organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4-methyl­phen­yl)-1-phenyl-5-[(E)-2-phenyl­ethen­yl]-1H-pyrazole

aSchool of Chemical Sciences,Universiti Sains Malaysia, 18000, Pulau Pinang, Malaysia, and bDepartment of P.G. Studies in Chemistry, Alvas College, Moodbidri, Karnataka, 574 227, India
*Correspondence e-mail: farook@usm.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 November 2015; accepted 28 November 2015; online 6 December 2015)

In the title compound, C24H20N2, the dihedral angles between the pyrazole ring and the pendant phenyl, toluoyl and phenyl­ethenyl rings are 41.50 (8), 4.41 (8) and 31.07 (8)°, respectively. In the crystal, inversion dimers linked by a ππ stacking inter­actions between the phenyl­ethenyl rings are observed [centroid–centroid separation = 3.5857 (9) Å].

1. Related literature

For background to pyrazoles, see: Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214-224.]); For related crystal structures, see: Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108-1115.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H20N2

  • Mr = 336.42

  • Monoclinic, P 21 /c

  • a = 9.6470 (8) Å

  • b = 14.1077 (12) Å

  • c = 14.0062 (12) Å

  • β = 104.891 (1)°

  • V = 1842.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.38 × 0.24 × 0.14 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.963

  • 32138 measured reflections

  • 5495 independent reflections

  • 4226 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.167

  • S = 1.04

  • 5495 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoles are well known as important structural units in a wide variety of biologically active natural products as well as useful synthetic intermediates (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-triaryl-2-pyrazolines were utilized in industries as scintillation solutes and as fluorescent agents. The crystal structures of some pyrazolines viz., 3,5-bis(4-methylphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 3,5-bis(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (Baktir et al., 2011) have been reported. In view of the importance of pyrazolines, the title compound (I) is prepared and its crystal structure is reported.

Related literature top

For background to pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010); For related crystal structures, see: Jasinski et al. (2012); Baktir et al. (2011).

Experimental top

A mixture of (2E,4E)-1-(4-methylphenyl)-5-phenylpenta-2,4-dien-1-one (2.48 g, 0.01 mol) and phenylhydrazine (1.08 g,0.01 mol) in 30 ml acetic acid was refluxed for 10 hours. The reaction mixture was cooled and poured into 500 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless blocks were grown from acetone solution by slow evaporation; m. p. 471-474 K. Yield: 63%.

Refinement top

H atoms were placed in calculated positions and refined as riding with C–H = 0.95 Å (0.98 Å for methyl H atoms) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Pyrazoles are well known as important structural units in a wide variety of biologically active natural products as well as useful synthetic intermediates (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-triaryl-2-pyrazolines were utilized in industries as scintillation solutes and as fluorescent agents. The crystal structures of some pyrazolines viz., 3,5-bis(4-methylphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 3,5-bis(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (Baktir et al., 2011) have been reported. In view of the importance of pyrazolines, the title compound (I) is prepared and its crystal structure is reported.

For background to pyrazoles, see: Samshuddin et al. (2012); Sarojini et al. (2010); For related crystal structures, see: Jasinski et al. (2012); Baktir et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound.
3-(4-Methylphenyl)-1-phenyl-5-[(E)-2-phenylethenyl]-1H-pyrazole top
Crystal data top
C24H20N2Dx = 1.213 Mg m3
Mr = 336.42Melting point = 471–474 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6470 (8) ÅCell parameters from 9097 reflections
b = 14.1077 (12) Åθ = 2.2–30.1°
c = 14.0062 (12) ŵ = 0.07 mm1
β = 104.891 (1)°T = 100 K
V = 1842.2 (3) Å3Block, colourless
Z = 40.38 × 0.24 × 0.14 mm
F(000) = 712
Data collection top
Bruker APEXII CCD
diffractometer
4226 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 30.3°, θmin = 2.1°
Tmin = 0.915, Tmax = 0.963h = 1313
32138 measured reflectionsk = 1920
5495 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.886P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5495 reflectionsΔρmax = 0.57 e Å3
236 parametersΔρmin = 0.24 e Å3
Crystal data top
C24H20N2V = 1842.2 (3) Å3
Mr = 336.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6470 (8) ŵ = 0.07 mm1
b = 14.1077 (12) ÅT = 100 K
c = 14.0062 (12) Å0.38 × 0.24 × 0.14 mm
β = 104.891 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4226 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.963Rint = 0.033
32138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
5495 reflectionsΔρmin = 0.24 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64167 (12)0.60320 (9)0.42861 (8)0.0265 (3)
N20.69140 (12)0.59884 (9)0.52903 (8)0.0269 (3)
C10.10080 (17)0.75054 (12)0.13886 (13)0.0383 (4)
H1A0.07400.78160.19160.046*
C20.02522 (18)0.76888 (14)0.04221 (14)0.0437 (4)
H2A0.05270.81220.02950.052*
C30.06214 (17)0.72491 (14)0.03526 (13)0.0423 (4)
H3A0.01120.73870.10130.051*
C40.17484 (18)0.65993 (15)0.01636 (13)0.0417 (4)
H4A0.19950.62820.06950.050*
C50.25128 (16)0.64156 (12)0.08087 (12)0.0355 (4)
H5A0.32840.59760.09340.043*
C60.21586 (14)0.68694 (11)0.15970 (11)0.0296 (3)
C70.29464 (15)0.67433 (11)0.26385 (11)0.0298 (3)
H7A0.25410.70190.31240.036*
C80.41821 (15)0.62750 (11)0.29599 (11)0.0275 (3)
H8A0.45720.59620.24880.033*
C90.49623 (14)0.62204 (10)0.39980 (10)0.0254 (3)
C100.45197 (14)0.63017 (10)0.48572 (10)0.0261 (3)
H10A0.35780.64330.49130.031*
C110.57660 (14)0.61475 (10)0.56396 (10)0.0242 (3)
C120.59023 (15)0.61272 (10)0.67117 (10)0.0249 (3)
C130.72390 (16)0.60008 (11)0.73861 (11)0.0302 (3)
H13A0.80720.59280.71500.036*
C140.73624 (18)0.59809 (12)0.83953 (11)0.0359 (4)
H14A0.82790.58930.88400.043*
C150.61633 (19)0.60878 (12)0.87664 (12)0.0370 (4)
C160.48304 (19)0.61886 (13)0.80913 (12)0.0377 (4)
H16A0.39940.62430.83270.045*
C170.46994 (16)0.62111 (11)0.70806 (11)0.0317 (3)
H17A0.37790.62840.66370.038*
C180.74029 (14)0.59214 (10)0.37003 (10)0.0261 (3)
C190.73476 (15)0.65173 (11)0.28996 (10)0.0296 (3)
H19A0.66380.69990.27310.036*
C200.83463 (17)0.63971 (12)0.23509 (11)0.0344 (3)
H20A0.83070.67910.17950.041*
C210.94044 (17)0.57045 (13)0.26085 (12)0.0361 (4)
H21A1.00840.56270.22300.043*
C220.94626 (17)0.51269 (12)0.34226 (12)0.0358 (3)
H22A1.01960.46620.36070.043*
C230.84600 (15)0.52252 (11)0.39652 (11)0.0302 (3)
H23A0.84900.48220.45140.036*
C240.6314 (3)0.61195 (17)0.98668 (13)0.0542 (5)
H24A0.71140.57141.02050.081*
H24B0.54260.58931.00060.081*
H24C0.65000.67731.01030.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (5)0.0337 (6)0.0215 (5)0.0003 (4)0.0000 (4)0.0022 (4)
N20.0236 (5)0.0334 (7)0.0207 (5)0.0019 (4)0.0000 (4)0.0029 (4)
C10.0330 (8)0.0356 (9)0.0409 (9)0.0033 (6)0.0000 (6)0.0059 (7)
C20.0317 (8)0.0431 (10)0.0480 (10)0.0059 (7)0.0049 (7)0.0160 (8)
C30.0286 (7)0.0552 (11)0.0353 (8)0.0063 (7)0.0061 (6)0.0203 (8)
C40.0344 (8)0.0574 (11)0.0316 (8)0.0025 (7)0.0052 (6)0.0101 (7)
C50.0247 (6)0.0409 (9)0.0377 (8)0.0027 (6)0.0024 (6)0.0123 (7)
C60.0213 (6)0.0294 (7)0.0325 (7)0.0036 (5)0.0033 (5)0.0090 (6)
C70.0256 (6)0.0299 (7)0.0306 (7)0.0013 (5)0.0014 (5)0.0007 (6)
C80.0231 (6)0.0298 (7)0.0265 (7)0.0018 (5)0.0007 (5)0.0027 (5)
C90.0221 (6)0.0241 (7)0.0262 (6)0.0012 (5)0.0005 (5)0.0006 (5)
C100.0234 (6)0.0241 (7)0.0278 (7)0.0015 (5)0.0010 (5)0.0001 (5)
C110.0230 (6)0.0218 (6)0.0255 (6)0.0011 (5)0.0018 (5)0.0005 (5)
C120.0266 (6)0.0217 (6)0.0248 (6)0.0010 (5)0.0040 (5)0.0015 (5)
C130.0265 (6)0.0347 (8)0.0276 (7)0.0018 (5)0.0035 (5)0.0007 (6)
C140.0371 (8)0.0388 (9)0.0271 (7)0.0030 (6)0.0004 (6)0.0002 (6)
C150.0484 (9)0.0354 (8)0.0265 (7)0.0006 (7)0.0086 (6)0.0029 (6)
C160.0405 (8)0.0409 (9)0.0346 (8)0.0071 (7)0.0150 (7)0.0015 (7)
C170.0305 (7)0.0319 (8)0.0317 (7)0.0041 (6)0.0065 (6)0.0027 (6)
C180.0206 (6)0.0323 (7)0.0227 (6)0.0040 (5)0.0004 (5)0.0003 (5)
C190.0268 (6)0.0341 (8)0.0240 (6)0.0040 (5)0.0004 (5)0.0028 (5)
C200.0355 (8)0.0434 (9)0.0221 (6)0.0076 (6)0.0032 (5)0.0023 (6)
C210.0331 (7)0.0455 (9)0.0300 (7)0.0048 (7)0.0086 (6)0.0030 (7)
C220.0291 (7)0.0394 (9)0.0376 (8)0.0009 (6)0.0061 (6)0.0003 (7)
C230.0250 (6)0.0352 (8)0.0280 (7)0.0013 (6)0.0024 (5)0.0042 (6)
C240.0701 (13)0.0646 (13)0.0279 (8)0.0045 (11)0.0123 (8)0.0029 (8)
Geometric parameters (Å, º) top
N1—N21.3657 (15)C12—C131.4003 (19)
N1—C91.3824 (17)C13—C141.388 (2)
N1—C181.4156 (18)C13—H13A0.9500
N2—C111.3397 (18)C14—C151.393 (2)
C1—C21.387 (2)C14—H14A0.9500
C1—C61.398 (2)C15—C161.394 (2)
C1—H1A0.9500C15—C241.511 (2)
C2—C31.374 (3)C16—C171.389 (2)
C2—H2A0.9500C16—H16A0.9500
C3—C41.394 (3)C17—H17A0.9500
C3—H3A0.9500C18—C191.392 (2)
C4—C51.396 (2)C18—C231.396 (2)
C4—H4A0.9500C19—C201.389 (2)
C5—C61.393 (2)C19—H19A0.9500
C5—H5A0.9500C20—C211.392 (2)
C6—C71.472 (2)C20—H20A0.9500
C7—C81.336 (2)C21—C221.391 (2)
C7—H7A0.9500C21—H21A0.9500
C8—C91.4574 (19)C22—C231.382 (2)
C8—H8A0.9500C22—H22A0.9500
C9—C101.381 (2)C23—H23A0.9500
C10—C111.4201 (18)C24—H24A0.9800
C10—H10A0.9500C24—H24B0.9800
C11—C121.4736 (19)C24—H24C0.9800
C12—C171.391 (2)
N2—N1—C9111.77 (11)C14—C13—C12120.84 (14)
N2—N1—C18118.78 (11)C14—C13—H13A119.6
C9—N1—C18129.41 (12)C12—C13—H13A119.6
C11—N2—N1105.30 (11)C13—C14—C15121.05 (15)
C2—C1—C6120.89 (17)C13—C14—H14A119.5
C2—C1—H1A119.6C15—C14—H14A119.5
C6—C1—H1A119.6C14—C15—C16117.89 (14)
C3—C2—C1120.57 (16)C14—C15—C24120.83 (16)
C3—C2—H2A119.7C16—C15—C24121.27 (17)
C1—C2—H2A119.7C17—C16—C15121.34 (15)
C2—C3—C4119.65 (15)C17—C16—H16A119.3
C2—C3—H3A120.2C15—C16—H16A119.3
C4—C3—H3A120.2C16—C17—C12120.70 (14)
C3—C4—C5119.85 (18)C16—C17—H17A119.7
C3—C4—H4A120.1C12—C17—H17A119.7
C5—C4—H4A120.1C19—C18—C23120.89 (14)
C6—C5—C4120.81 (15)C19—C18—N1120.55 (13)
C6—C5—H5A119.6C23—C18—N1118.52 (13)
C4—C5—H5A119.6C20—C19—C18118.94 (14)
C5—C6—C1118.21 (14)C20—C19—H19A120.5
C5—C6—C7124.10 (13)C18—C19—H19A120.5
C1—C6—C7117.67 (15)C19—C20—C21120.61 (14)
C8—C7—C6125.62 (15)C19—C20—H20A119.7
C8—C7—H7A117.2C21—C20—H20A119.7
C6—C7—H7A117.2C22—C21—C20119.75 (15)
C7—C8—C9123.35 (14)C22—C21—H21A120.1
C7—C8—H8A118.3C20—C21—H21A120.1
C9—C8—H8A118.3C23—C22—C21120.36 (15)
C10—C9—N1106.23 (11)C23—C22—H22A119.8
C10—C9—C8131.97 (13)C21—C22—H22A119.8
N1—C9—C8121.78 (13)C22—C23—C18119.42 (14)
C9—C10—C11105.64 (12)C22—C23—H23A120.3
C9—C10—H10A127.2C18—C23—H23A120.3
C11—C10—H10A127.2C15—C24—H24A109.5
N2—C11—C10111.06 (12)C15—C24—H24B109.5
N2—C11—C12120.22 (12)H24A—C24—H24B109.5
C10—C11—C12128.72 (13)C15—C24—H24C109.5
C17—C12—C13118.14 (13)H24A—C24—H24C109.5
C17—C12—C11120.82 (13)H24B—C24—H24C109.5
C13—C12—C11121.02 (13)
C9—N1—N2—C110.18 (16)C10—C11—C12—C174.1 (2)
C18—N1—N2—C11177.93 (12)N2—C11—C12—C134.0 (2)
C6—C1—C2—C30.1 (3)C10—C11—C12—C13177.46 (14)
C1—C2—C3—C41.2 (3)C17—C12—C13—C141.4 (2)
C2—C3—C4—C51.4 (3)C11—C12—C13—C14179.92 (14)
C3—C4—C5—C60.4 (3)C12—C13—C14—C150.1 (3)
C4—C5—C6—C10.7 (2)C13—C14—C15—C161.8 (3)
C4—C5—C6—C7177.47 (15)C13—C14—C15—C24176.62 (17)
C2—C1—C6—C50.8 (2)C14—C15—C16—C171.9 (3)
C2—C1—C6—C7177.42 (15)C24—C15—C16—C17176.47 (17)
C5—C6—C7—C88.2 (2)C15—C16—C17—C120.4 (3)
C1—C6—C7—C8169.96 (16)C13—C12—C17—C161.3 (2)
C6—C7—C8—C9176.13 (14)C11—C12—C17—C16179.79 (14)
N2—N1—C9—C100.13 (16)N2—N1—C18—C19136.00 (14)
C18—N1—C9—C10177.32 (14)C9—N1—C18—C1941.3 (2)
N2—N1—C9—C8178.33 (13)N2—N1—C18—C2341.74 (19)
C18—N1—C9—C84.2 (2)C9—N1—C18—C23140.95 (15)
C7—C8—C9—C1024.7 (3)C23—C18—C19—C201.3 (2)
C7—C8—C9—N1157.24 (15)N1—C18—C19—C20179.02 (13)
N1—C9—C10—C110.37 (15)C18—C19—C20—C211.3 (2)
C8—C9—C10—C11177.87 (15)C19—C20—C21—C220.0 (2)
N1—N2—C11—C100.42 (16)C20—C21—C22—C231.2 (2)
N1—N2—C11—C12178.39 (12)C21—C22—C23—C181.2 (2)
C9—C10—C11—N20.50 (16)C19—C18—C23—C220.1 (2)
C9—C10—C11—C12178.17 (13)N1—C18—C23—C22177.85 (13)
N2—C11—C12—C17174.51 (14)

Experimental details

Crystal data
Chemical formulaC24H20N2
Mr336.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6470 (8), 14.1077 (12), 14.0062 (12)
β (°) 104.891 (1)
V3)1842.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.24 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.915, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
32138, 5495, 4226
Rint0.033
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.167, 1.04
No. of reflections5495
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.24

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

SS thanks Alva's Education Foundation, Moodbidri, for the research facilities. The authors are thankful for RU Research grant 1001/PKIMIA/811269.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.  Web of Science CrossRef CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds