organic compounds
Z)-4-methylbenzyl 3-[1-(5-methylpyridin-2-yl)ethylidene]dithiocarbazate1
of (aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
In the title dithiocarbazate compound, C17H19N3S2, the central CN2S2 residue is essentially planar (r.m.s. deviation = 0.0288 Å) and forms dihedral angles of 9.77 (8) and 77.47 (7)° with the substituted-pyridyl and p-tolyl rings, respectively, indicating a highly twisted molecule; the dihedral angle between the rings is 85.56 (8)°. The configuration about the C=N bond is Z, which allows for the formation of an intramolecular N—H⋯N(pyridyl) hydrogen bond. The packing features tolyl-methyl-C—H⋯N(imine), pyridyl-C—H⋯π(tolyl) and π–π interactions [between pyridyl rings with a distance = 3.7946 (13) Å], which generates jagged supramolecular layers that stack along the b axis with no directional interactions between them.
Keywords: crystal structure; hydrogen bonding; dithiocarbazate.
CCDC reference: 1442456
1. Related literature
For the structure of the 4-methylpyridin-2-yl derivative, with an E configuration for the C=N bond, allowing for the formation of centrosymmetric {⋯HNCS}2 synthons in the crystal, see: Omar et al. (2014). For the synthesis, see: Ravoof et al. (2010).
2. Experimental
2.1. Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1442456
https://doi.org/10.1107/S205698901502407X/hb7554sup1.cif
contains datablocks 1, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901502407X/hb7554Isup2.hkl
The precursor molecule, S-4-methylbenzyldithiocarbazate, was prepared by adapting the literature procedure of Ravoof et al. (2010). Thus, KOH (11.2 g, 0.2 mol) was dissolved in absolute ethanol (70 ml) and to this solution was added hydrazine hydrate (10 g, 0.2 mol) followed by cooling in an ice-salt bath. Drop wise addition of carbon disulphide (15.2 g, 0.2 mol) with constant stirring over 1 h followed. The two layers that subsequently formed were separated. The light-brown lower layer was dissolved in 40% ethanol (60 ml) below 268 K. The mixture was kept in an ice-bath and 4-methylbenzyl chloride (26.5 ml, 0.2 mol) was added drop wise with vigorous stirring. The major product, which was white and sticky was filtered and left overnight to dry over anhydrous silica gel in a desiccator. Recrystallization to yield analytically pure S-4-methylbenzyldithiocarbazate was achieved from hot acetonitrile. Yield: 82%; M.pt: 160–161 °C.
S-4-Methylbenzyldithiocarbazate (2.12 g, 0.01 mol) was dissolved in hot acetonitrile (100 ml) and added to an equimolar solution of 5-methyl-pyridine-2-aldehyde (1.21 g, 0.01 mol) in ethanol (25 ml). The mixture was then heated on a water bath until the volume has been reduced by half. A yellow precipitate formed after standing at room temperature for 1 h and this was washed with ethanol. Yellow prisms were deposited from its acetonitrile solution within a week. Yield: 78%. M.pt: 112–113 °C. Anal. Found (calc'd for C17H19N3S2): C, 62.32 (61.97); H, 5.59 (5.81); N 12.80 (12.75).
Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the
in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H atom was refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).For the structure of the 4-methylpyridin-2-yl derivative, with an E configuration for the C═N bond, allowing for the formation of centrosymmetric {···HNCS}2 synthons in the crystal, see: Omar et al. (2014). For the synthesis, see: Ravoof et al. (2010).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. | |
Fig. 2. A view of the unit-cell contents in projection down the a axis. The tolyl-methyl-C—H···N(imine), pyridyl-C—H···π(tolyl) and π—π interactions are shown as orange, pink and orange dashed lines, respectively. |
C17H19N3S2 | F(000) = 348 |
Mr = 329.47 | Dx = 1.313 Mg m−3 |
Monoclinic, Pc | Cu Kα radiation, λ = 1.5418 Å |
a = 9.0073 (2) Å | Cell parameters from 12240 reflections |
b = 12.3856 (2) Å | θ = 4–71° |
c = 7.5553 (1) Å | µ = 2.88 mm−1 |
β = 98.620 (2)° | T = 100 K |
V = 833.35 (3) Å3 | Prism, yellow |
Z = 2 | 0.31 × 0.22 × 0.18 mm |
Agilent Xcalibur, Eos, Gemini diffractometer | 3195 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3191 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 16.1952 pixels mm-1 | θmax = 71.5°, θmin = 3.6° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −15→15 |
Tmin = 0.43, Tmax = 0.60 | l = −9→9 |
16118 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0663P)2 + 0.1105P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.28 e Å−3 |
3195 reflections | Δρmin = −0.30 e Å−3 |
205 parameters | Absolute structure: Flack x determined using 1558 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
3 restraints | Absolute structure parameter: −0.011 (13) |
C17H19N3S2 | V = 833.35 (3) Å3 |
Mr = 329.47 | Z = 2 |
Monoclinic, Pc | Cu Kα radiation |
a = 9.0073 (2) Å | µ = 2.88 mm−1 |
b = 12.3856 (2) Å | T = 100 K |
c = 7.5553 (1) Å | 0.31 × 0.22 × 0.18 mm |
β = 98.620 (2)° |
Agilent Xcalibur, Eos, Gemini diffractometer | 3195 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3191 reflections with I > 2σ(I) |
Tmin = 0.43, Tmax = 0.60 | Rint = 0.021 |
16118 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.081 | Δρmax = 0.28 e Å−3 |
S = 1.05 | Δρmin = −0.30 e Å−3 |
3195 reflections | Absolute structure: Flack x determined using 1558 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
205 parameters | Absolute structure parameter: −0.011 (13) |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.01004 (7) | 0.74703 (4) | 0.22309 (8) | 0.01770 (17) | |
S2 | 0.20197 (7) | 0.59121 (5) | 0.07598 (9) | 0.02369 (18) | |
N1 | 0.2382 (2) | 0.80053 (17) | 0.1071 (3) | 0.0165 (4) | |
H1N | 0.324 (2) | 0.788 (3) | 0.069 (4) | 0.020* | |
N2 | 0.1881 (2) | 0.90223 (17) | 0.1402 (3) | 0.0151 (4) | |
N3 | 0.4835 (2) | 0.88995 (18) | 0.0262 (3) | 0.0171 (4) | |
C1 | 0.1524 (3) | 0.7141 (2) | 0.1305 (3) | 0.0164 (5) | |
C2 | −0.0843 (3) | 0.6138 (2) | 0.2616 (4) | 0.0227 (6) | |
H2A | −0.1317 | 0.5817 | 0.1469 | 0.027* | |
H2B | −0.0025 | 0.5655 | 0.3160 | 0.027* | |
C3 | −0.1993 (3) | 0.6274 (2) | 0.3865 (4) | 0.0187 (5) | |
C4 | −0.1541 (3) | 0.6423 (2) | 0.5698 (4) | 0.0211 (5) | |
H4 | −0.0502 | 0.6481 | 0.6153 | 0.025* | |
C5 | −0.2590 (3) | 0.6487 (2) | 0.6864 (4) | 0.0232 (5) | |
H5 | −0.2259 | 0.6587 | 0.8107 | 0.028* | |
C6 | −0.4129 (3) | 0.6409 (2) | 0.6239 (4) | 0.0224 (6) | |
C6' | −0.5270 (4) | 0.6430 (2) | 0.7516 (4) | 0.0309 (7) | |
H6'1 | −0.5477 | 0.7180 | 0.7812 | 0.046* | |
H6'2 | −0.4872 | 0.6038 | 0.8612 | 0.046* | |
H6'3 | −0.6200 | 0.6085 | 0.6950 | 0.046* | |
C7 | −0.4574 (3) | 0.6281 (2) | 0.4406 (4) | 0.0239 (6) | |
H7 | −0.5613 | 0.6238 | 0.3946 | 0.029* | |
C8 | −0.3525 (3) | 0.6216 (2) | 0.3238 (4) | 0.0221 (5) | |
H8 | −0.3857 | 0.6130 | 0.1992 | 0.027* | |
C9' | 0.1975 (3) | 1.0925 (2) | 0.1434 (4) | 0.0174 (5) | |
H9'1 | 0.1047 | 1.0801 | 0.1937 | 0.026* | |
H9'2 | 0.1743 | 1.1322 | 0.0305 | 0.026* | |
H9'3 | 0.2675 | 1.1348 | 0.2282 | 0.026* | |
C9 | 0.2679 (3) | 0.9857 (2) | 0.1097 (3) | 0.0149 (5) | |
C10 | 0.4164 (3) | 0.9860 (2) | 0.0464 (3) | 0.0148 (5) | |
C11 | 0.6190 (3) | 0.8899 (2) | −0.0256 (3) | 0.0174 (5) | |
H11 | 0.6657 | 0.8221 | −0.0378 | 0.021* | |
C12' | 0.8495 (3) | 0.9734 (2) | −0.1194 (3) | 0.0198 (5) | |
H12A | 0.8776 | 1.0426 | −0.1679 | 0.030* | |
H12B | 0.8470 | 0.9174 | −0.2115 | 0.030* | |
H12C | 0.9233 | 0.9538 | −0.0156 | 0.030* | |
C12 | 0.6969 (3) | 0.9832 (2) | −0.0632 (3) | 0.0164 (5) | |
C13 | 0.6260 (3) | 1.0811 (2) | −0.0445 (3) | 0.0174 (5) | |
H13 | 0.6734 | 1.1468 | −0.0692 | 0.021* | |
C14 | 0.4852 (3) | 1.0830 (2) | 0.0107 (3) | 0.0166 (5) | |
H14 | 0.4363 | 1.1498 | 0.0239 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0175 (3) | 0.0118 (3) | 0.0255 (3) | −0.0019 (2) | 0.0087 (2) | −0.0006 (2) |
S2 | 0.0239 (3) | 0.0140 (3) | 0.0359 (4) | −0.0007 (3) | 0.0131 (3) | −0.0039 (3) |
N1 | 0.0152 (10) | 0.0128 (10) | 0.0220 (10) | −0.0006 (7) | 0.0043 (8) | 0.0006 (8) |
N2 | 0.0138 (10) | 0.0142 (11) | 0.0165 (9) | −0.0007 (7) | 0.0001 (8) | 0.0002 (7) |
N3 | 0.0147 (9) | 0.0160 (10) | 0.0198 (10) | −0.0023 (8) | 0.0008 (8) | −0.0003 (8) |
C1 | 0.0144 (11) | 0.0196 (13) | 0.0154 (11) | 0.0002 (10) | 0.0029 (9) | 0.0003 (10) |
C2 | 0.0276 (14) | 0.0112 (12) | 0.0326 (15) | −0.0066 (10) | 0.0151 (11) | −0.0013 (10) |
C3 | 0.0215 (12) | 0.0098 (11) | 0.0266 (13) | −0.0010 (10) | 0.0096 (10) | 0.0011 (9) |
C4 | 0.0215 (12) | 0.0131 (12) | 0.0285 (13) | 0.0016 (10) | 0.0031 (10) | 0.0021 (10) |
C5 | 0.0324 (14) | 0.0160 (13) | 0.0219 (12) | 0.0013 (10) | 0.0061 (10) | 0.0016 (10) |
C6 | 0.0276 (14) | 0.0090 (12) | 0.0342 (14) | −0.0017 (10) | 0.0162 (11) | 0.0007 (10) |
C6' | 0.0382 (16) | 0.0168 (13) | 0.0434 (17) | −0.0032 (12) | 0.0246 (13) | −0.0037 (12) |
C7 | 0.0196 (13) | 0.0149 (13) | 0.0376 (15) | −0.0032 (10) | 0.0057 (11) | −0.0035 (11) |
C8 | 0.0252 (13) | 0.0157 (13) | 0.0256 (13) | −0.0042 (10) | 0.0043 (10) | −0.0033 (10) |
C9' | 0.0166 (12) | 0.0156 (13) | 0.0196 (11) | 0.0005 (8) | 0.0012 (9) | −0.0007 (9) |
C9 | 0.0147 (11) | 0.0175 (12) | 0.0115 (10) | −0.0010 (9) | −0.0019 (8) | 0.0000 (8) |
C10 | 0.0150 (11) | 0.0167 (12) | 0.0115 (10) | −0.0015 (9) | −0.0021 (8) | −0.0002 (9) |
C11 | 0.0148 (11) | 0.0171 (12) | 0.0200 (12) | −0.0009 (9) | 0.0018 (9) | −0.0001 (9) |
C12' | 0.0145 (11) | 0.0229 (13) | 0.0218 (12) | −0.0027 (9) | 0.0023 (10) | 0.0025 (10) |
C12 | 0.0138 (12) | 0.0217 (13) | 0.0125 (10) | −0.0031 (9) | −0.0022 (9) | 0.0002 (9) |
C13 | 0.0171 (11) | 0.0176 (12) | 0.0166 (11) | −0.0040 (9) | −0.0005 (9) | 0.0022 (9) |
C14 | 0.0172 (11) | 0.0155 (12) | 0.0160 (12) | 0.0002 (9) | −0.0008 (9) | −0.0001 (9) |
S1—C1 | 1.762 (3) | C6'—H6'2 | 0.9800 |
S1—C2 | 1.820 (3) | C6'—H6'3 | 0.9800 |
S2—C1 | 1.655 (3) | C7—C8 | 1.389 (4) |
N1—C1 | 1.348 (3) | C7—H7 | 0.9500 |
N1—N2 | 1.374 (3) | C8—H8 | 0.9500 |
N1—H1N | 0.872 (14) | C9'—C9 | 1.505 (3) |
N2—C9 | 1.299 (3) | C9'—H9'1 | 0.9800 |
N3—C11 | 1.336 (3) | C9'—H9'2 | 0.9800 |
N3—C10 | 1.353 (3) | C9'—H9'3 | 0.9800 |
C2—C3 | 1.512 (4) | C9—C10 | 1.486 (3) |
C2—H2A | 0.9900 | C10—C14 | 1.397 (4) |
C2—H2B | 0.9900 | C11—C12 | 1.403 (4) |
C3—C8 | 1.391 (4) | C11—H11 | 0.9500 |
C3—C4 | 1.396 (4) | C12'—C12 | 1.503 (3) |
C4—C5 | 1.387 (4) | C12'—H12A | 0.9800 |
C4—H4 | 0.9500 | C12'—H12B | 0.9800 |
C5—C6 | 1.399 (4) | C12'—H12C | 0.9800 |
C5—H5 | 0.9500 | C12—C13 | 1.388 (4) |
C6—C7 | 1.392 (4) | C13—C14 | 1.394 (4) |
C6—C6' | 1.511 (3) | C13—H13 | 0.9500 |
C6'—H6'1 | 0.9800 | C14—H14 | 0.9500 |
C1—S1—C2 | 101.58 (12) | C6—C7—H7 | 119.4 |
C1—N1—N2 | 119.6 (2) | C7—C8—C3 | 121.0 (3) |
C1—N1—H1N | 117 (3) | C7—C8—H8 | 119.5 |
N2—N1—H1N | 123 (3) | C3—C8—H8 | 119.5 |
C9—N2—N1 | 119.5 (2) | C9—C9'—H9'1 | 109.5 |
C11—N3—C10 | 118.5 (2) | C9—C9'—H9'2 | 109.5 |
N1—C1—S2 | 121.07 (18) | H9'1—C9'—H9'2 | 109.5 |
N1—C1—S1 | 113.26 (19) | C9—C9'—H9'3 | 109.5 |
S2—C1—S1 | 125.66 (16) | H9'1—C9'—H9'3 | 109.5 |
C3—C2—S1 | 107.59 (18) | H9'2—C9'—H9'3 | 109.5 |
C3—C2—H2A | 110.2 | N2—C9—C10 | 127.3 (2) |
S1—C2—H2A | 110.2 | N2—C9—C9' | 114.3 (2) |
C3—C2—H2B | 110.2 | C10—C9—C9' | 118.4 (2) |
S1—C2—H2B | 110.2 | N3—C10—C14 | 121.0 (2) |
H2A—C2—H2B | 108.5 | N3—C10—C9 | 118.3 (2) |
C8—C3—C4 | 118.2 (2) | C14—C10—C9 | 120.7 (2) |
C8—C3—C2 | 121.2 (2) | N3—C11—C12 | 124.5 (2) |
C4—C3—C2 | 120.6 (2) | N3—C11—H11 | 117.8 |
C5—C4—C3 | 120.8 (2) | C12—C11—H11 | 117.8 |
C5—C4—H4 | 119.6 | C12—C12'—H12A | 109.5 |
C3—C4—H4 | 119.6 | C12—C12'—H12B | 109.5 |
C4—C5—C6 | 121.1 (2) | H12A—C12'—H12B | 109.5 |
C4—C5—H5 | 119.4 | C12—C12'—H12C | 109.5 |
C6—C5—H5 | 119.4 | H12A—C12'—H12C | 109.5 |
C7—C6—C5 | 117.8 (2) | H12B—C12'—H12C | 109.5 |
C7—C6—C6' | 121.0 (3) | C13—C12—C11 | 116.6 (2) |
C5—C6—C6' | 121.2 (3) | C13—C12—C12' | 123.6 (2) |
C6—C6'—H6'1 | 109.5 | C11—C12—C12' | 119.8 (2) |
C6—C6'—H6'2 | 109.5 | C12—C13—C14 | 119.9 (2) |
H6'1—C6'—H6'2 | 109.5 | C12—C13—H13 | 120.1 |
C6—C6'—H6'3 | 109.5 | C14—C13—H13 | 120.1 |
H6'1—C6'—H6'3 | 109.5 | C13—C14—C10 | 119.6 (2) |
H6'2—C6'—H6'3 | 109.5 | C13—C14—H14 | 120.2 |
C8—C7—C6 | 121.1 (2) | C10—C14—H14 | 120.2 |
C8—C7—H7 | 119.4 | ||
C1—N1—N2—C9 | −176.9 (2) | C2—C3—C8—C7 | 176.4 (3) |
N2—N1—C1—S2 | 174.81 (17) | N1—N2—C9—C10 | −2.4 (4) |
N2—N1—C1—S1 | −5.6 (3) | N1—N2—C9—C9' | 177.39 (19) |
C2—S1—C1—N1 | −173.23 (18) | C11—N3—C10—C14 | 1.3 (3) |
C2—S1—C1—S2 | 6.4 (2) | C11—N3—C10—C9 | −178.1 (2) |
C1—S1—C2—C3 | 164.66 (18) | N2—C9—C10—N3 | −4.0 (4) |
S1—C2—C3—C8 | 104.6 (2) | C9'—C9—C10—N3 | 176.2 (2) |
S1—C2—C3—C4 | −77.7 (3) | N2—C9—C10—C14 | 176.6 (2) |
C8—C3—C4—C5 | 1.4 (4) | C9'—C9—C10—C14 | −3.1 (3) |
C2—C3—C4—C5 | −176.4 (2) | C10—N3—C11—C12 | −0.9 (4) |
C3—C4—C5—C6 | −0.2 (4) | N3—C11—C12—C13 | −0.1 (4) |
C4—C5—C6—C7 | −1.0 (4) | N3—C11—C12—C12' | 179.6 (2) |
C4—C5—C6—C6' | 177.3 (3) | C11—C12—C13—C14 | 0.5 (3) |
C5—C6—C7—C8 | 1.1 (4) | C12'—C12—C13—C14 | −179.1 (2) |
C6'—C6—C7—C8 | −177.3 (3) | C12—C13—C14—C10 | −0.1 (3) |
C6—C7—C8—C3 | 0.1 (4) | N3—C10—C14—C13 | −0.9 (3) |
C4—C3—C8—C7 | −1.3 (4) | C9—C10—C14—C13 | 178.5 (2) |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N3 | 0.88 (2) | 1.98 (3) | 2.624 (3) | 130 (3) |
C12′—H12C···N2i | 0.98 | 2.58 | 3.483 (3) | 154 |
C13—H13···Cg1ii | 0.95 | 2.76 | 3.582 (3) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+2, z−1/2. |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N3 | 0.88 (2) | 1.98 (3) | 2.624 (3) | 130 (3) |
C12'—H12C···N2i | 0.98 | 2.58 | 3.483 (3) | 154 |
C13—H13···Cg1ii | 0.95 | 2.76 | 3.582 (3) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+2, z−1/2. |
Footnotes
1Additional correspondence author: thahira@upm.edu.my
Acknowledgements
This research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No: 06–01-04-SF810). SAO wishes to thank the UPM for the award of a Graduate Research Fellowship.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Omar, S. A., Ravoof, T. B. S. A., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119–126. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.