organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-3-allyl-5-(4-chloro­benzyl­­idene)-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 November 2015; accepted 26 November 2015; online 6 December 2015)

In the title compound, C13H10ClNOS2, the dihedral angle between the rhodanine (r.m.s. deviation = 0.008 Å) and 4-chloro­benzyl­idene rings is 1.79 (11)°. The allyl group attached to the N atom, which lies almost perpendicular to the rhodanine ring, is disordered over two orientations in a 0.519 (13):0.481 (13) ratio. A short intra­molecular C—H⋯S inter­action closes an S(6) ring. In the crystal, mol­ecules are linked by ππ stacking inter­actions [centroid–centroid separation = 3.600 (15) Å], generating inversion dimers.

1. Related literature

For a related structure and background to the pharmacological and biological activities of rhodanine-based mol­ecules, see: El Ajlaoui et al. (2015[El Ajlaoui, R., Rakib, E. M., Chigr, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o906-o907.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10ClNOS2

  • Mr = 295.79

  • Triclinic, [P \overline 1]

  • a = 7.6197 (8) Å

  • b = 7.9849 (7) Å

  • c = 13.0624 (14) Å

  • α = 77.600 (5)°

  • β = 77.996 (5)°

  • γ = 61.954 (4)°

  • V = 679.76 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.37 × 0.25 × 0.21 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.656, Tmax = 0.746

  • 24189 measured reflections

  • 3249 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.144

  • S = 1.04

  • 3249 reflections

  • 182 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.93 2.55 3.254 (3) 133

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our ongoing studies of rhodanine derivatives, we now describe the title compound.

The molecule of the title compound is build up from a rhodanine ring (S1–N1–C8–C9–C10) linked to an disordered allyl group (48%/52%) (C11–C12AC12B–C13AC13B) and at the nitrogen atom and to a 4-chlorobenzylidene ring system (C1 to C6) as shown in Fig.1. The mean plane through the rhodanine ring is almost perpendicular to the allyl group and makes a dihedral angle of 1.79 (11)° with the 4-chlorobenzylidene ring system. Nearly the same structure is observed by El Ajlaoui et al. 2015 in (Z)-3-Allyl-5-(4-methyl-benzylidene)-2- thioxothiazolidin-4-one.

The cohesion of the crystal structure is ensured by ππ interaction between molecules forming inversion dimers as shown in Fig.2.

Related literature top

For a related structure and background to the pharmacological and biological activities of rhodanine-based molecules, see: El Ajlaoui et al. (2015).

Experimental top

To a solution of 3-allylrhodanine (1.15 mmol, 0.2 g) in 10 mL of THF, (4-chlorobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane: ethyl acetate (1/9) as eluent. The title compound was recrystallized from ethanol (Yield: 72%, m.p.: 371 K).

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.97 Å and C–H = 0.93 Å for methylene and aromatic, respectively. All hydrogen with Uiso(H) = 1.2 Ueq for methylene and aromatic. The reflection (0 0 1) affected by the beam-stop is removed during refinement.

Structure description top

As part of our ongoing studies of rhodanine derivatives, we now describe the title compound.

The molecule of the title compound is build up from a rhodanine ring (S1–N1–C8–C9–C10) linked to an disordered allyl group (48%/52%) (C11–C12AC12B–C13AC13B) and at the nitrogen atom and to a 4-chlorobenzylidene ring system (C1 to C6) as shown in Fig.1. The mean plane through the rhodanine ring is almost perpendicular to the allyl group and makes a dihedral angle of 1.79 (11)° with the 4-chlorobenzylidene ring system. Nearly the same structure is observed by El Ajlaoui et al. 2015 in (Z)-3-Allyl-5-(4-methyl-benzylidene)-2- thioxothiazolidin-4-one.

The cohesion of the crystal structure is ensured by ππ interaction between molecules forming inversion dimers as shown in Fig.2.

For a related structure and background to the pharmacological and biological activities of rhodanine-based molecules, see: El Ajlaoui et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Crystal packing for the title compound showing hydrogen bonds as dashed lines between inversion-related molecules.
(Z)-3-Allyl-5-(4-chlorobenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C13H10ClNOS2F(000) = 304
Mr = 295.79Dx = 1.445 Mg m3
Triclinic, P1Melting point: 371 K
a = 7.6197 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9849 (7) ÅCell parameters from 3249 reflections
c = 13.0624 (14) Åθ = 2.9–27.9°
α = 77.600 (5)°µ = 0.57 mm1
β = 77.996 (5)°T = 296 K
γ = 61.954 (4)°Block, colourless
V = 679.76 (12) Å30.37 × 0.25 × 0.21 mm
Z = 2
Data collection top
Bruker X8 APEX CCD
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.656, Tmax = 0.746k = 1010
24189 measured reflectionsl = 1717
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2968P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3249 reflectionsΔρmax = 0.38 e Å3
182 parametersΔρmin = 0.35 e Å3
Crystal data top
C13H10ClNOS2γ = 61.954 (4)°
Mr = 295.79V = 679.76 (12) Å3
Triclinic, P1Z = 2
a = 7.6197 (8) ÅMo Kα radiation
b = 7.9849 (7) ŵ = 0.57 mm1
c = 13.0624 (14) ÅT = 296 K
α = 77.600 (5)°0.37 × 0.25 × 0.21 mm
β = 77.996 (5)°
Data collection top
Bruker X8 APEX CCD
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2199 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.746Rint = 0.038
24189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
3249 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1200 (4)0.7895 (3)0.6827 (2)0.0698 (7)
C20.0835 (4)0.7296 (4)0.5860 (2)0.0709 (7)
H20.17090.69390.56680.085*
C30.0823 (4)0.7228 (3)0.5181 (2)0.0652 (6)
H30.10600.68220.45280.078*
C40.2174 (3)0.7752 (3)0.54439 (19)0.0574 (6)
C50.1746 (4)0.8355 (3)0.6429 (2)0.0678 (7)
H50.26120.87140.66270.081*
C60.0086 (5)0.8438 (4)0.7117 (2)0.0762 (7)
H60.01700.88530.77690.091*
C70.3946 (4)0.7721 (3)0.4765 (2)0.0592 (6)
H40.46650.81490.50450.071*
C80.4733 (4)0.7186 (3)0.38062 (19)0.0584 (6)
C90.6604 (4)0.7264 (3)0.3269 (2)0.0634 (6)
C100.5892 (4)0.6044 (4)0.2013 (2)0.0712 (7)
C110.8918 (5)0.6605 (5)0.1606 (3)0.0912 (9)
H11A0.93410.57570.10790.109*
H11B1.00130.61940.20150.109*
C12A0.8259 (17)0.8701 (16)0.1084 (6)0.100 (3)0.519 (13)
H12A0.81900.95970.14630.120*0.519 (13)
C13A0.779 (2)0.925 (2)0.0099 (6)0.131 (4)0.519 (13)
H13A0.78520.83690.02870.157*0.519 (13)
H13B0.73931.05240.02020.157*0.519 (13)
C12B0.8935 (18)0.8039 (12)0.0686 (7)0.144 (6)0.481 (13)
H12B1.00080.76860.01510.172*0.481 (13)
C13B0.747 (2)0.9822 (14)0.0591 (12)0.140 (6)0.481 (13)
H13C0.63841.02000.11170.168*0.481 (13)
H13D0.75301.06880.00020.168*0.481 (13)
N10.7137 (3)0.6620 (3)0.22888 (17)0.0667 (5)
O10.7595 (3)0.7794 (3)0.36081 (16)0.0818 (6)
S10.38675 (10)0.63202 (10)0.29984 (6)0.0703 (2)
S20.61487 (17)0.51989 (15)0.09357 (7)0.1047 (3)
Cl10.33030 (13)0.79962 (14)0.76777 (7)0.1017 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0656 (15)0.0542 (13)0.0814 (17)0.0180 (11)0.0213 (13)0.0017 (12)
C20.0635 (15)0.0670 (15)0.0856 (18)0.0260 (12)0.0248 (14)0.0091 (13)
C30.0675 (15)0.0583 (13)0.0731 (15)0.0225 (12)0.0262 (12)0.0119 (11)
C40.0618 (13)0.0388 (10)0.0715 (14)0.0163 (9)0.0270 (11)0.0041 (10)
C50.0759 (17)0.0565 (13)0.0795 (17)0.0280 (12)0.0257 (14)0.0138 (12)
C60.0841 (19)0.0632 (15)0.0758 (17)0.0217 (14)0.0203 (15)0.0153 (13)
C70.0652 (14)0.0444 (11)0.0755 (15)0.0228 (10)0.0310 (12)0.0052 (10)
C80.0647 (14)0.0441 (11)0.0727 (15)0.0224 (10)0.0320 (12)0.0019 (10)
C90.0704 (15)0.0502 (12)0.0743 (16)0.0265 (11)0.0300 (12)0.0017 (11)
C100.0826 (17)0.0618 (14)0.0712 (16)0.0280 (13)0.0312 (14)0.0024 (12)
C110.094 (2)0.101 (2)0.082 (2)0.0513 (19)0.0114 (17)0.0002 (17)
C12A0.118 (7)0.113 (8)0.074 (5)0.068 (7)0.019 (5)0.014 (5)
C13A0.134 (10)0.109 (9)0.136 (9)0.044 (8)0.018 (8)0.011 (7)
C12B0.221 (15)0.113 (8)0.077 (7)0.075 (9)0.033 (8)0.022 (6)
C13B0.147 (9)0.103 (8)0.092 (9)0.008 (7)0.022 (7)0.009 (6)
N10.0715 (13)0.0601 (11)0.0714 (13)0.0293 (10)0.0238 (11)0.0003 (10)
O10.0901 (13)0.0898 (13)0.0922 (13)0.0563 (11)0.0284 (11)0.0093 (10)
S10.0730 (4)0.0733 (4)0.0787 (4)0.0340 (3)0.0272 (3)0.0173 (3)
S20.1285 (8)0.1284 (8)0.0783 (5)0.0645 (6)0.0206 (5)0.0303 (5)
Cl10.0793 (5)0.1100 (7)0.1008 (6)0.0346 (5)0.0040 (4)0.0102 (5)
Geometric parameters (Å, º) top
C1—C21.374 (4)C9—N11.392 (3)
C1—C61.384 (4)C10—N11.366 (3)
C1—Cl11.728 (3)C10—S21.626 (3)
C2—C31.370 (4)C10—S11.749 (3)
C2—H20.9300C11—N11.457 (4)
C3—C41.402 (3)C11—C12B1.4743 (10)
C3—H30.9300C11—C12A1.543 (11)
C4—C51.392 (3)C11—H11A0.9700
C4—C71.445 (4)C11—H11B0.9700
C5—C61.373 (4)C12A—C13A1.3334 (10)
C5—H50.9300C12A—H12A0.9300
C6—H60.9300C13A—H13A0.9300
C7—C81.338 (3)C13A—H13B0.9300
C7—H40.9300C12B—C13B1.3333 (10)
C8—C91.475 (4)C12B—H12B0.9300
C8—S11.749 (2)C13B—H13C0.9300
C9—O11.211 (3)C13B—H13D0.9300
C2—C1—C6120.6 (3)N1—C10—S2127.3 (2)
C2—C1—Cl1119.4 (2)N1—C10—S1110.9 (2)
C6—C1—Cl1119.9 (2)S2—C10—S1121.89 (17)
C3—C2—C1119.5 (2)N1—C11—C12B125.5 (5)
C3—C2—H2120.2N1—C11—C12A104.4 (5)
C1—C2—H2120.2N1—C11—H11A110.9
C2—C3—C4121.8 (2)C12A—C11—H11A110.9
C2—C3—H3119.1N1—C11—H11B110.9
C4—C3—H3119.1C12A—C11—H11B110.9
C5—C4—C3116.8 (2)H11A—C11—H11B108.9
C5—C4—C7118.5 (2)C13A—C12A—C11121.3 (11)
C3—C4—C7124.7 (2)C13A—C12A—H12A119.4
C6—C5—C4122.1 (2)C11—C12A—H12A119.4
C6—C5—H5119.0C12A—C13A—H13A120.0
C4—C5—H5119.0C12A—C13A—H13B120.0
C5—C6—C1119.1 (3)H13A—C13A—H13B120.0
C5—C6—H6120.4C13B—C12B—C11122.4 (11)
C1—C6—H6120.4C13B—C12B—H12B118.8
C8—C7—C4131.4 (2)C11—C12B—H12B118.8
C8—C7—H4114.3C12B—C13B—H13C120.0
C4—C7—H4114.3C12B—C13B—H13D120.0
C7—C8—C9121.4 (2)H13C—C13B—H13D120.0
C7—C8—S1129.3 (2)C10—N1—C9116.3 (2)
C9—C8—S1109.29 (18)C10—N1—C11123.1 (3)
O1—C9—N1122.6 (3)C9—N1—C11120.6 (2)
O1—C9—C8126.4 (3)C8—S1—C1092.62 (12)
N1—C9—C8110.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.932.553.254 (3)133
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.932.553.254 (3)133
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEl Ajlaoui, R., Rakib, E. M., Chigr, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o906–o907.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds