organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[9-(2-hy­dr­oxy­phen­yl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridin-10-yl]acetic acid

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 November 2015; accepted 14 November 2015; online 21 November 2015)

The title compound, C21H21NO5, crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the central 1,4-di­hydro­pyridine ring adopts a shallow sofa conformations (with the C atom bearing the phenol ring as the flap), whereas the pendant cyclo­hexene rings both have twisted-boat conformations. Each mol­ecule features an intra­molecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, the mol­ecules are linked by O—H⋯O, C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

1. Related literature

For the industrial and pharmaceutical applications of acridine compounds, see: Szymanska et al. (2000[Szymanska, A., Wiczk, W. & Lankiewicz, L. (2000). Chem. Heterocycl. Compd. 36, 801-808.]); Fox & Chanon (1988[Fox, M. A. & Chanon, M. (1988). Editors. In Photoinduced Electron Transfer, Part C. Amsterdam: Elsevier.]); Groundwater & Munawar (1997[Groundwater, P. W. & Munawar, M. A. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3381-3386.]); Cane et al. (1991[Cane, D. E., Prabhakaran, P. C., Tan, W. & Ott, W. R. (1991). Tetrahedron Lett. 32, 5457-5460.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H21NO5

  • Mr = 367.39

  • Monoclinic, P 21 /n

  • a = 19.4735 (7) Å

  • b = 8.9773 (4) Å

  • c = 20.3414 (8) Å

  • β = 91.619 (3)°

  • V = 3554.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.12 mm

2.2. Data collection

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.901, Tmax = 1.000

  • 33119 measured reflections

  • 11946 independent reflections

  • 6442 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.229

  • S = 1.01

  • 11946 reflections

  • 499 parameters

  • 7 restraints

  • ?

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2′ 0.88 (2) 1.84 (3) 2.683 (3) 162 (3)
O4′—H4′⋯O2i 0.84 (3) 1.85 (3) 2.673 (2) 165 (3)
O5—H5⋯O1 0.83 (3) 1.80 (3) 2.616 (3) 168 (3)
O5′—H5′⋯O2′ 0.85 (4) 1.96 (4) 2.797 (3) 171 (4)
C10—H10A⋯O5′ii 0.97 2.60 3.380 (3) 138
C14—H14B⋯O1′ii 0.97 2.43 3.347 (3) 158
C14′—H14D⋯O2iii 0.97 2.36 3.241 (3) 151
C17′—H17′⋯O3′ 0.93 2.49 3.326 (3) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridines and acridinium salts are highly fluorescent (Szymanska et al., 2000), and as electron acceptors in photochemical processes (Fox & Chanon, 1988). In addition, acridine derivatives have found application as antimalarial, and antitumour agents (Groundwater & Munawar, 1997; Cane et al., 1991). In this context, we report herein the synthesis and crystal structure of the title compound.

Fig. 1 shows two molecules (A and B) of the title compound in the asymmetric unit. In the molecules (A and B), the central 1,4-dihydropyridine rings (N1/C5–C9 and N1'/C5'–C9') of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring systems (N1/C1–C13 and N1'/C1'–C13') adopt nearly a chair conformation [the puckering parameters are QT = 0.261 (2) Å, θ = 110.0 (4) °, φ = 360.0 (5) ° and QT = 0.337 (2) Å, θ = 108.1 (3) °, φ = 4.8 (4) °, repsectively], which the cyclohexene rings (C1–C6, C8–C13 and C1'–C6', C8'–C13') of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring systems have a twisted-boat conformation [for molecule A, the puckering parameters are QT = 0.470 (4) Å, θ = 120.0 (4) °, φ = 286.9 (4) ° and QT = 0.460 (3) Å, θ = 60.2 (4) °, φ = 196.0 (4) °, repsectively, and for molecule B, QT = 0.465 (3) Å, θ = 120.0 (4) °, φ = 288.3 (4) ° and QT = 0.474 (3) Å, θ = 61.3 (4) °, φ = 194.8 (4) °, respectively].

In the crystal structure, adjacent molecules are connected by O—H···O, C—H···O and C—H···π interactions, forming a three-dimensional network (Table 1, Fig. 2).

Related literature top

For the industrial and pharmaceutical applications of acridine compounds, see: Szymanska et al. (2000); Fox & Chanon (1988); Groundwater & Munawar (1997); Cane et al. (1991).

Experimental top

A mixture of ethyl 2-[9-(2-hydroxyphenyl)-1,8-dioxo-2,3,4,5,6,7,8,9-octahydroacridin- 10(1H)-yl) acetate (2.0 g, 0.005 mol) and a solution of NaOH (0.4 g, 0.01 mol) in (40 ml) ethanol was heated under reflux for 5 h. The reaction mixture was poured onto cold water and acidified with conc. HCl. The separated solid was filtered off, dried and crystallized from ethanol to afford dark red prisms. Yield: 93.5%, mp. 511–513 K. IR (λmax, cm-1): 3356 (OHacid), 3119 (OHarom.), 3081 (CHarom.) 2969–2852 (CHaliph.), 1726 (C=Oacid), 1625 (C=Ocyclic ketone). 1H-NMR (DMSO-d6), δ p.p.m.: 13.39 (s, 1H, OH acid, disappeared by D2O), 9.6 (s, 1H, OHarom., disappeared by D2O), 6.96–6.67 (m, 4H, CHarom.), 4.99 (s, 1H, CH), 4.72 (s, 2H, CH2COOH), 2.91 (t, 2H, CH2C=O), 2.45 (t, 2H, CH2CO), 2.29 (t, 4H, 2CH2-C=C), 1.96 (m, 2H, CH2—CH2—CH2), 1.81 (m, 2H, CH2–CH2–CH2). 13C-NMR (DMSO-d6), δ p.p.m.: 197.62, 171.23, 156.26, 153.83, 132.81, 128.46, 127.77, 120.23, 117.26, 114.83, 47.93, 36.06, 25.99, 25.67.

Refinement top

The hydroxyl hydrogen atoms were found from a difference Fourier map and the O—H distances were restrained to 0.82 (2) Å, using the DFIX option and included in the structure-factor calculations with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Acridines and acridinium salts are highly fluorescent (Szymanska et al., 2000), and as electron acceptors in photochemical processes (Fox & Chanon, 1988). In addition, acridine derivatives have found application as antimalarial, and antitumour agents (Groundwater & Munawar, 1997; Cane et al., 1991). In this context, we report herein the synthesis and crystal structure of the title compound.

Fig. 1 shows two molecules (A and B) of the title compound in the asymmetric unit. In the molecules (A and B), the central 1,4-dihydropyridine rings (N1/C5–C9 and N1'/C5'–C9') of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring systems (N1/C1–C13 and N1'/C1'–C13') adopt nearly a chair conformation [the puckering parameters are QT = 0.261 (2) Å, θ = 110.0 (4) °, φ = 360.0 (5) ° and QT = 0.337 (2) Å, θ = 108.1 (3) °, φ = 4.8 (4) °, repsectively], which the cyclohexene rings (C1–C6, C8–C13 and C1'–C6', C8'–C13') of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring systems have a twisted-boat conformation [for molecule A, the puckering parameters are QT = 0.470 (4) Å, θ = 120.0 (4) °, φ = 286.9 (4) ° and QT = 0.460 (3) Å, θ = 60.2 (4) °, φ = 196.0 (4) °, repsectively, and for molecule B, QT = 0.465 (3) Å, θ = 120.0 (4) °, φ = 288.3 (4) ° and QT = 0.474 (3) Å, θ = 61.3 (4) °, φ = 194.8 (4) °, respectively].

In the crystal structure, adjacent molecules are connected by O—H···O, C—H···O and C—H···π interactions, forming a three-dimensional network (Table 1, Fig. 2).

For the industrial and pharmaceutical applications of acridine compounds, see: Szymanska et al. (2000); Fox & Chanon (1988); Groundwater & Munawar (1997); Cane et al. (1991).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of two molecules in the asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding and packing of the title compounds down the [010] axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-[9-(2-Hydroxyphenyl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-decahydroacridin-10-yl]acetic acid top
Crystal data top
C21H21NO5F(000) = 1552
Mr = 367.39Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4652 reflections
a = 19.4735 (7) Åθ = 3.8–27.1°
b = 8.9773 (4) ŵ = 0.10 mm1
c = 20.3414 (8) ÅT = 293 K
β = 91.619 (3)°Prism, dark red
V = 3554.7 (2) Å30.26 × 0.22 × 0.12 mm
Z = 8
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
11946 independent reflections
Radiation source: Enhance (Mo) X-ray Source6442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.0416 pixels mm-1θmax = 32.9°, θmin = 2.9°
ω scansh = 1929
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1313
Tmin = 0.901, Tmax = 1.000l = 3030
33119 measured reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.092P)2 + 1.4407P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.229(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.36 e Å3
11946 reflectionsΔρmin = 0.36 e Å3
499 parameters
Crystal data top
C21H21NO5V = 3554.7 (2) Å3
Mr = 367.39Z = 8
Monoclinic, P21/nMo Kα radiation
a = 19.4735 (7) ŵ = 0.10 mm1
b = 8.9773 (4) ÅT = 293 K
c = 20.3414 (8) Å0.26 × 0.22 × 0.12 mm
β = 91.619 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
11946 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
6442 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 1.000Rint = 0.044
33119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079499 parameters
wR(F2) = 0.2297 restraints
S = 1.01Δρmax = 0.36 e Å3
11946 reflectionsΔρmin = 0.36 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54951 (10)1.0494 (2)0.80712 (11)0.0622 (7)
O20.46153 (8)0.56884 (17)0.87478 (8)0.0433 (5)
O30.36550 (14)0.6857 (4)0.58385 (13)0.1172 (15)
O40.41939 (12)0.6805 (4)0.49001 (11)0.0891 (9)
O50.44030 (11)1.0230 (2)0.87818 (9)0.0565 (6)
N10.48876 (10)0.6798 (2)0.65174 (9)0.0445 (6)
C10.54926 (12)1.0057 (3)0.75006 (15)0.0496 (8)
O1'0.39287 (9)0.2869 (3)0.52414 (10)0.0675 (8)
C20.59167 (17)1.0827 (4)0.69950 (18)0.0732 (13)
O2'0.29880 (9)0.7291 (2)0.42658 (10)0.0601 (7)
C30.5597 (2)1.0692 (4)0.63282 (18)0.0815 (15)
O3'0.10134 (9)0.1149 (2)0.42055 (10)0.0653 (7)
C40.54754 (17)0.9082 (3)0.61352 (15)0.0661 (10)
O4'0.00242 (8)0.1429 (2)0.46142 (8)0.0472 (5)
C50.51323 (12)0.8215 (3)0.66776 (12)0.0446 (7)
O5'0.37299 (12)0.5356 (3)0.34753 (12)0.0773 (9)
C60.50975 (11)0.8746 (2)0.72947 (11)0.0401 (7)
C70.46943 (10)0.7948 (2)0.78090 (10)0.0336 (6)
C80.46571 (10)0.6316 (2)0.76357 (10)0.0341 (6)
C90.47006 (11)0.5828 (2)0.70101 (10)0.0366 (6)
C100.45820 (13)0.4225 (3)0.68218 (12)0.0473 (8)
C110.42648 (14)0.3332 (3)0.73625 (13)0.0524 (8)
C120.46099 (16)0.3626 (3)0.80162 (13)0.0533 (8)
C130.46154 (10)0.5261 (2)0.81698 (11)0.0360 (6)
C140.48528 (14)0.6324 (3)0.58306 (12)0.0538 (9)
C150.41689 (17)0.6716 (4)0.55438 (14)0.0623 (10)
C160.39868 (11)0.8636 (2)0.78994 (10)0.0355 (6)
C170.34257 (12)0.8207 (3)0.75127 (12)0.0479 (8)
C180.27772 (14)0.8762 (4)0.76125 (15)0.0654 (10)
C190.26799 (16)0.9772 (4)0.81090 (16)0.0682 (11)
C200.32242 (17)1.0251 (3)0.84917 (14)0.0609 (10)
C210.38832 (13)0.9711 (3)0.83864 (11)0.0438 (7)
N1'0.15357 (8)0.3463 (2)0.49752 (8)0.0362 (5)
C1'0.33538 (12)0.2426 (3)0.53659 (12)0.0468 (8)
C2'0.32463 (16)0.1296 (4)0.58950 (16)0.0689 (11)
C3'0.26161 (16)0.0409 (4)0.57678 (18)0.0716 (11)
C4'0.19809 (13)0.1389 (3)0.56772 (12)0.0491 (8)
C5'0.21077 (11)0.2651 (2)0.52069 (10)0.0360 (6)
C6'0.27448 (10)0.3044 (2)0.50276 (10)0.0361 (6)
C7'0.28481 (10)0.4197 (2)0.45054 (10)0.0365 (6)
C8'0.22693 (10)0.5304 (2)0.45338 (10)0.0352 (6)
C9'0.16270 (10)0.4853 (2)0.46978 (10)0.0336 (6)
C10'0.10140 (11)0.5844 (3)0.46075 (11)0.0442 (7)
C11'0.11568 (13)0.7190 (3)0.41893 (14)0.0550 (9)
C12'0.18185 (14)0.7926 (3)0.43997 (15)0.0580 (9)
C13'0.24005 (12)0.6846 (3)0.43923 (11)0.0428 (7)
C14'0.08462 (11)0.2878 (3)0.50771 (11)0.0412 (7)
C15'0.06362 (11)0.1735 (2)0.45782 (11)0.0382 (6)
C16'0.28966 (11)0.3533 (3)0.38153 (11)0.0422 (7)
C17'0.24941 (14)0.2339 (4)0.36209 (13)0.0594 (9)
C18'0.25191 (18)0.1744 (5)0.29965 (15)0.0773 (13)
C19'0.29600 (19)0.2327 (5)0.25536 (15)0.0817 (13)
C20'0.33619 (17)0.3501 (4)0.27253 (14)0.0710 (13)
C21'0.33296 (13)0.4147 (3)0.33476 (13)0.0538 (9)
H2A0.596401.187200.710900.0880*
H2B0.637201.039100.699700.0880*
H3A0.589401.115600.601200.0980*
H3B0.516201.122000.631500.0980*
H40.3763 (10)0.686 (4)0.4766 (17)0.0850*
H4A0.591100.861800.604000.0790*
H4B0.518700.904500.573900.0790*
H50.4779 (12)1.025 (4)0.8603 (16)0.0850*
H70.495100.803700.822800.0400*
H10A0.501700.377700.671200.0570*
H10B0.428200.418600.643300.0570*
H11A0.378100.358100.738500.0630*
H11B0.429900.228000.726100.0630*
H12A0.507800.325800.801300.0640*
H12B0.437000.309600.835600.0640*
H14A0.492400.525700.580300.0640*
H14B0.521000.681500.558800.0640*
H170.348800.752500.717600.0570*
H180.240800.845600.734600.0780*
H190.224101.013100.818500.0820*
H200.315501.094100.882400.0730*
H2'10.364000.063300.592200.0830*
H2'20.321300.180000.631500.0830*
H3'10.255000.026500.613300.0860*
H4'0.013 (2)0.088 (4)0.4291 (15)0.1160*
H3'20.267200.018700.537500.0860*
H5'0.353 (2)0.590 (4)0.3751 (18)0.1160*
H4'10.160000.079000.551000.0590*
H4'20.185600.179200.610000.0590*
H7'0.327900.472300.460900.0440*
H10C0.086600.617300.503500.0530*
H10D0.064100.527800.440400.0530*
H11C0.118100.688900.373300.0660*
H11D0.078300.789700.422400.0660*
H12C0.191100.874800.410600.0700*
H12D0.177700.832600.484000.0700*
H14C0.052000.369400.505900.0490*
H14D0.083100.243900.551200.0490*
H17'0.219700.192300.392000.0710*
H18'0.223700.094700.287800.0930*
H19'0.298400.191800.213500.0980*
H20'0.366500.388400.242300.0850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (12)0.0388 (10)0.0849 (14)0.0124 (9)0.0024 (10)0.0031 (10)
O20.0532 (9)0.0330 (8)0.0441 (8)0.0069 (7)0.0067 (7)0.0040 (7)
O30.0716 (16)0.201 (4)0.0788 (16)0.0340 (19)0.0036 (13)0.010 (2)
O40.0745 (15)0.130 (2)0.0619 (13)0.0260 (16)0.0121 (11)0.0250 (14)
O50.0814 (13)0.0385 (9)0.0495 (10)0.0029 (10)0.0027 (9)0.0070 (8)
N10.0530 (11)0.0409 (11)0.0402 (10)0.0023 (9)0.0120 (8)0.0023 (8)
C10.0378 (12)0.0308 (12)0.0806 (18)0.0008 (10)0.0074 (11)0.0099 (12)
O1'0.0364 (9)0.0949 (17)0.0712 (12)0.0032 (10)0.0009 (8)0.0210 (11)
C20.0665 (19)0.0437 (16)0.111 (3)0.0115 (14)0.0289 (18)0.0119 (16)
O2'0.0464 (10)0.0474 (11)0.0862 (13)0.0130 (8)0.0034 (9)0.0174 (10)
C30.102 (3)0.0479 (17)0.097 (3)0.0075 (17)0.048 (2)0.0218 (17)
O3'0.0486 (10)0.0677 (13)0.0806 (13)0.0091 (9)0.0210 (9)0.0326 (11)
C40.0743 (19)0.0516 (17)0.0743 (18)0.0038 (15)0.0354 (15)0.0169 (14)
O4'0.0376 (8)0.0464 (10)0.0579 (10)0.0082 (7)0.0069 (7)0.0111 (8)
C50.0420 (12)0.0351 (12)0.0575 (14)0.0033 (10)0.0141 (10)0.0122 (10)
O5'0.0692 (13)0.0725 (16)0.0921 (16)0.0095 (12)0.0374 (11)0.0162 (12)
C60.0364 (11)0.0285 (10)0.0558 (13)0.0020 (9)0.0093 (9)0.0064 (9)
C70.0352 (10)0.0258 (10)0.0398 (10)0.0001 (8)0.0031 (8)0.0020 (8)
C80.0320 (10)0.0264 (10)0.0441 (11)0.0012 (8)0.0062 (8)0.0020 (8)
C90.0349 (10)0.0320 (11)0.0430 (11)0.0026 (9)0.0055 (8)0.0022 (9)
C100.0545 (14)0.0370 (12)0.0507 (13)0.0011 (11)0.0063 (10)0.0064 (10)
C110.0601 (15)0.0346 (13)0.0624 (15)0.0088 (11)0.0025 (12)0.0014 (11)
C120.0791 (18)0.0262 (11)0.0546 (14)0.0015 (12)0.0040 (12)0.0034 (10)
C130.0316 (10)0.0284 (10)0.0482 (12)0.0025 (8)0.0054 (8)0.0035 (9)
C140.0625 (16)0.0557 (16)0.0435 (13)0.0037 (13)0.0095 (11)0.0027 (11)
C150.0685 (19)0.070 (2)0.0484 (15)0.0049 (16)0.0012 (13)0.0032 (13)
C160.0408 (11)0.0287 (10)0.0375 (10)0.0056 (9)0.0088 (8)0.0046 (8)
C170.0428 (12)0.0545 (15)0.0466 (12)0.0086 (11)0.0054 (10)0.0047 (11)
C180.0434 (14)0.086 (2)0.0669 (17)0.0169 (15)0.0031 (12)0.0012 (16)
C190.0555 (17)0.072 (2)0.078 (2)0.0292 (16)0.0182 (15)0.0098 (16)
C200.082 (2)0.0421 (14)0.0599 (16)0.0219 (14)0.0268 (14)0.0026 (12)
C210.0616 (14)0.0294 (11)0.0409 (11)0.0049 (10)0.0095 (10)0.0052 (9)
N1'0.0292 (8)0.0374 (10)0.0422 (9)0.0049 (7)0.0069 (7)0.0046 (7)
C1'0.0410 (12)0.0535 (15)0.0459 (12)0.0038 (11)0.0018 (9)0.0020 (11)
C2'0.0591 (17)0.075 (2)0.0720 (19)0.0043 (16)0.0084 (14)0.0261 (16)
C3'0.0713 (19)0.0569 (18)0.086 (2)0.0039 (15)0.0069 (16)0.0285 (16)
C4'0.0536 (14)0.0469 (14)0.0470 (13)0.0098 (12)0.0071 (10)0.0056 (11)
C5'0.0376 (11)0.0336 (11)0.0369 (10)0.0030 (9)0.0050 (8)0.0028 (8)
C6'0.0345 (10)0.0365 (11)0.0375 (10)0.0010 (9)0.0046 (8)0.0014 (8)
C7'0.0286 (9)0.0361 (11)0.0449 (11)0.0009 (9)0.0040 (8)0.0021 (9)
C8'0.0315 (10)0.0346 (11)0.0395 (10)0.0018 (8)0.0023 (8)0.0017 (8)
C9'0.0326 (10)0.0350 (11)0.0334 (10)0.0015 (8)0.0025 (7)0.0066 (8)
C10'0.0339 (11)0.0530 (14)0.0458 (12)0.0058 (10)0.0029 (9)0.0017 (10)
C11'0.0497 (14)0.0535 (16)0.0618 (15)0.0157 (12)0.0008 (11)0.0033 (12)
C12'0.0601 (16)0.0362 (13)0.0775 (18)0.0065 (12)0.0011 (13)0.0008 (12)
C13'0.0394 (12)0.0369 (12)0.0519 (13)0.0039 (10)0.0029 (9)0.0011 (10)
C14'0.0305 (10)0.0420 (12)0.0517 (12)0.0055 (9)0.0109 (9)0.0070 (10)
C15'0.0343 (10)0.0329 (11)0.0478 (12)0.0022 (9)0.0065 (9)0.0018 (9)
C16'0.0328 (10)0.0492 (14)0.0452 (12)0.0106 (10)0.0112 (9)0.0049 (10)
C17'0.0534 (15)0.0712 (19)0.0543 (15)0.0054 (14)0.0167 (12)0.0141 (13)
C18'0.074 (2)0.098 (3)0.0604 (17)0.0054 (19)0.0126 (15)0.0292 (17)
C19'0.087 (2)0.108 (3)0.0509 (17)0.018 (2)0.0158 (16)0.0081 (18)
C20'0.0696 (19)0.093 (3)0.0521 (16)0.0293 (19)0.0298 (14)0.0192 (16)
C21'0.0456 (13)0.0590 (17)0.0575 (15)0.0118 (12)0.0157 (11)0.0162 (12)
Geometric parameters (Å, º) top
O1—C11.225 (4)C11—H11A0.9700
O2—C131.237 (3)C11—H11B0.9700
O3—C151.188 (4)C12—H12A0.9700
O4—C151.314 (4)C12—H12B0.9700
O5—C211.357 (3)C14—H14A0.9700
N1—C51.394 (3)C14—H14B0.9700
N1—C91.384 (3)C17—H170.9300
N1—C141.460 (3)C18—H180.9300
O4—H40.88 (2)C19—H190.9300
O5—H50.83 (3)C20—H200.9300
C1—C61.461 (3)C1'—C6'1.463 (3)
C1—C21.505 (4)C1'—C2'1.498 (4)
O1'—C1'1.221 (3)C2'—C3'1.480 (5)
C2—C31.481 (5)C3'—C4'1.525 (4)
O2'—C13'1.246 (3)C4'—C5'1.508 (3)
C3—C41.515 (5)C5'—C6'1.350 (3)
O3'—C15'1.193 (3)C6'—C7'1.501 (3)
C4—C51.520 (4)C7'—C16'1.531 (3)
O4'—C15'1.319 (3)C7'—C8'1.505 (3)
C5—C61.346 (3)C8'—C13'1.438 (3)
O5'—C21'1.357 (4)C8'—C9'1.365 (3)
C6—C71.507 (3)C9'—C10'1.496 (3)
C7—C161.526 (3)C10'—C11'1.508 (4)
C7—C81.508 (3)C11'—C12'1.500 (4)
C8—C91.351 (3)C12'—C13'1.492 (4)
C8—C131.445 (3)C14'—C15'1.492 (3)
C9—C101.505 (3)C16'—C21'1.402 (3)
C10—C111.507 (4)C16'—C17'1.379 (4)
C11—C121.496 (4)C17'—C18'1.380 (4)
C12—C131.501 (3)C18'—C19'1.366 (5)
C14—C151.481 (4)C19'—C20'1.353 (5)
C16—C171.383 (3)C20'—C21'1.395 (4)
C16—C211.402 (3)C2'—H2'10.9700
C17—C181.378 (4)C2'—H2'20.9700
C18—C191.374 (5)C3'—H3'10.9700
C19—C201.367 (4)C3'—H3'20.9700
C20—C211.394 (4)C4'—H4'10.9700
N1'—C5'1.402 (3)C4'—H4'20.9700
N1'—C9'1.383 (3)C7'—H7'0.9800
N1'—C14'1.462 (3)C10'—H10C0.9700
C2—H2A0.9700C10'—H10D0.9700
C2—H2B0.9700C11'—H11C0.9700
C3—H3A0.9700C11'—H11D0.9700
C3—H3B0.9700C12'—H12C0.9700
C4—H4A0.9700C12'—H12D0.9700
C4—H4B0.9700C14'—H14C0.9700
O4'—H4'0.84 (3)C14'—H14D0.9700
O5'—H5'0.85 (4)C17'—H17'0.9300
C7—H70.9800C18'—H18'0.9300
C10—H10B0.9700C19'—H19'0.9300
C10—H10A0.9700C20'—H20'0.9300
C5—N1—C9120.01 (18)C17—C18—H18120.00
C5—N1—C14119.74 (19)C20—C19—H19120.00
C9—N1—C14120.22 (18)C18—C19—H19120.00
C15—O4—H4105 (2)C19—C20—H20120.00
C21—O5—H5114 (2)C21—C20—H20120.00
C2—C1—C6118.0 (3)C2'—C1'—C6'117.8 (2)
O1—C1—C2120.9 (3)O1'—C1'—C2'121.1 (2)
O1—C1—C6121.2 (2)O1'—C1'—C6'121.0 (2)
C1—C2—C3111.3 (3)C1'—C2'—C3'111.8 (3)
C2—C3—C4112.0 (3)C2'—C3'—C4'112.1 (3)
C3—C4—C5111.7 (3)C3'—C4'—C5'111.3 (2)
N1—C5—C4116.9 (2)N1'—C5'—C4'117.47 (19)
N1—C5—C6121.0 (2)N1'—C5'—C6'120.06 (17)
C4—C5—C6122.0 (2)C4'—C5'—C6'122.42 (19)
C1—C6—C5120.8 (2)C1'—C6'—C5'120.84 (19)
C5—C6—C7121.33 (19)C5'—C6'—C7'120.94 (18)
C1—C6—C7117.7 (2)C1'—C6'—C7'118.12 (18)
C8—C7—C16112.57 (16)C8'—C7'—C16'110.98 (17)
C6—C7—C16112.41 (16)C6'—C7'—C16'113.18 (17)
C6—C7—C8108.79 (16)C6'—C7'—C8'108.23 (16)
C7—C8—C9122.10 (17)C7'—C8'—C9'120.39 (16)
C7—C8—C13117.66 (17)C7'—C8'—C13'119.37 (18)
C9—C8—C13120.13 (17)C9'—C8'—C13'120.24 (18)
N1—C9—C8120.19 (17)N1'—C9'—C8'119.77 (17)
C8—C9—C10122.45 (18)C8'—C9'—C10'121.81 (18)
N1—C9—C10117.31 (18)N1'—C9'—C10'118.38 (18)
C9—C10—C11112.7 (2)C9'—C10'—C11'112.74 (18)
C10—C11—C12111.8 (2)C10'—C11'—C12'111.3 (2)
C11—C12—C13111.0 (2)C11'—C12'—C13'111.0 (2)
O2—C13—C12120.08 (19)O2'—C13'—C12'119.7 (2)
O2—C13—C8120.85 (17)O2'—C13'—C8'121.3 (2)
C8—C13—C12118.99 (19)C8'—C13'—C12'119.0 (2)
N1—C14—C15108.9 (2)N1'—C14'—C15'112.69 (18)
O3—C15—C14126.0 (3)O3'—C15'—C14'125.0 (2)
O4—C15—C14110.4 (3)O4'—C15'—C14'110.75 (18)
O3—C15—O4123.5 (3)O3'—C15'—O4'124.2 (2)
C17—C16—C21117.8 (2)C17'—C16'—C21'117.3 (2)
C7—C16—C17121.36 (18)C7'—C16'—C17'121.1 (2)
C7—C16—C21120.82 (19)C7'—C16'—C21'121.6 (2)
C16—C17—C18121.9 (2)C16'—C17'—C18'122.0 (3)
C17—C18—C19119.5 (3)C17'—C18'—C19'119.9 (4)
C18—C19—C20120.4 (3)C18'—C19'—C20'119.9 (3)
C19—C20—C21120.4 (3)C19'—C20'—C21'121.2 (3)
C16—C21—C20120.0 (2)C16'—C21'—C20'119.7 (3)
O5—C21—C16122.4 (2)O5'—C21'—C16'122.5 (2)
O5—C21—C20117.6 (2)O5'—C21'—C20'117.8 (3)
C5'—N1'—C9'119.76 (16)C1'—C2'—H2'1109.00
C5'—N1'—C14'119.33 (18)C1'—C2'—H2'2109.00
C9'—N1'—C14'120.74 (17)C3'—C2'—H2'1109.00
C3—C2—H2B109.00C3'—C2'—H2'2109.00
H2A—C2—H2B108.00H2'1—C2'—H2'2108.00
C1—C2—H2A109.00C2'—C3'—H3'1109.00
C1—C2—H2B109.00C2'—C3'—H3'2109.00
C3—C2—H2A109.00C4'—C3'—H3'1109.00
C2—C3—H3A109.00C4'—C3'—H3'2109.00
C2—C3—H3B109.00H3'1—C3'—H3'2108.00
C4—C3—H3A109.00C3'—C4'—H4'1109.00
C4—C3—H3B109.00C3'—C4'—H4'2109.00
H3A—C3—H3B108.00C5'—C4'—H4'1109.00
C3—C4—H4B109.00C5'—C4'—H4'2109.00
H4A—C4—H4B108.00H4'1—C4'—H4'2108.00
C5—C4—H4A109.00C6'—C7'—H7'108.00
C5—C4—H4B109.00C8'—C7'—H7'108.00
C3—C4—H4A109.00C16'—C7'—H7'108.00
C15'—O4'—H4'107 (3)C9'—C10'—H10C109.00
C21'—O5'—H5'108 (3)C9'—C10'—H10D109.00
C8—C7—H7108.00C11'—C10'—H10C109.00
C16—C7—H7108.00C11'—C10'—H10D109.00
C6—C7—H7108.00H10C—C10'—H10D108.00
C9—C10—H10B109.00C10'—C11'—H11C109.00
C9—C10—H10A109.00C10'—C11'—H11D109.00
H10A—C10—H10B108.00C12'—C11'—H11C109.00
C11—C10—H10A109.00C12'—C11'—H11D109.00
C11—C10—H10B109.00H11C—C11'—H11D108.00
C10—C11—H11A109.00C11'—C12'—H12C109.00
H11A—C11—H11B108.00C11'—C12'—H12D109.00
C12—C11—H11B109.00C13'—C12'—H12C110.00
C10—C11—H11B109.00C13'—C12'—H12D109.00
C12—C11—H11A109.00H12C—C12'—H12D108.00
C13—C12—H12A109.00N1'—C14'—H14C109.00
C11—C12—H12B109.00N1'—C14'—H14D109.00
C11—C12—H12A109.00C15'—C14'—H14C109.00
C13—C12—H12B109.00C15'—C14'—H14D109.00
H12A—C12—H12B108.00H14C—C14'—H14D108.00
C15—C14—H14A110.00C16'—C17'—H17'119.00
C15—C14—H14B110.00C18'—C17'—H17'119.00
N1—C14—H14B110.00C17'—C18'—H18'120.00
N1—C14—H14A110.00C19'—C18'—H18'120.00
H14A—C14—H14B108.00C18'—C19'—H19'120.00
C16—C17—H17119.00C20'—C19'—H19'120.00
C18—C17—H17119.00C19'—C20'—H20'119.00
C19—C18—H18120.00C21'—C20'—H20'119.00
C5—N1—C9—C89.8 (3)C5'—N1'—C9'—C8'12.7 (3)
C14—N1—C9—C8172.4 (2)C14'—N1'—C9'—C8'172.10 (19)
C5—N1—C14—C1590.8 (3)C5'—N1'—C14'—C15'81.6 (2)
C9—N1—C14—C1591.4 (3)C9'—N1'—C14'—C15'103.3 (2)
C14—N1—C5—C411.2 (3)C14'—N1'—C5'—C4'13.1 (3)
C9—N1—C5—C69.8 (3)C9'—N1'—C5'—C6'15.4 (3)
C14—N1—C5—C6172.4 (2)C14'—N1'—C5'—C6'169.37 (19)
C9—N1—C5—C4166.6 (2)C9'—N1'—C5'—C4'162.15 (19)
C5—N1—C9—C10167.6 (2)C5'—N1'—C9'—C10'165.21 (18)
C14—N1—C9—C1010.2 (3)C14'—N1'—C9'—C10'10.0 (3)
C6—C1—C2—C331.3 (4)C6'—C1'—C2'—C3'30.4 (4)
O1—C1—C2—C3150.7 (3)O1'—C1'—C2'—C3'152.9 (3)
C2—C1—C6—C52.3 (3)C2'—C1'—C6'—C5'2.7 (3)
C2—C1—C6—C7177.9 (2)C2'—C1'—C6'—C7'178.9 (2)
O1—C1—C6—C5175.7 (2)O1'—C1'—C6'—C5'174.0 (2)
O1—C1—C6—C70.1 (3)O1'—C1'—C6'—C7'2.2 (3)
C1—C2—C3—C456.1 (4)C1'—C2'—C3'—C4'55.5 (4)
C2—C3—C4—C547.8 (4)C2'—C3'—C4'—C5'47.8 (3)
C3—C4—C5—N1169.3 (2)C3'—C4'—C5'—N1'167.6 (2)
C3—C4—C5—C614.3 (4)C3'—C4'—C5'—C6'14.9 (3)
N1—C5—C6—C1165.4 (2)N1'—C5'—C6'—C1'167.06 (19)
C4—C5—C6—C110.9 (4)C4'—C5'—C6'—C1'10.4 (3)
N1—C5—C6—C710.0 (3)N1'—C5'—C6'—C7'9.1 (3)
C4—C5—C6—C7173.7 (2)C4'—C5'—C6'—C7'173.51 (19)
C5—C6—C7—C1699.3 (2)C5'—C6'—C7'—C16'91.8 (2)
C5—C6—C7—C826.1 (3)C5'—C6'—C7'—C8'31.6 (2)
C1—C6—C7—C8149.37 (19)C1'—C6'—C7'—C8'144.58 (19)
C1—C6—C7—C1685.3 (2)C1'—C6'—C7'—C16'92.0 (2)
C6—C7—C8—C926.3 (3)C6'—C7'—C8'—C9'34.2 (3)
C8—C7—C16—C1736.3 (3)C8'—C7'—C16'—C17'84.2 (3)
C8—C7—C16—C21142.7 (2)C8'—C7'—C16'—C21'93.2 (2)
C6—C7—C8—C13149.89 (18)C6'—C7'—C8'—C13'145.26 (19)
C16—C7—C8—C999.0 (2)C16'—C7'—C8'—C9'90.6 (2)
C6—C7—C16—C2194.1 (2)C6'—C7'—C16'—C21'144.9 (2)
C6—C7—C16—C1787.0 (2)C6'—C7'—C16'—C17'37.7 (3)
C16—C7—C8—C1384.8 (2)C16'—C7'—C8'—C13'90.0 (2)
C7—C8—C9—N110.0 (3)C7'—C8'—C9'—N1'14.1 (3)
C9—C8—C13—O2175.8 (2)C9'—C8'—C13'—O2'177.3 (2)
C7—C8—C13—C12177.3 (2)C7'—C8'—C13'—C12'178.0 (2)
C13—C8—C9—N1166.08 (19)C13'—C8'—C9'—N1'165.37 (19)
C9—C8—C13—C121.0 (3)C9'—C8'—C13'—C12'2.6 (3)
C7—C8—C9—C10172.69 (19)C7'—C8'—C9'—C10'168.08 (19)
C7—C8—C13—O20.5 (3)C7'—C8'—C13'—O2'2.2 (3)
C13—C8—C9—C1011.2 (3)C13'—C8'—C9'—C10'12.5 (3)
C8—C9—C10—C1112.6 (3)C8'—C9'—C10'—C11'12.9 (3)
N1—C9—C10—C11170.1 (2)N1'—C9'—C10'—C11'169.3 (2)
C9—C10—C11—C1245.5 (3)C9'—C10'—C11'—C12'46.7 (3)
C10—C11—C12—C1354.6 (3)C10'—C11'—C12'—C13'55.5 (3)
C11—C12—C13—C832.0 (3)C11'—C12'—C13'—C8'31.6 (3)
C11—C12—C13—O2151.2 (2)C11'—C12'—C13'—O2'148.6 (2)
N1—C14—C15—O326.1 (5)N1'—C14'—C15'—O3'12.6 (3)
N1—C14—C15—O4157.7 (3)N1'—C14'—C15'—O4'168.95 (18)
C7—C16—C17—C18176.5 (2)C7'—C16'—C17'—C18'178.6 (3)
C21—C16—C17—C182.5 (4)C21'—C16'—C17'—C18'1.1 (4)
C7—C16—C21—O52.4 (3)C7'—C16'—C21'—O5'0.1 (4)
C7—C16—C21—C20175.6 (2)C7'—C16'—C21'—C20'179.6 (2)
C17—C16—C21—O5178.6 (2)C17'—C16'—C21'—O5'177.6 (3)
C17—C16—C21—C203.5 (3)C17'—C16'—C21'—C20'2.9 (4)
C16—C17—C18—C190.0 (5)C16'—C17'—C18'—C19'1.0 (5)
C17—C18—C19—C201.5 (5)C17'—C18'—C19'—C20'1.1 (6)
C18—C19—C20—C210.6 (5)C18'—C19'—C20'—C21'0.8 (6)
C19—C20—C21—O5179.9 (3)C19'—C20'—C21'—O5'177.6 (3)
C19—C20—C21—C162.0 (4)C19'—C20'—C21'—C16'2.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.88 (2)1.84 (3)2.683 (3)162 (3)
O4—H4···O2i0.84 (3)1.85 (3)2.673 (2)165 (3)
O5—H5···O10.83 (3)1.80 (3)2.616 (3)168 (3)
O5—H5···O20.85 (4)1.96 (4)2.797 (3)171 (4)
C10—H10A···O5ii0.972.603.380 (3)138
C14—H14B···O1ii0.972.433.347 (3)158
C14—H14D···O2iii0.972.363.241 (3)151
C17—H17···O30.932.493.326 (3)149
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2'0.88 (2)1.84 (3)2.683 (3)162 (3)
O4'—H4'···O2i0.84 (3)1.85 (3)2.673 (2)165 (3)
O5—H5···O10.83 (3)1.80 (3)2.616 (3)168 (3)
O5'—H5'···O2'0.85 (4)1.96 (4)2.797 (3)171 (4)
C10—H10A···O5'ii0.972.603.380 (3)138
C14—H14B···O1'ii0.972.433.347 (3)158
C14'—H14D···O2iii0.972.363.241 (3)151
C17'—H17'···O3'0.932.493.326 (3)149
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCane, D. E., Prabhakaran, P. C., Tan, W. & Ott, W. R. (1991). Tetrahedron Lett. 32, 5457–5460.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFox, M. A. & Chanon, M. (1988). Editors. In Photoinduced Electron Transfer, Part C. Amsterdam: Elsevier.  Google Scholar
First citationGroundwater, P. W. & Munawar, M. A. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3381–3386.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzymanska, A., Wiczk, W. & Lankiewicz, L. (2000). Chem. Heterocycl. Compd. 36, 801–808.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds