chloro­phenyl)-5-methyl-1,2-oxazole-4-carboxyl­ate (0.266 g, 1 mmol) and heated for 2 h at 50°C. The reaction product was cooled and hexane was added. The precipitate was filtered off, dried, and recrystallized from EtOH.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot
Ethyl 3-(4-chlorophenyl)-5-[(E)-2-(dimethylamino)ethenyl]-1,2-oxazole-4-carboxylate top
Crystal data top
C16H17ClN2O3Z = 4
Mr = 320.77F(000) = 672
Triclinic, P1Dx = 1.319 Mg m3
a = 11.5494 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.474 (2) ÅCell parameters from 2382 reflections
c = 13.0430 (13) Åθ = 2.8–26.4°
α = 102.369 (11)°µ = 0.25 mm1
β = 105.501 (9)°T = 295 K
γ = 109.001 (13)°Prism, colorless
V = 1615.8 (4) Å30.25 × 0.20 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
6536 independent reflections
Radiation source: fine-focus sealed tube2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1314
Tmin = 0.061, Tmax = 0.962k = 1515
14310 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6536 reflectionsΔρmax = 0.22 e Å3
414 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0196 (8)
Crystal data top
C16H17ClN2O3γ = 109.001 (13)°
Mr = 320.77V = 1615.8 (4) Å3
Triclinic, P1Z = 4
a = 11.5494 (13) ÅMo Kα radiation
b = 12.474 (2) ŵ = 0.25 mm1
c = 13.0430 (13) ÅT = 295 K
α = 102.369 (11)°0.25 × 0.20 × 0.15 mm
β = 105.501 (9)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
6536 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2382 reflections with I > 2σ(I)
Tmin = 0.061, Tmax = 0.962Rint = 0.031
14310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.22 e Å3
6536 reflectionsΔρmin = 0.19 e Å3
414 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.9 (release 23-03-2006 CrysAlis171 .NET) (compiled Mar 23 2006,23:39:28) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72042 (8)0.13874 (7)0.46885 (6)0.1170 (3)
O11.11936 (13)0.43268 (13)1.13549 (13)0.0683 (5)
C10.9661 (2)0.32652 (19)0.97111 (19)0.0534 (6)
N11.08897 (17)0.40459 (16)1.01763 (16)0.0664 (6)
N21.15752 (18)0.47264 (17)1.46652 (17)0.0671 (6)
O20.74356 (14)0.21389 (15)1.11743 (14)0.0820 (5)
C20.9124 (2)0.30189 (19)1.05367 (19)0.0538 (6)
O30.71582 (14)0.14117 (14)0.93699 (14)0.0819 (5)
C31.0127 (2)0.3703 (2)1.1554 (2)0.0566 (6)
C41.0238 (2)0.3823 (2)1.2679 (2)0.0605 (7)
C51.1332 (3)0.4606 (2)1.3577 (2)0.0623 (7)
C60.7845 (2)0.2175 (2)1.0421 (2)0.0621 (7)
C71.0702 (2)0.3862 (2)1.49972 (19)0.0896 (8)
H7A0.99390.33161.43470.134*
H7B1.04360.42751.55390.134*
H7C1.11500.34211.53260.134*
C81.2785 (2)0.5627 (2)1.55382 (18)0.0862 (8)
H8A1.32750.61441.52130.129*
H8B1.32990.52421.58830.129*
H8C1.25850.60951.60980.129*
C90.9064 (2)0.28156 (18)0.84677 (19)0.0505 (6)
C100.9715 (2)0.24439 (19)0.7822 (2)0.0619 (7)
H10A1.05490.24830.81750.074*
C110.9155 (3)0.20136 (19)0.6659 (2)0.0704 (7)
H11A0.96060.17630.62320.084*
C120.7931 (3)0.1960 (2)0.6141 (2)0.0695 (7)
C130.7275 (2)0.2348 (2)0.6764 (2)0.0775 (8)
H13A0.64490.23250.64080.093*
C140.7843 (2)0.2773 (2)0.7921 (2)0.0685 (7)
H14A0.73940.30360.83430.082*
C150.5864 (2)0.0541 (3)0.9179 (2)0.1129 (11)
H15A0.59510.00820.94890.135*
H15B0.54240.09340.95630.135*
C160.5094 (2)0.0015 (3)0.8002 (2)0.1273 (12)
H16A0.42420.05580.78910.191*
H16B0.55240.03830.76250.191*
H16C0.49990.06310.76990.191*
Cl1A1.83045 (7)0.87414 (7)1.92457 (5)0.1147 (3)
O1A1.44539 (12)0.59724 (12)1.25653 (12)0.0600 (4)
N1A1.47772 (16)0.61535 (15)1.37384 (15)0.0564 (5)
C1A1.59219 (19)0.70750 (18)1.42308 (18)0.0472 (6)
N2A1.39346 (16)0.58880 (16)0.93108 (16)0.0622 (5)
O2A1.85742 (15)0.88133 (16)1.45308 (14)0.1024 (7)
C2A1.63778 (18)0.75251 (18)1.34370 (18)0.0468 (6)
O3A1.76896 (12)0.89249 (13)1.28499 (12)0.0678 (5)
C3A1.5409 (2)0.68132 (19)1.23979 (19)0.0497 (6)
C4A1.5256 (2)0.6768 (2)1.1277 (2)0.0546 (7)
C5A1.4154 (2)0.5992 (2)1.0386 (2)0.0531 (6)
C6A1.7652 (2)0.8482 (2)1.3683 (2)0.0596 (7)
C7A1.4919 (2)0.6602 (2)0.89544 (18)0.0842 (8)
H7AA1.57000.71160.96010.126*
H7AB1.45850.70830.85810.126*
H7AC1.51240.60800.84450.126*
C8A1.2676 (2)0.5056 (2)0.84385 (17)0.0785 (8)
H8AA1.21090.46420.87760.118*
H8AB1.28090.44840.79130.118*
H8AC1.22780.54930.80500.118*
C9A1.65053 (17)0.7493 (2)1.54694 (19)0.0466 (6)
C10A1.64545 (18)0.6682 (2)1.60521 (19)0.0541 (6)
H10B1.60450.58631.56500.065*
C11A1.69924 (19)0.7054 (2)1.7205 (2)0.0601 (6)
H11B1.69560.64951.75810.072*
C12A1.7583 (2)0.8255 (3)1.77963 (19)0.0668 (7)
C13A1.7626 (2)0.9079 (2)1.7248 (2)0.0753 (8)
H13B1.80180.98951.76600.090*
C14A1.7091 (2)0.8706 (2)1.6091 (2)0.0656 (7)
H14B1.71220.92711.57240.079*
C15A1.8889 (2)0.9926 (2)1.3032 (2)0.0817 (8)
H15C1.90701.05901.36830.098*
H15D1.96200.96871.31840.098*
C16A1.8769 (2)1.0293 (3)1.2094 (2)0.1289 (13)
H16D1.95711.09531.22270.193*
H16E1.80561.05441.19530.193*
H16F1.85970.96381.14520.193*
H51.2040 (17)0.5145 (15)1.3454 (14)0.052 (6)*
H40.9500 (16)0.3281 (16)1.2759 (14)0.052 (6)*
H5A1.3451 (17)0.5437 (16)1.0551 (14)0.060 (7)*
H4A1.5937 (18)0.7341 (17)1.1224 (15)0.066 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1601 (7)0.1288 (7)0.0607 (5)0.0742 (6)0.0246 (5)0.0239 (5)
O10.0583 (10)0.0680 (11)0.0602 (12)0.0077 (8)0.0204 (8)0.0163 (9)
C10.0518 (15)0.0481 (15)0.0580 (17)0.0164 (12)0.0209 (13)0.0183 (13)
N10.0643 (13)0.0693 (14)0.0542 (14)0.0123 (11)0.0247 (11)0.0182 (11)
N20.0685 (13)0.0777 (15)0.0547 (15)0.0253 (12)0.0254 (12)0.0242 (12)
O20.0667 (10)0.1044 (14)0.0722 (13)0.0197 (9)0.0326 (10)0.0387 (11)
C20.0469 (14)0.0549 (15)0.0576 (17)0.0158 (12)0.0202 (13)0.0213 (13)
O30.0632 (11)0.0821 (12)0.0689 (13)0.0058 (9)0.0258 (9)0.0184 (10)
C30.0523 (15)0.0561 (16)0.0629 (19)0.0184 (13)0.0248 (14)0.0234 (14)
C40.0539 (17)0.0658 (18)0.060 (2)0.0205 (15)0.0216 (15)0.0236 (15)
C50.0599 (18)0.0672 (18)0.065 (2)0.0244 (15)0.0299 (17)0.0254 (16)
C60.0615 (17)0.0660 (18)0.0600 (19)0.0247 (14)0.0199 (15)0.0280 (16)
C70.0998 (19)0.102 (2)0.0706 (19)0.0342 (17)0.0354 (15)0.0416 (17)
C80.0790 (17)0.097 (2)0.0600 (18)0.0254 (16)0.0157 (15)0.0114 (16)
C90.0529 (14)0.0430 (14)0.0531 (17)0.0133 (12)0.0206 (14)0.0193 (12)
C100.0577 (14)0.0579 (16)0.0676 (19)0.0184 (12)0.0274 (15)0.0180 (14)
C110.0856 (19)0.0583 (17)0.073 (2)0.0274 (15)0.0407 (16)0.0212 (15)
C120.094 (2)0.0647 (18)0.0508 (18)0.0356 (16)0.0231 (17)0.0198 (14)
C130.0839 (18)0.091 (2)0.065 (2)0.0468 (16)0.0217 (17)0.0311 (16)
C140.0795 (18)0.0774 (19)0.0585 (19)0.0393 (15)0.0292 (14)0.0247 (15)
C150.0746 (18)0.114 (2)0.096 (2)0.0194 (17)0.0269 (17)0.0275 (19)
C160.0691 (18)0.143 (3)0.108 (3)0.0006 (18)0.0206 (18)0.006 (2)
Cl1A0.1036 (5)0.1297 (7)0.0551 (5)0.0072 (5)0.0147 (4)0.0065 (4)
O1A0.0552 (9)0.0556 (10)0.0515 (11)0.0063 (8)0.0134 (8)0.0172 (8)
N1A0.0523 (11)0.0566 (13)0.0516 (13)0.0124 (10)0.0153 (10)0.0213 (10)
C1A0.0426 (13)0.0433 (15)0.0505 (16)0.0149 (12)0.0121 (12)0.0158 (13)
N2A0.0564 (12)0.0686 (14)0.0502 (14)0.0122 (10)0.0199 (11)0.0179 (11)
O2A0.0508 (10)0.1411 (17)0.0742 (13)0.0074 (10)0.0020 (9)0.0571 (12)
C2A0.0415 (13)0.0462 (14)0.0462 (15)0.0127 (11)0.0126 (12)0.0151 (12)
O3A0.0527 (9)0.0668 (11)0.0606 (11)0.0018 (8)0.0124 (8)0.0284 (9)
C3A0.0462 (14)0.0461 (15)0.0595 (18)0.0161 (12)0.0231 (13)0.0220 (14)
C4A0.0456 (15)0.0557 (17)0.0537 (18)0.0115 (13)0.0158 (14)0.0182 (14)
C5A0.0543 (16)0.0553 (17)0.0500 (18)0.0183 (13)0.0226 (14)0.0194 (14)
C6A0.0496 (16)0.0631 (17)0.0583 (18)0.0126 (14)0.0173 (13)0.0246 (15)
C7A0.0800 (16)0.097 (2)0.0693 (19)0.0178 (15)0.0386 (15)0.0298 (16)
C8A0.0668 (16)0.0863 (19)0.0514 (16)0.0128 (14)0.0114 (13)0.0061 (14)
C9A0.0402 (12)0.0425 (16)0.0532 (16)0.0111 (11)0.0178 (11)0.0165 (13)
C10A0.0475 (13)0.0472 (15)0.0582 (17)0.0120 (11)0.0154 (12)0.0158 (14)
C11A0.0563 (14)0.0627 (18)0.0554 (18)0.0177 (13)0.0176 (13)0.0223 (14)
C12A0.0553 (15)0.078 (2)0.0474 (17)0.0095 (14)0.0173 (13)0.0137 (16)
C13A0.0778 (17)0.0539 (18)0.066 (2)0.0036 (14)0.0283 (15)0.0002 (16)
C14A0.0764 (16)0.0468 (17)0.0667 (19)0.0147 (13)0.0289 (14)0.0185 (14)
C15A0.0531 (15)0.0800 (19)0.089 (2)0.0045 (14)0.0247 (14)0.0343 (16)
C16A0.099 (2)0.143 (3)0.115 (3)0.0002 (19)0.0226 (18)0.086 (2)
Geometric parameters (Å, º) top
Cl1—C121.728 (2)Cl1A—C12A1.724 (2)
O1—C31.351 (2)O1A—C3A1.356 (2)
O1—N11.4177 (19)O1A—N1A1.4224 (18)
C1—N11.310 (2)N1A—C1A1.312 (2)
C1—C21.419 (3)C1A—C2A1.419 (3)
C1—C91.477 (3)C1A—C9A1.471 (3)
N2—C51.336 (3)N2A—C5A1.326 (2)
N2—C81.446 (2)N2A—C7A1.450 (2)
N2—C71.447 (3)N2A—C8A1.453 (2)
O2—C61.202 (2)O2A—C6A1.190 (2)
C2—C31.371 (3)C2A—C3A1.380 (3)
C2—C61.454 (3)C2A—C6A1.460 (3)
O3—C61.335 (2)O3A—C6A1.325 (2)
O3—C151.450 (2)O3A—C15A1.451 (2)
C3—C41.409 (3)C3A—C4A1.411 (3)
C4—C51.355 (3)C4A—C5A1.354 (3)
C4—H40.947 (16)C4A—H4A0.905 (18)
C5—H50.951 (17)C5A—H5A0.988 (17)
C7—H7A0.9600C7A—H7AA0.9600
C7—H7B0.9600C7A—H7AB0.9600
C7—H7C0.9600C7A—H7AC0.9600
C8—H8A0.9600C8A—H8AA0.9600
C8—H8B0.9600C8A—H8AB0.9600
C8—H8C0.9600C8A—H8AC0.9600
C9—C101.374 (3)C9A—C10A1.386 (3)
C9—C141.378 (3)C9A—C14A1.386 (3)
C10—C111.382 (3)C10A—C11A1.370 (2)
C10—H10A0.9300C10A—H10B0.9300
C11—C121.367 (3)C11A—C12A1.365 (3)
C11—H11A0.9300C11A—H11B0.9300
C12—C131.367 (3)C12A—C13A1.367 (3)
C13—C141.375 (3)C13A—C14A1.375 (3)
C13—H13A0.9300C13A—H13B0.9300
C14—H14A0.9300C14A—H14B0.9300
C15—C161.427 (3)C15A—C16A1.385 (3)
C15—H15A0.9700C15A—H15C0.9700
C15—H15B0.9700C15A—H15D0.9700
C16—H16A0.9600C16A—H16D0.9600
C16—H16B0.9600C16A—H16E0.9600
C16—H16C0.9600C16A—H16F0.9600
C3—O1—N1109.61 (15)C3A—O1A—N1A109.90 (14)
N1—C1—C2111.4 (2)C1A—N1A—O1A105.11 (15)
N1—C1—C9117.5 (2)N1A—C1A—C2A111.79 (19)
C2—C1—C9131.1 (2)N1A—C1A—C9A117.62 (19)
C1—N1—O1105.39 (16)C2A—C1A—C9A130.57 (19)
C5—N2—C8121.6 (2)C5A—N2A—C7A121.99 (19)
C5—N2—C7120.5 (2)C5A—N2A—C8A120.80 (19)
C8—N2—C7117.5 (2)C7A—N2A—C8A117.21 (18)
C3—C2—C1105.32 (19)C3A—C2A—C1A105.39 (18)
C3—C2—C6123.7 (2)C3A—C2A—C6A128.1 (2)
C1—C2—C6130.9 (2)C1A—C2A—C6A126.3 (2)
C6—O3—C15115.92 (18)C6A—O3A—C15A117.49 (17)
O1—C3—C2108.2 (2)O1A—C3A—C2A107.78 (18)
O1—C3—C4118.6 (2)O1A—C3A—C4A117.8 (2)
C2—C3—C4133.1 (2)C2A—C3A—C4A134.4 (2)
C5—C4—C3123.1 (2)C5A—C4A—C3A122.7 (2)
C5—C4—H4122.4 (11)C5A—C4A—H4A123.9 (12)
C3—C4—H4114.5 (11)C3A—C4A—H4A113.3 (12)
N2—C5—C4127.8 (2)N2A—C5A—C4A126.5 (2)
N2—C5—H5112.9 (11)N2A—C5A—H5A116.7 (10)
C4—C5—H5119.3 (10)C4A—C5A—H5A116.8 (10)
O2—C6—O3122.6 (2)O2A—C6A—O3A123.2 (2)
O2—C6—C2125.0 (2)O2A—C6A—C2A123.8 (2)
O3—C6—C2112.4 (2)O3A—C6A—C2A113.0 (2)
N2—C7—H7A109.5N2A—C7A—H7AA109.5
N2—C7—H7B109.5N2A—C7A—H7AB109.5
H7A—C7—H7B109.5H7AA—C7A—H7AB109.5
N2—C7—H7C109.5N2A—C7A—H7AC109.5
H7A—C7—H7C109.5H7AA—C7A—H7AC109.5
H7B—C7—H7C109.5H7AB—C7A—H7AC109.5
N2—C8—H8A109.5N2A—C8A—H8AA109.5
N2—C8—H8B109.5N2A—C8A—H8AB109.5
H8A—C8—H8B109.5H8AA—C8A—H8AB109.5
N2—C8—H8C109.5N2A—C8A—H8AC109.5
H8A—C8—H8C109.5H8AA—C8A—H8AC109.5
H8B—C8—H8C109.5H8AB—C8A—H8AC109.5
C10—C9—C14118.1 (2)C10A—C9A—C14A117.9 (2)
C10—C9—C1121.1 (2)C10A—C9A—C1A120.9 (2)
C14—C9—C1120.8 (2)C14A—C9A—C1A121.2 (2)
C9—C10—C11121.2 (2)C11A—C10A—C9A121.7 (2)
C9—C10—H10A119.4C11A—C10A—H10B119.1
C11—C10—H10A119.4C9A—C10A—H10B119.1
C12—C11—C10119.3 (2)C12A—C11A—C10A119.1 (2)
C12—C11—H11A120.3C12A—C11A—H11B120.4
C10—C11—H11A120.3C10A—C11A—H11B120.4
C13—C12—C11120.5 (2)C11A—C12A—C13A120.6 (2)
C13—C12—Cl1119.8 (2)C11A—C12A—Cl1A119.8 (2)
C11—C12—Cl1119.6 (2)C13A—C12A—Cl1A119.6 (2)
C12—C13—C14119.6 (2)C12A—C13A—C14A120.3 (2)
C12—C13—H13A120.2C12A—C13A—H13B119.9
C14—C13—H13A120.2C14A—C13A—H13B119.9
C13—C14—C9121.2 (2)C13A—C14A—C9A120.3 (2)
C13—C14—H14A119.4C13A—C14A—H14B119.8
C9—C14—H14A119.4C9A—C14A—H14B119.8
C16—C15—O3110.5 (2)C16A—C15A—O3A110.5 (2)
C16—C15—H15A109.5C16A—C15A—H15C109.5
O3—C15—H15A109.5O3A—C15A—H15C109.5
C16—C15—H15B109.5C16A—C15A—H15D109.5
O3—C15—H15B109.5O3A—C15A—H15D109.5
H15A—C15—H15B108.1H15C—C15A—H15D108.1
C15—C16—H16A109.5C15A—C16A—H16D109.5
C15—C16—H16B109.5C15A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C15—C16—H16C109.5C15A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.95 (2)2.425 (18)3.025 (3)121.1 (13)
C4A—H4A···O3A0.91 (2)2.409 (19)2.996 (3)122.7 (14)
C16A—H16F···Cl1Ai0.962.743.607 (3)151
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.95 (2)2.425 (18)3.025 (3)121.1 (13)
C4A—H4A···O3A0.91 (2)2.409 (19)2.996 (3)122.7 (14)
C16A—H16F···Cl1Ai0.962.743.607 (3)151
Symmetry code: (i) x, y, z1.
 

Acknowledgements

We thank the Ministry of Education and Science of the Russian Federation (State task 4.1626.2014/K) for financial support

References

First citationBakulev, V. A., Efimov, I. V., Belyaev, N. A., Rozin, Yu. A., Volkova, N. N. & El'tsov, O. S. (2012). Chem. Heterocycl. Compd, 47, 1593–1595.  Web of Science CrossRef CAS Google Scholar
First citationBakulev, V. A., Efimov, I. V., Belyaev, N. A., Zhidovinov, S. S., Rozin, Y. A., Volkova, N. N., Khabarova, A. A. & El?tsov, O. S. (2013). Chem. Heterocycl. Compd, 48, 1880–1882.  Google Scholar
First citationBredereck, H., Simchen, G., Hoffmann, H., Horn, P. & Wahl, R. (1967). Angew. Chem. 79, 311.  CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds