organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­{[4-(acetyl­sulfanyl)phenyl]ethynyl}azulene

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse, 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 November 2015; accepted 7 January 2016; online 31 December 2015)

In the title compound, C30H20O2S2, the dihedral angles between the central azulene ring system (r.m.s. deviation = 0.039 Å) and the pendant benzene rings are 28.96 (7) and 55.15 (7)°. The dihedral angles between the benzene rings and their attached acetyl­sulfanyl groups are 59.60 (10) and 84.79 (10)°. The expected ππ stacking inter­actions are not observed in the crystal structure; instead, the packing features C—H⋯O hydrogen bonds, which link the mol­ecules into C(12) [010] chains, which are supported by weak C—H⋯π contacts.

1. Related literature

For background to this work, see: Wang et al. (2009[Wang, X., Ng, J. K.-P., Jia, P., Lin, T., Cho, C. M., Xu, J., Lu, X. & He, C. (2009). Macromolecules, 42, 5534-5544.]); Puodziukynaite et al. (2014[Puodziukynaite, E., Wang, H.-W., Lawrence, J., Wise, A., Russell, T. P., Barnes, M. D. & Emrick, T. (2014). J. Am. Chem. Soc. 136, 11043-11049.]); Xia et al. (2014[Xia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, E., Amir, R., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941-2945.]). For the synthesis and related structures, see: Förster et al. (2012[Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856-863.], 2014[Förster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63-70.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H20O2S2

  • Mr = 476.58

  • Monoclinic, P 21 /n

  • a = 13.7674 (3) Å

  • b = 8.9849 (2) Å

  • c = 19.7586 (4) Å

  • β = 104.022 (1)°

  • V = 2371.28 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.24 × 0.23 × 0.15 mm

2.2. Data collection

  • Bruker Kappa APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.963

  • 36340 measured reflections

  • 5898 independent reflections

  • 4422 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.03

  • 5898 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the mid-point of the C11—C12 bond and Cg2 is the centroid of the C1–C4/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.40 3.285 (3) 155
C17—H1⋯Cg1 0.95 2.69 3.612 (3) 165
C20—H20ACg2ii 0.98 2.89 3.835 (2) 162
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker AXS); cell refinement: SAINT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Azulene derivatives offer a number of inter­esting applications especially in the field of molecular electronics (Wang et al., 2009; Puodziukynaite et al., 2014). It ties up with the fact that the non-alternating azulene possesses remarkable electronic and optical properties (Xia et al., 2014). Although the title compound, C30H20O2S2, (I), is fully conjugated, no flat molecular structure can be observed. Both phenyl rings, fig 1, are rotated out of the plane containing the azulene core [phenyl(C13—C18) 29.0°, phenyl(C23—C28) 55.2°]. The C—S—C angle of the acetyl protected thiol is slightly smaller compared to that found in an analogous compound,1,3-bis­[4-(tert-butyl­sulfanyl)phenyl­ethynyl]azulene, featuring a tert-butyl protection group at the sulfur atom (Förster et al., 2012). Unlike the previous case, no π···π inter­actions are present in the title compound. In all probability, this uncommon phenomenon within the substance class of azulenes (Förster et al., 2014) is related to the non-planar molecular structure and may be caused from packing effects. However, the crystal structure is based on C—H···O hydrogen bonds [C2—-H2···O1 (2.5-x, -0.5+y, 1.5-z; 2.40 Å, 155.0°)] and C—H···π inter­actions [C17—H17···Cg(1) 2.69 Å, 164.9°; C20—H20A···Cg(2) 2.89 Å, 159.0°].

Experimental top

Synthesis and crystallization top

The synthesis of the title compound, (I), has already been described (Förster et al. 2012). The crystals were grown from toluene solution by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C were fixed geometrically and treated as riding atoms, with d(C—H) = 0.93 and Uiso(H) = 1.2 Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl groups.

Related literature top

For background to this work, see: Wang et al. (2009);, Puodziukynaite et al. (2014); Xia et al. (2014). For the synthesis and related structures, see: Förster et al. (2012, 2014).

Structure description top

Azulene derivatives offer a number of inter­esting applications especially in the field of molecular electronics (Wang et al., 2009; Puodziukynaite et al., 2014). It ties up with the fact that the non-alternating azulene possesses remarkable electronic and optical properties (Xia et al., 2014). Although the title compound, C30H20O2S2, (I), is fully conjugated, no flat molecular structure can be observed. Both phenyl rings, fig 1, are rotated out of the plane containing the azulene core [phenyl(C13—C18) 29.0°, phenyl(C23—C28) 55.2°]. The C—S—C angle of the acetyl protected thiol is slightly smaller compared to that found in an analogous compound,1,3-bis­[4-(tert-butyl­sulfanyl)phenyl­ethynyl]azulene, featuring a tert-butyl protection group at the sulfur atom (Förster et al., 2012). Unlike the previous case, no π···π inter­actions are present in the title compound. In all probability, this uncommon phenomenon within the substance class of azulenes (Förster et al., 2014) is related to the non-planar molecular structure and may be caused from packing effects. However, the crystal structure is based on C—H···O hydrogen bonds [C2—-H2···O1 (2.5-x, -0.5+y, 1.5-z; 2.40 Å, 155.0°)] and C—H···π inter­actions [C17—H17···Cg(1) 2.69 Å, 164.9°; C20—H20A···Cg(2) 2.89 Å, 159.0°].

For background to this work, see: Wang et al. (2009);, Puodziukynaite et al. (2014); Xia et al. (2014). For the synthesis and related structures, see: Förster et al. (2012, 2014).

Synthesis and crystallization top

The synthesis of the title compound, (I), has already been described (Förster et al. 2012). The crystals were grown from toluene solution by slow evaporation.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C were fixed geometrically and treated as riding atoms, with d(C—H) = 0.93 and Uiso(H) = 1.2 Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker AXS); cell refinement: SAINT (Sheldrick, 2008); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
1,3-Bis{[4-(acetylsulfanyl)phenyl]ethynyl}azulene top
Crystal data top
C30H20O2S2F(000) = 992
Mr = 476.58Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.7674 (3) ÅCell parameters from 8057 reflections
b = 8.9849 (2) Åθ = 2.5–28.0°
c = 19.7586 (4) ŵ = 0.25 mm1
β = 104.022 (1)°T = 100 K
V = 2371.28 (9) Å3Irregular, green
Z = 40.24 × 0.23 × 0.15 mm
Data collection top
Bruker Kappa APEX CCD
diffractometer
4422 reflections with I > 2σ(I)
phi and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.942, Tmax = 0.963h = 1818
36340 measured reflectionsk = 1211
5898 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.347P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5898 reflectionsΔρmax = 0.44 e Å3
309 parametersΔρmin = 0.27 e Å3
Crystal data top
C30H20O2S2V = 2371.28 (9) Å3
Mr = 476.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7674 (3) ŵ = 0.25 mm1
b = 8.9849 (2) ÅT = 100 K
c = 19.7586 (4) Å0.24 × 0.23 × 0.15 mm
β = 104.022 (1)°
Data collection top
Bruker Kappa APEX CCD
diffractometer
5898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4422 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.963Rint = 0.039
36340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
5898 reflectionsΔρmin = 0.27 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.37569 (4)0.11544 (6)0.58441 (3)0.03405 (15)
S20.55913 (4)0.42293 (6)1.10153 (3)0.03144 (14)
O11.43557 (12)0.39449 (19)0.60090 (9)0.0418 (4)
O20.52513 (12)0.17076 (16)1.16136 (8)0.0361 (4)
C10.93413 (13)0.2985 (2)0.81129 (9)0.0229 (4)
C20.91025 (14)0.1731 (2)0.84616 (10)0.0248 (4)
H20.94250.07910.84850.030*
C30.83172 (14)0.2075 (2)0.87699 (10)0.0235 (4)
C40.80547 (13)0.3585 (2)0.86356 (9)0.0224 (4)
C50.73471 (14)0.4346 (2)0.88954 (10)0.0258 (4)
H50.70210.37820.91820.031*
C60.70505 (15)0.5828 (2)0.87924 (11)0.0286 (4)
H60.65740.61560.90360.034*
C70.73635 (14)0.6887 (2)0.83792 (10)0.0281 (4)
H70.70480.78310.83660.034*
C80.80679 (15)0.6777 (2)0.79820 (10)0.0279 (4)
H80.81470.76430.77250.033*
C90.86748 (14)0.5575 (2)0.79079 (10)0.0244 (4)
H90.91290.57440.76230.029*
C100.86986 (13)0.4173 (2)0.81964 (9)0.0217 (4)
C111.01077 (14)0.2995 (2)0.77358 (10)0.0235 (4)
C121.07506 (14)0.2876 (2)0.74377 (10)0.0252 (4)
C131.15323 (13)0.2606 (2)0.70827 (10)0.0222 (4)
C141.15694 (14)0.3358 (2)0.64730 (10)0.0261 (4)
H141.11200.41550.63120.031*
C151.22577 (14)0.2948 (2)0.61000 (10)0.0272 (4)
H151.22630.34400.56750.033*
C161.29404 (13)0.1821 (2)0.63447 (10)0.0242 (4)
C171.29573 (14)0.1142 (2)0.69783 (10)0.0270 (4)
H171.34540.04200.71630.032*
C181.22522 (14)0.1517 (2)0.73400 (10)0.0269 (4)
H181.22560.10310.77680.032*
C191.44675 (15)0.2760 (3)0.57564 (11)0.0328 (5)
C201.52157 (17)0.2459 (3)0.53316 (12)0.0483 (7)
H20A1.48650.21120.48660.072*
H20B1.56880.16920.55620.072*
H20C1.55820.33750.52890.072*
C210.78423 (15)0.1054 (2)0.91530 (9)0.0243 (4)
C220.74797 (15)0.0199 (2)0.94649 (10)0.0275 (4)
C230.70236 (14)0.0862 (2)0.98362 (10)0.0246 (4)
C240.76034 (15)0.1665 (2)1.03950 (10)0.0284 (4)
H240.83060.15041.05350.034*
C250.71595 (15)0.2691 (2)1.07442 (11)0.0289 (4)
H250.75570.32481.11190.035*
C260.61271 (15)0.2908 (2)1.05464 (10)0.0268 (4)
C270.55486 (15)0.2111 (2)1.00026 (11)0.0318 (5)
H270.48450.22610.98700.038*
C280.59931 (15)0.1085 (2)0.96468 (11)0.0308 (4)
H280.55920.05320.92720.037*
C290.52713 (14)0.3041 (2)1.16535 (10)0.0261 (4)
C300.50479 (17)0.3905 (2)1.22472 (11)0.0341 (5)
H30A0.56360.38951.26430.051*
H30B0.48830.49351.21000.051*
H30C0.44790.34511.23870.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (3)0.0331 (3)0.0435 (3)0.0021 (2)0.0220 (2)0.0023 (2)
S20.0425 (3)0.0203 (2)0.0379 (3)0.0023 (2)0.0221 (2)0.0025 (2)
O10.0341 (8)0.0477 (10)0.0446 (9)0.0138 (7)0.0117 (7)0.0013 (8)
O20.0478 (9)0.0248 (8)0.0381 (8)0.0010 (7)0.0152 (7)0.0001 (6)
C10.0234 (9)0.0222 (9)0.0244 (9)0.0025 (7)0.0085 (7)0.0004 (7)
C20.0276 (9)0.0225 (9)0.0260 (9)0.0003 (7)0.0097 (7)0.0001 (8)
C30.0246 (9)0.0238 (9)0.0233 (9)0.0034 (7)0.0083 (7)0.0004 (7)
C40.0224 (8)0.0239 (9)0.0217 (9)0.0023 (7)0.0069 (7)0.0007 (7)
C50.0232 (9)0.0301 (10)0.0266 (9)0.0025 (8)0.0108 (7)0.0010 (8)
C60.0259 (9)0.0312 (11)0.0309 (10)0.0015 (8)0.0114 (8)0.0043 (8)
C70.0273 (9)0.0266 (10)0.0293 (10)0.0039 (8)0.0048 (8)0.0027 (8)
C80.0314 (10)0.0241 (10)0.0277 (10)0.0006 (8)0.0062 (8)0.0041 (8)
C90.0259 (9)0.0261 (10)0.0224 (9)0.0024 (7)0.0082 (7)0.0002 (7)
C100.0208 (8)0.0237 (9)0.0213 (8)0.0023 (7)0.0067 (7)0.0012 (7)
C110.0265 (9)0.0180 (9)0.0269 (9)0.0045 (7)0.0083 (7)0.0018 (7)
C120.0272 (9)0.0179 (9)0.0309 (10)0.0011 (7)0.0078 (8)0.0020 (7)
C130.0222 (8)0.0193 (9)0.0267 (9)0.0021 (7)0.0093 (7)0.0034 (7)
C140.0234 (9)0.0230 (10)0.0331 (10)0.0033 (7)0.0093 (8)0.0033 (8)
C150.0283 (9)0.0271 (10)0.0284 (10)0.0010 (8)0.0111 (8)0.0059 (8)
C160.0217 (8)0.0241 (10)0.0293 (9)0.0010 (7)0.0113 (7)0.0016 (8)
C170.0244 (9)0.0240 (10)0.0335 (10)0.0033 (7)0.0085 (8)0.0027 (8)
C180.0293 (10)0.0256 (10)0.0279 (10)0.0009 (8)0.0108 (8)0.0023 (8)
C190.0232 (9)0.0482 (14)0.0265 (10)0.0047 (9)0.0051 (8)0.0029 (9)
C200.0271 (11)0.084 (2)0.0374 (12)0.0038 (12)0.0152 (9)0.0081 (13)
C210.0329 (10)0.0213 (9)0.0204 (9)0.0035 (8)0.0095 (7)0.0006 (7)
C220.0301 (10)0.0246 (10)0.0304 (10)0.0002 (8)0.0126 (8)0.0050 (8)
C230.0321 (10)0.0181 (9)0.0284 (9)0.0015 (7)0.0169 (8)0.0030 (7)
C240.0273 (9)0.0285 (10)0.0318 (10)0.0006 (8)0.0115 (8)0.0010 (8)
C250.0325 (10)0.0262 (10)0.0304 (10)0.0028 (8)0.0124 (8)0.0046 (8)
C260.0357 (10)0.0184 (9)0.0314 (10)0.0013 (8)0.0181 (8)0.0002 (8)
C270.0253 (9)0.0294 (11)0.0424 (12)0.0021 (8)0.0117 (8)0.0057 (9)
C280.0309 (10)0.0271 (10)0.0358 (11)0.0019 (8)0.0110 (8)0.0096 (9)
C290.0248 (9)0.0233 (10)0.0311 (10)0.0001 (7)0.0085 (8)0.0012 (8)
C300.0416 (12)0.0305 (11)0.0355 (11)0.0012 (9)0.0195 (9)0.0028 (9)
Geometric parameters (Å, º) top
S1—C161.7716 (19)C14—C151.384 (3)
S1—C191.775 (2)C14—H140.9500
S2—C261.7727 (19)C15—C161.387 (3)
S2—C291.787 (2)C15—H150.9500
O1—C191.201 (3)C16—C171.387 (3)
O2—C291.201 (2)C17—C181.380 (3)
C1—C21.401 (3)C17—H170.9500
C1—C101.421 (3)C18—H180.9500
C1—C111.432 (2)C19—C201.503 (3)
C2—C31.398 (3)C20—H20A0.9800
C2—H20.9500C20—H20B0.9800
C3—C41.413 (3)C20—H20C0.9800
C3—C211.443 (3)C21—C221.170 (3)
C4—C51.386 (3)C22—C231.437 (3)
C4—C101.480 (2)C23—C281.391 (3)
C5—C61.393 (3)C23—C241.396 (3)
C5—H50.9500C24—C251.380 (3)
C6—C71.388 (3)C24—H240.9500
C6—H60.9500C25—C261.394 (3)
C7—C81.391 (3)C25—H250.9500
C7—H70.9500C26—C271.374 (3)
C8—C91.394 (3)C27—C281.388 (3)
C8—H80.9500C27—H270.9500
C9—C101.380 (3)C28—H280.9500
C9—H90.9500C29—C301.500 (3)
C11—C121.181 (3)C30—H30A0.9800
C12—C131.440 (3)C30—H30B0.9800
C13—C141.393 (3)C30—H30C0.9800
C13—C181.398 (3)
C16—S1—C19102.66 (10)C17—C16—S1118.76 (15)
C26—S2—C29100.01 (9)C18—C17—C16120.01 (18)
C2—C1—C10108.67 (16)C18—C17—H17120.0
C2—C1—C11123.48 (17)C16—C17—H17120.0
C10—C1—C11127.85 (17)C17—C18—C13120.56 (18)
C3—C2—C1109.57 (17)C17—C18—H18119.7
C3—C2—H2125.2C13—C18—H18119.7
C1—C2—H2125.2O1—C19—C20124.5 (2)
C2—C3—C4108.68 (16)O1—C19—S1123.40 (16)
C2—C3—C21125.77 (18)C20—C19—S1112.13 (18)
C4—C3—C21125.55 (17)C19—C20—H20A109.5
C5—C4—C3125.09 (17)C19—C20—H20B109.5
C5—C4—C10128.00 (18)H20A—C20—H20B109.5
C3—C4—C10106.88 (16)C19—C20—H20C109.5
C4—C5—C6128.65 (18)H20A—C20—H20C109.5
C4—C5—H5115.7H20B—C20—H20C109.5
C6—C5—H5115.7C22—C21—C3178.1 (2)
C7—C6—C5128.24 (18)C21—C22—C23178.9 (2)
C7—C6—H6115.9C28—C23—C24119.25 (17)
C5—C6—H6115.9C28—C23—C22120.10 (18)
C6—C7—C8129.88 (19)C24—C23—C22120.64 (18)
C6—C7—H7115.1C25—C24—C23120.20 (18)
C8—C7—H7115.1C25—C24—H24119.9
C7—C8—C9129.18 (19)C23—C24—H24119.9
C7—C8—H8115.4C24—C25—C26119.92 (19)
C9—C8—H8115.4C24—C25—H25120.0
C10—C9—C8128.20 (18)C26—C25—H25120.0
C10—C9—H9115.9C27—C26—C25120.30 (18)
C8—C9—H9115.9C27—C26—S2121.48 (15)
C9—C10—C1126.22 (17)C25—C26—S2118.21 (15)
C9—C10—C4127.60 (17)C26—C27—C28119.96 (19)
C1—C10—C4106.17 (16)C26—C27—H27120.0
C12—C11—C1174.3 (2)C28—C27—H27120.0
C11—C12—C13175.5 (2)C27—C28—C23120.36 (19)
C14—C13—C18118.85 (17)C27—C28—H28119.8
C14—C13—C12121.86 (17)C23—C28—H28119.8
C18—C13—C12119.23 (17)O2—C29—C30124.21 (19)
C15—C14—C13120.34 (18)O2—C29—S2123.75 (16)
C15—C14—H14119.8C30—C29—S2112.03 (14)
C13—C14—H14119.8C29—C30—H30A109.5
C14—C15—C16120.16 (17)C29—C30—H30B109.5
C14—C15—H15119.9H30A—C30—H30B109.5
C16—C15—H15119.9C29—C30—H30C109.5
C15—C16—C17119.82 (17)H30A—C30—H30C109.5
C15—C16—S1121.35 (15)H30B—C30—H30C109.5
C10—C1—C2—C30.1 (2)C13—C14—C15—C162.4 (3)
C11—C1—C2—C3179.26 (17)C14—C15—C16—C172.5 (3)
C1—C2—C3—C41.4 (2)C14—C15—C16—S1174.31 (15)
C1—C2—C3—C21177.71 (18)C19—S1—C16—C1561.42 (18)
C2—C3—C4—C5175.89 (18)C19—S1—C16—C17121.78 (17)
C21—C3—C4—C55.0 (3)C15—C16—C17—C184.4 (3)
C2—C3—C4—C102.2 (2)S1—C16—C17—C18172.40 (15)
C21—C3—C4—C10176.99 (17)C16—C17—C18—C131.6 (3)
C3—C4—C5—C6179.6 (2)C14—C13—C18—C173.1 (3)
C10—C4—C5—C61.9 (3)C12—C13—C18—C17174.31 (18)
C4—C5—C6—C73.0 (4)C16—S1—C19—O10.8 (2)
C5—C6—C7—C82.4 (4)C16—S1—C19—C20179.13 (15)
C6—C7—C8—C92.1 (4)C28—C23—C24—C251.4 (3)
C7—C8—C9—C102.4 (4)C22—C23—C24—C25179.43 (18)
C8—C9—C10—C1179.16 (19)C23—C24—C25—C261.1 (3)
C8—C9—C10—C42.5 (3)C24—C25—C26—C270.3 (3)
C2—C1—C10—C9177.39 (18)C24—C25—C26—S2179.55 (15)
C11—C1—C10—C91.9 (3)C29—S2—C26—C2786.86 (18)
C2—C1—C10—C41.2 (2)C29—S2—C26—C2592.98 (17)
C11—C1—C10—C4179.46 (18)C25—C26—C27—C280.1 (3)
C5—C4—C10—C95.5 (3)S2—C26—C27—C28179.98 (16)
C3—C4—C10—C9176.53 (18)C26—C27—C28—C230.2 (3)
C5—C4—C10—C1175.89 (19)C24—C23—C28—C271.0 (3)
C3—C4—C10—C12.1 (2)C22—C23—C28—C27179.86 (19)
C18—C13—C14—C155.1 (3)C26—S2—C29—O214.4 (2)
C12—C13—C14—C15172.25 (18)C26—S2—C29—C30164.72 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the mid-point of C11—C12 and Cg2 is the centroid of the C1–C4/C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.403.285 (3)155
C17—H1···Cg10.952.693.612 (3)165
C20—H20A···Cg2ii0.982.893.835 (2)162
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the mid-point of C11—C12 and Cg2 is the centroid of the C1–C4/C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.403.285 (3)155
C17—H1···Cg10.952.693.612 (3)164.9
C20—H20A···Cg2ii0.982.893.835 (2)162
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work has been performed within the `Cluster of Excellence Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering′ (ADDE), which was supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFörster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856–863.  Google Scholar
First citationFörster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63–70.  Google Scholar
First citationPuodziukynaite, E., Wang, H.-W., Lawrence, J., Wise, A., Russell, T. P., Barnes, M. D. & Emrick, T. (2014). J. Am. Chem. Soc. 136, 11043–11049.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Ng, J. K.-P., Jia, P., Lin, T., Cho, C. M., Xu, J., Lu, X. & He, C. (2009). Macromolecules, 42, 5534–5544.  CrossRef CAS Google Scholar
First citationXia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, E., Amir, R., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941–2945.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds