organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-benzyl-2H-benzo[b][1,4]thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 November 2015; accepted 20 November 2015; online 28 November 2015)

In the title compound, C15H13NOS, the thia­zine ring adopts a twisted boat conformation and the dihedral angle between the aromatic rings is 86.54 (4)°. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, resulting in chains along [010].

1. Related literature

For related structures and background to 1,4-benzo­thia­zine derivatives, see: Zerzouf et al. (2001[Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498-o499.]); Sebbar et al. (2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423-o424.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H13NOS

  • Mr = 255.32

  • Monoclinic, P 21 /c

  • a = 10.8711 (7) Å

  • b = 5.3815 (3) Å

  • c = 21.1997 (13) Å

  • β = 93.128 (1)°

  • V = 1238.39 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.31 × 0.19 × 0.15 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.96

  • 22588 measured reflections

  • 3318 independent reflections

  • 2731 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.06

  • 3318 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1i 0.99 2.55 3.2504 (14) 128
C7—H7B⋯O1ii 0.99 2.53 3.4403 (15) 152
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Comment top

As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Zerzouf et al., 2001; Sebbar et al., 2015), we report the synthesis of a 1,4-benzothiazine derivative by reaction of benzyl chloride with 2H-benzo[b][1,4]thiazin-3(4H)-one in the presence of tetra-n-butylammonium bromide as catalyst and potassium carbonate as base (Scheme 1).

In the title compound, the heterocyclic ring has puckering parameters Q = 0.6272 (10) Å, θ = 63.91 (10)° and φ = 325.56 (11)°. The dihedral angle between the rings C1-C6 and C10-C15 is 86.54 (4)°. Weak C—H···O interactions (Table 1) form chains running parallel to the b axis (Fig. 2).

Related literature top

For related structures and background to 1,4-benzothiazine derivatives, see: Zerzouf et al. (2001); Sebbar et al. (2015).

Experimental top

To a solution of 2H-benzo[b][1,4]thiazin-3(4H)-one (0.543 g, 3.29 mmol), benzyl chloride (0.76 ml, 6.58 mmol) and potassium carbonate (0.91 g, 6.58 mmol) in DMF (15 ml) was added a catalytic amount of tetra- n-butylammonium bromide (0.11 g, 0.33 mmol) and the mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colorless crystals in 75% yield.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Zerzouf et al., 2001; Sebbar et al., 2015), we report the synthesis of a 1,4-benzothiazine derivative by reaction of benzyl chloride with 2H-benzo[b][1,4]thiazin-3(4H)-one in the presence of tetra-n-butylammonium bromide as catalyst and potassium carbonate as base (Scheme 1).

In the title compound, the heterocyclic ring has puckering parameters Q = 0.6272 (10) Å, θ = 63.91 (10)° and φ = 325.56 (11)°. The dihedral angle between the rings C1-C6 and C10-C15 is 86.54 (4)°. Weak C—H···O interactions (Table 1) form chains running parallel to the b axis (Fig. 2).

For related structures and background to 1,4-benzothiazine derivatives, see: Zerzouf et al. (2001); Sebbar et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the b axis. Intermolecular C—H···O interactions are shown by dotted lines.
4-Benzyl-2H-benzo[b][1,4]thiazin-3(4H)-one top
Crystal data top
C15H13NOSF(000) = 536
Mr = 255.32Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8711 (7) ÅCell parameters from 9273 reflections
b = 5.3815 (3) Åθ = 2.6–29.0°
c = 21.1997 (13) ŵ = 0.25 mm1
β = 93.128 (1)°T = 150 K
V = 1238.39 (13) Å3Block, colourless
Z = 40.31 × 0.19 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.9°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 77
Tmin = 0.88, Tmax = 0.96l = 2828
22588 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.0734P]
where P = (Fo2 + 2Fc2)/3
3318 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H13NOSV = 1238.39 (13) Å3
Mr = 255.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8711 (7) ŵ = 0.25 mm1
b = 5.3815 (3) ÅT = 150 K
c = 21.1997 (13) Å0.31 × 0.19 × 0.15 mm
β = 93.128 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
2731 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.96Rint = 0.034
22588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
3318 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.01122 (3)0.51867 (6)0.64271 (2)0.02520 (11)
O10.82014 (8)0.06255 (17)0.72781 (4)0.0263 (2)
N10.77044 (9)0.22455 (18)0.63087 (4)0.0188 (2)
C10.78669 (10)0.4044 (2)0.58307 (5)0.0183 (2)
C20.69629 (11)0.4345 (2)0.53375 (5)0.0228 (2)
H20.62160.34300.53420.027*
C30.71505 (12)0.5966 (2)0.48439 (5)0.0266 (3)
H30.65370.61360.45100.032*
C40.82274 (12)0.7341 (2)0.48348 (5)0.0283 (3)
H40.83590.84350.44930.034*
C50.91096 (12)0.7109 (3)0.53267 (5)0.0273 (3)
H50.98390.80800.53250.033*
C60.89443 (10)0.5470 (2)0.58242 (5)0.0204 (2)
C70.90903 (11)0.4571 (2)0.70494 (5)0.0202 (2)
H7A0.95790.42990.74510.024*
H7B0.85490.60260.71040.024*
C80.83135 (10)0.2310 (2)0.68959 (5)0.0191 (2)
C90.68427 (11)0.0192 (2)0.61862 (6)0.0206 (2)
H9A0.71660.12960.64150.025*
H9B0.68140.01930.57290.025*
C100.55414 (10)0.0666 (2)0.63773 (5)0.0185 (2)
C110.52211 (11)0.2662 (2)0.67490 (5)0.0239 (3)
H110.58280.38540.68790.029*
C120.40231 (12)0.2935 (3)0.69330 (5)0.0290 (3)
H120.38130.43120.71860.035*
C130.31340 (12)0.1201 (3)0.67478 (6)0.0302 (3)
H130.23140.13870.68740.036*
C140.34421 (12)0.0800 (3)0.63797 (7)0.0319 (3)
H140.28350.19980.62550.038*
C150.46353 (11)0.1061 (2)0.61924 (6)0.0261 (3)
H150.48390.24300.59350.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01580 (17)0.0344 (2)0.02528 (17)0.00305 (11)0.00034 (12)0.00452 (11)
O10.0243 (4)0.0259 (5)0.0282 (4)0.0015 (4)0.0014 (3)0.0087 (3)
N10.0177 (4)0.0169 (5)0.0215 (4)0.0014 (4)0.0006 (3)0.0006 (3)
C10.0192 (5)0.0181 (5)0.0178 (5)0.0024 (4)0.0019 (4)0.0025 (4)
C20.0227 (6)0.0244 (6)0.0210 (5)0.0001 (5)0.0022 (4)0.0040 (4)
C30.0296 (6)0.0309 (7)0.0189 (5)0.0040 (5)0.0033 (5)0.0025 (5)
C40.0343 (7)0.0302 (7)0.0209 (5)0.0020 (5)0.0051 (5)0.0054 (5)
C50.0243 (6)0.0318 (7)0.0263 (6)0.0026 (5)0.0060 (5)0.0039 (5)
C60.0171 (5)0.0245 (6)0.0198 (5)0.0022 (4)0.0019 (4)0.0011 (4)
C70.0200 (5)0.0219 (6)0.0186 (5)0.0010 (4)0.0006 (4)0.0009 (4)
C80.0157 (5)0.0195 (6)0.0220 (5)0.0034 (4)0.0011 (4)0.0006 (4)
C90.0195 (6)0.0145 (5)0.0276 (6)0.0002 (4)0.0003 (4)0.0032 (4)
C100.0187 (5)0.0167 (5)0.0200 (5)0.0008 (4)0.0010 (4)0.0021 (4)
C110.0239 (6)0.0234 (6)0.0242 (5)0.0017 (5)0.0014 (4)0.0022 (4)
C120.0302 (7)0.0345 (7)0.0228 (5)0.0097 (6)0.0050 (5)0.0008 (5)
C130.0218 (6)0.0410 (8)0.0283 (6)0.0048 (5)0.0055 (5)0.0115 (6)
C140.0218 (6)0.0306 (7)0.0430 (7)0.0051 (5)0.0014 (5)0.0061 (6)
C150.0236 (6)0.0196 (6)0.0349 (6)0.0012 (5)0.0004 (5)0.0023 (5)
Geometric parameters (Å, º) top
S1—C61.7583 (11)C7—H7A0.9900
S1—C71.8013 (12)C7—H7B0.9900
O1—C81.2262 (14)C9—C101.5144 (16)
N1—C81.3781 (13)C9—H9A0.9900
N1—C11.4191 (14)C9—H9B0.9900
N1—C91.4628 (14)C10—C111.3880 (16)
C1—C61.4012 (16)C10—C151.3947 (16)
C1—C21.4047 (15)C11—C121.3876 (17)
C2—C31.3860 (18)C11—H110.9500
C2—H20.9500C12—C131.3848 (19)
C3—C41.3859 (19)C12—H120.9500
C3—H30.9500C13—C141.382 (2)
C4—C51.3833 (16)C13—H130.9500
C4—H40.9500C14—C151.3843 (18)
C5—C61.3940 (17)C14—H140.9500
C5—H50.9500C15—H150.9500
C7—C81.5066 (16)
C6—S1—C795.66 (5)O1—C8—N1121.21 (10)
C8—N1—C1123.74 (9)O1—C8—C7121.93 (10)
C8—N1—C9116.79 (9)N1—C8—C7116.84 (9)
C1—N1—C9119.46 (9)N1—C9—C10115.07 (9)
C6—C1—C2118.72 (10)N1—C9—H9A108.5
C6—C1—N1121.15 (9)C10—C9—H9A108.5
C2—C1—N1120.07 (10)N1—C9—H9B108.5
C3—C2—C1120.60 (11)C10—C9—H9B108.5
C3—C2—H2119.7H9A—C9—H9B107.5
C1—C2—H2119.7C11—C10—C15118.70 (11)
C4—C3—C2120.38 (11)C11—C10—C9123.32 (10)
C4—C3—H3119.8C15—C10—C9117.92 (10)
C2—C3—H3119.8C12—C11—C10120.65 (12)
C5—C4—C3119.52 (11)C12—C11—H11119.7
C5—C4—H4120.2C10—C11—H11119.7
C3—C4—H4120.2C13—C12—C11120.02 (12)
C4—C5—C6121.00 (12)C13—C12—H12120.0
C4—C5—H5119.5C11—C12—H12120.0
C6—C5—H5119.5C14—C13—C12119.89 (12)
C5—C6—C1119.76 (10)C14—C13—H13120.1
C5—C6—S1119.15 (9)C12—C13—H13120.1
C1—C6—S1121.08 (9)C13—C14—C15120.04 (12)
C8—C7—S1110.56 (8)C13—C14—H14120.0
C8—C7—H7A109.5C15—C14—H14120.0
S1—C7—H7A109.5C14—C15—C10120.69 (12)
C8—C7—H7B109.5C14—C15—H15119.7
S1—C7—H7B109.5C10—C15—H15119.7
H7A—C7—H7B108.1
C8—N1—C1—C623.43 (16)C1—N1—C8—O1175.23 (10)
C9—N1—C1—C6156.89 (11)C9—N1—C8—O15.09 (15)
C8—N1—C1—C2159.32 (11)C1—N1—C8—C76.40 (15)
C9—N1—C1—C220.36 (15)C9—N1—C8—C7173.29 (10)
C6—C1—C2—C31.99 (17)S1—C7—C8—O1131.04 (10)
N1—C1—C2—C3175.32 (11)S1—C7—C8—N150.60 (12)
C1—C2—C3—C40.93 (19)C8—N1—C9—C1088.08 (12)
C2—C3—C4—C50.81 (19)C1—N1—C9—C1091.62 (12)
C3—C4—C5—C61.48 (19)N1—C9—C10—C1112.01 (16)
C4—C5—C6—C10.40 (19)N1—C9—C10—C15170.98 (10)
C4—C5—C6—S1178.35 (10)C15—C10—C11—C120.00 (17)
C2—C1—C6—C51.33 (17)C9—C10—C11—C12176.99 (11)
N1—C1—C6—C5175.96 (11)C10—C11—C12—C130.24 (18)
C2—C1—C6—S1179.95 (9)C11—C12—C13—C140.01 (18)
N1—C1—C6—S12.77 (15)C12—C13—C14—C150.51 (19)
C7—S1—C6—C5147.46 (11)C13—C14—C15—C100.75 (19)
C7—S1—C6—C133.80 (10)C11—C10—C15—C140.49 (18)
C6—S1—C7—C857.87 (9)C9—C10—C15—C14176.66 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.992.553.2504 (14)128
C7—H7B···O1ii0.992.533.4403 (15)152
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.992.553.2504 (14)128
C7—H7B···O1ii0.992.533.4403 (15)152
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z.
 

Footnotes

Correspondence email: younes.ouzidan@usmba.ac.ma.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds