organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(prop-2-en-1-yl)-1-{[(1E)-1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene]amino}­thio­urea

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 November 2015; accepted 5 November 2015; online 21 November 2015)

In the title compound, C14H17N3S, the dihedral angle between the planes of the benzene ring and the thio­semicarbazone group (r.m.s. deviation = 0.031 Å) is 8.45 (4)°. A short intra­molcular N—H⋯N contact is seen. In the crystal, weak N—H⋯S hydrogen bonds connect the mol­ecules into C(4) chains propagating in the [010] direction, with adjacent mol­ecules in the chain related by 21 screw-axis symmetry.

1. Related literature

For a related structure and background to thio­semi­car­ba­zones, see: Mohamed et al. (2015[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A., Abdel-Aziz, A. T. & Albayati, M. R. (2015). Acta Cryst. E71, o974-o975.]). For further synthetic details, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H17N3S

  • Mr = 259.36

  • Monoclinic, P 21 /n

  • a = 7.6665 (2) Å

  • b = 8.5788 (2) Å

  • c = 20.4072 (5) Å

  • β = 91.794 (1)°

  • V = 1341.51 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.02 mm−1

  • T = 150 K

  • 0.20 × 0.19 × 0.16 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.68, Tmax = 0.73

  • 10141 measured reflections

  • 2687 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.07

  • 2687 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.91 2.17 2.6146 (13) 109
N1—H1N⋯S1i 0.91 2.82 3.4642 (11) 129
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Related literature top

For a related structure and background to thiosemicarbazones, see: Mohamed et al. (2015). For further synthetic details, see: (Mague et al. (2014).

Experimental top

The title compound was prepared according to our recently reported method (Mague et al., 2014). Colourless blocks were recrystallised from ethanol solution. M.p. 393–394 K, 92% yield.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

For a related structure and background to thiosemicarbazones, see: Mohamed et al. (2015). For further synthetic details, see: (Mague et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2014).

Figures top
[Figure 1] Fig. 1. The title molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis.
3-(Prop-2-en-1-yl)-1-{[(1E)-1,2,3,4-tetrahydronaphthalen-1-ylidene]amino}thiourea top
Crystal data top
C14H17N3SF(000) = 552
Mr = 259.36Dx = 1.284 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.6665 (2) ÅCell parameters from 8207 reflections
b = 8.5788 (2) Åθ = 4.3–74.5°
c = 20.4072 (5) ŵ = 2.02 mm1
β = 91.794 (1)°T = 150 K
V = 1341.51 (6) Å3Block, colourless
Z = 40.20 × 0.19 × 0.16 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2687 independent reflections
Radiation source: INCOATEC IµS micro–focus source2486 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 4.3°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.68, Tmax = 0.73l = 2125
10141 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.084H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3454P]
where P = (Fo2 + 2Fc2)/3
2687 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H17N3SV = 1341.51 (6) Å3
Mr = 259.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.6665 (2) ŵ = 2.02 mm1
b = 8.5788 (2) ÅT = 150 K
c = 20.4072 (5) Å0.20 × 0.19 × 0.16 mm
β = 91.794 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2687 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2486 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.73Rint = 0.022
10141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2687 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48923 (4)0.32351 (4)0.80129 (2)0.03037 (11)
N10.24491 (13)0.48661 (13)0.73353 (5)0.0280 (2)
H1N0.22360.55540.70030.034*
N20.51325 (12)0.47130 (12)0.68903 (5)0.0239 (2)
H2N0.62720.44150.69110.029*
N30.44987 (12)0.56539 (11)0.63901 (4)0.0220 (2)
C10.0358 (2)0.27861 (18)0.69916 (8)0.0472 (4)
H1A0.05720.29010.66990.057*
H1B0.13200.21310.68780.057*
C20.03150 (17)0.35274 (17)0.75504 (7)0.0348 (3)
H20.12770.33730.78260.042*
C30.10929 (16)0.45938 (16)0.78005 (6)0.0299 (3)
H3A0.05650.56060.79170.036*
H3B0.16280.41430.82060.036*
C40.40678 (15)0.43269 (13)0.73855 (5)0.0234 (2)
C50.55646 (14)0.60710 (13)0.59461 (5)0.0203 (2)
C60.74503 (15)0.55855 (14)0.59361 (6)0.0249 (2)
H6A0.75150.44830.57950.030*
H6B0.79640.56550.63860.030*
C70.85274 (15)0.65815 (15)0.54803 (6)0.0265 (3)
H7A0.86740.76390.56690.032*
H7B0.97000.61140.54400.032*
C80.76392 (16)0.66981 (15)0.48046 (6)0.0279 (3)
H8A0.83310.73860.45220.033*
H8B0.75880.56520.46000.033*
C90.58186 (15)0.73399 (13)0.48518 (5)0.0235 (2)
C100.50909 (18)0.82536 (14)0.43472 (6)0.0293 (3)
H100.57480.84470.39690.035*
C110.34410 (18)0.88813 (14)0.43851 (6)0.0323 (3)
H110.29710.94990.40360.039*
C120.24694 (17)0.86062 (14)0.49371 (6)0.0299 (3)
H120.13330.90370.49660.036*
C130.31603 (15)0.77037 (13)0.54449 (6)0.0244 (2)
H130.24940.75220.58220.029*
C140.48339 (15)0.70551 (13)0.54080 (5)0.0208 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02807 (18)0.03706 (19)0.02591 (18)0.00248 (11)0.00050 (12)0.01231 (11)
N10.0248 (5)0.0385 (6)0.0208 (5)0.0010 (4)0.0016 (4)0.0074 (4)
N20.0233 (5)0.0280 (5)0.0204 (5)0.0003 (4)0.0011 (4)0.0048 (4)
N30.0247 (5)0.0240 (5)0.0173 (4)0.0012 (4)0.0001 (4)0.0013 (3)
C10.0498 (9)0.0378 (8)0.0528 (9)0.0060 (7)0.0182 (7)0.0063 (7)
C20.0252 (6)0.0413 (7)0.0378 (7)0.0005 (5)0.0005 (5)0.0176 (6)
C30.0288 (6)0.0410 (7)0.0203 (6)0.0011 (5)0.0056 (5)0.0035 (5)
C40.0259 (6)0.0247 (6)0.0196 (5)0.0047 (4)0.0001 (4)0.0001 (4)
C50.0228 (5)0.0206 (5)0.0176 (5)0.0034 (4)0.0004 (4)0.0024 (4)
C60.0223 (5)0.0273 (6)0.0249 (6)0.0018 (4)0.0000 (4)0.0021 (4)
C70.0216 (6)0.0329 (6)0.0250 (6)0.0057 (5)0.0012 (5)0.0015 (5)
C80.0267 (6)0.0362 (7)0.0209 (6)0.0066 (5)0.0043 (5)0.0025 (4)
C90.0278 (6)0.0230 (5)0.0198 (5)0.0077 (4)0.0001 (4)0.0018 (4)
C100.0389 (7)0.0298 (6)0.0192 (6)0.0094 (5)0.0003 (5)0.0019 (4)
C110.0450 (7)0.0239 (6)0.0272 (6)0.0038 (5)0.0098 (5)0.0041 (5)
C120.0315 (6)0.0237 (6)0.0339 (7)0.0025 (5)0.0068 (5)0.0013 (5)
C130.0263 (6)0.0233 (5)0.0235 (6)0.0024 (4)0.0005 (4)0.0016 (4)
C140.0238 (5)0.0198 (5)0.0186 (5)0.0039 (4)0.0014 (4)0.0018 (4)
Geometric parameters (Å, º) top
S1—C41.6928 (12)C6—H6A0.9900
N1—C41.3254 (16)C6—H6B0.9900
N1—C31.4487 (16)C7—C81.5220 (16)
N1—H1N0.9098C7—H7A0.9900
N2—C41.3597 (15)C7—H7B0.9900
N2—N31.3778 (13)C8—C91.5063 (17)
N2—H2N0.9098C8—H8A0.9900
N3—C51.2897 (15)C8—H8B0.9900
C1—C21.305 (2)C9—C101.3964 (17)
C1—H1A0.9500C9—C141.4042 (16)
C1—H1B0.9500C10—C111.379 (2)
C2—C31.4926 (19)C10—H100.9500
C2—H20.9500C11—C121.390 (2)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—C131.3854 (17)
C5—C141.4811 (15)C12—H120.9500
C5—C61.5052 (16)C13—C141.4027 (16)
C6—C71.5249 (16)C13—H130.9500
C4—N1—C3125.63 (10)C8—C7—C6110.73 (10)
C4—N1—H1N115.4C8—C7—H7A109.5
C3—N1—H1N118.5C6—C7—H7A109.5
C4—N2—N3119.17 (10)C8—C7—H7B109.5
C4—N2—H2N119.7C6—C7—H7B109.5
N3—N2—H2N121.0H7A—C7—H7B108.1
C5—N3—N2117.81 (10)C9—C8—C7110.81 (10)
C2—C1—H1A120.0C9—C8—H8A109.5
C2—C1—H1B120.0C7—C8—H8A109.5
H1A—C1—H1B120.0C9—C8—H8B109.5
C1—C2—C3126.56 (14)C7—C8—H8B109.5
C1—C2—H2116.7H8A—C8—H8B108.1
C3—C2—H2116.7C10—C9—C14118.77 (11)
N1—C3—C2113.63 (11)C10—C9—C8120.51 (11)
N1—C3—H3A108.8C14—C9—C8120.71 (10)
C2—C3—H3A108.8C11—C10—C9121.58 (12)
N1—C3—H3B108.8C11—C10—H10119.2
C2—C3—H3B108.8C9—C10—H10119.2
H3A—C3—H3B107.7C10—C11—C12119.66 (11)
N1—C4—N2116.10 (10)C10—C11—H11120.2
N1—C4—S1125.31 (9)C12—C11—H11120.2
N2—C4—S1118.58 (9)C13—C12—C11119.94 (12)
N3—C5—C14116.47 (10)C13—C12—H12120.0
N3—C5—C6124.24 (10)C11—C12—H12120.0
C14—C5—C6119.26 (10)C12—C13—C14120.69 (11)
C5—C6—C7113.07 (10)C12—C13—H13119.7
C5—C6—H6A109.0C14—C13—H13119.7
C7—C6—H6A109.0C13—C14—C9119.35 (10)
C5—C6—H6B109.0C13—C14—C5120.78 (10)
C7—C6—H6B109.0C9—C14—C5119.87 (10)
H6A—C6—H6B107.8
C4—N2—N3—C5176.28 (10)C14—C9—C10—C110.25 (17)
C4—N1—C3—C2109.16 (14)C8—C9—C10—C11178.62 (11)
C1—C2—C3—N14.4 (2)C9—C10—C11—C120.07 (18)
C3—N1—C4—N2179.56 (11)C10—C11—C12—C130.07 (18)
C3—N1—C4—S11.23 (18)C11—C12—C13—C140.26 (18)
N3—N2—C4—N11.89 (16)C12—C13—C14—C90.58 (17)
N3—N2—C4—S1177.38 (8)C12—C13—C14—C5179.10 (10)
N2—N3—C5—C14178.78 (9)C10—C9—C14—C130.57 (16)
N2—N3—C5—C60.54 (16)C8—C9—C14—C13178.30 (10)
N3—C5—C6—C7163.89 (11)C10—C9—C14—C5179.12 (10)
C14—C5—C6—C717.91 (14)C8—C9—C14—C52.02 (16)
C5—C6—C7—C850.50 (14)N3—C5—C14—C1310.37 (15)
C6—C7—C8—C956.66 (13)C6—C5—C14—C13171.29 (10)
C7—C8—C9—C10147.83 (11)N3—C5—C14—C9169.31 (10)
C7—C8—C9—C1431.02 (15)C6—C5—C14—C99.03 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.912.172.6146 (13)109
N1—H1N···S1i0.912.823.4642 (11)129
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.912.172.6146 (13)109
N1—H1N···S1i0.912.823.4642 (11)129
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A., Abdel-Aziz, A. T. & Albayati, M. R. (2015). Acta Cryst. E71, o974–o975.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds