organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-{(Z)-[(2E)-3-(4-chloro­phen­yl)-1-phenyl­prop-2-en-1-yl­­idene]amino}-3-ethyl­thio­urea

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: thahira@upm.edu.my, edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 December 2015; accepted 8 December 2015; online 12 December 2015)

In the title thio­semicarbazone compound, C18H18ClN3S, the CN3S residue is almost planar (r.m.s. deviation = 0.0031 Å) and forms dihedral angles of 65.99 (7) and 34.60 (10)° with the phenyl and chloro­benzene rings, respectively; the dihedral angle between the aromatic rings is 85.13 (8)°. The conformation about the C=N bond is Z, and that about the C=C bonds is E. The imine N and ethyl N atoms are syn and are linked by an eth­yl–imine N—H⋯N hydrogen bond. This H atom also forms an inter­molecular hydrogen bond to the thione S atom, resulting in a supra­molecular helical chain propagating along the b axis. The chains are consolidated into a three-dimensional architecture by phenyl-C—H⋯Cl contacts and weak ππ inter­actions between centrosymmetrically related chloro­benzene rings [inter-centroid distance = 3.9127 (15) Å].

1. Related literature

For background to the coordination chemistry and applications of metal thio­semicarbazones, see: Dilworth & Hueting (2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). For the structure of a closely related thio­semicarbazone compound, 1-benzo­thio­phene-2-carbaldehyde 4-ethyl­thio­semicarbazone, with almost planar semicarbazone units (two mol­ecules comprise the asymmetric unit) and E conformations for the C=N bonds, see: Kayed et al. (2009[Kayed, S. F., Farina, Y. & Simpson, J. (2009). Acta Cryst. E65, o180-o181.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H18ClN3S

  • Mr = 343.86

  • Monoclinic, P 21 /c

  • a = 10.580 (1) Å

  • b = 12.0438 (9) Å

  • c = 13.9561 (10) Å

  • β = 90.196 (8)°

  • V = 1778.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.800, Tmax = 1.000

  • 11178 measured reflections

  • 4078 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.120

  • S = 1.00

  • 4078 reflections

  • 216 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.88 (2) 2.25 (2) 2.629 (3) 106 (2)
N1—H1N⋯S1i 0.88 (2) 2.84 (2) 3.693 (2) 165 (2)
C43—H43⋯Cl1ii 0.93 2.82 3.708 (3) 160
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Refinement top

Related literature top

For background to the coordination chemistry and applications of metal thiosemicarbazones, see: Dilworth & Hueting (2012). For the structure of a closely related thiosemicarbazone compound, 1-benzothiophene-2-carbaldehyde 4-ethylthiosemicarbazone, with almost planar semicarbazone units (two molecules comprise the asymmetric unit) and E conformations for the CN bonds, see: Kayed et al. (2009).

Experimental top

An ethanol solution (20 ml) of 4-chlorochalcone (0.243 g, 1 mmol) was slowly added to a solution of 4-ethyl-3-thiosemicarbazide (0.119 g, 1 mmol) in absolute ethanol (20 ml), while stirring and heating for about 20 mins. The yellow precipitate was filtered, washed with cold ethanol and dried in vacuo. Light brown prisms of the title compound were grown at room temperature from the slow evaporation of a solvent mixture of dimethylformamide and acetonitrile; M.pt: 154–156 °C.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H atom was refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

For background to the coordination chemistry and applications of metal thiosemicarbazones, see: Dilworth & Hueting (2012). For the structure of a closely related thiosemicarbazone compound, 1-benzothiophene-2-carbaldehyde 4-ethylthiosemicarbazone, with almost planar semicarbazone units (two molecules comprise the asymmetric unit) and E conformations for the CN bonds, see: Kayed et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the b axis and sustained by N—H···S hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. A view of the unit cell contents in projection down the a axis. The N—H···S (orange), C—H···Cl (blue) and ππ (purple) interactions are shown as dashed lines.
1-{(Z)-[(2E)-3-(4-Chlorophenyl)-1-phenylprop-2-en-1-ylidene]amino}-3-ethylthiourea top
Crystal data top
C18H18ClN3SF(000) = 720
Mr = 343.86Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.580 (1) ÅCell parameters from 2181 reflections
b = 12.0438 (9) Åθ = 2.9–27.5°
c = 13.9561 (10) ŵ = 0.33 mm1
β = 90.196 (8)°T = 293 K
V = 1778.3 (2) Å3Prism, light-brown
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4078 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1963 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1415
Tmin = 0.800, Tmax = 1.000l = 1818
11178 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.20 e Å3
4078 reflectionsΔρmin = 0.25 e Å3
216 parametersExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0044 (7)
Crystal data top
C18H18ClN3SV = 1778.3 (2) Å3
Mr = 343.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.580 (1) ŵ = 0.33 mm1
b = 12.0438 (9) ÅT = 293 K
c = 13.9561 (10) Å0.20 × 0.15 × 0.10 mm
β = 90.196 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4078 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1963 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.051
11178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
4078 reflectionsΔρmin = 0.25 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.05835 (7)0.02341 (6)0.20649 (5)0.0606 (2)
Cl10.48690 (8)0.72659 (6)0.71676 (5)0.0754 (3)
N11.0584 (2)0.19712 (18)0.23053 (16)0.0579 (6)
H1N1.025 (2)0.2566 (14)0.2562 (18)0.070*
N20.9246 (2)0.09776 (16)0.32430 (15)0.0543 (6)
H2N0.900 (2)0.0320 (11)0.3439 (17)0.065*
N30.88627 (18)0.19560 (15)0.36594 (14)0.0484 (5)
C11.0138 (2)0.0979 (2)0.25424 (18)0.0470 (6)
C21.1491 (2)0.2179 (2)0.1541 (2)0.0636 (8)
H2A1.20650.15530.14940.076*
H2B1.19860.28320.16990.076*
C31.0860 (3)0.2351 (4)0.0601 (2)0.1085 (13)
H3A1.03930.16960.04310.163*
H3B1.14850.24970.01210.163*
H3C1.02920.29710.06430.163*
C40.8004 (2)0.18918 (18)0.43172 (16)0.0420 (6)
C50.7641 (2)0.29357 (18)0.47552 (16)0.0443 (6)
H50.81010.35650.45920.053*
C60.6697 (2)0.30579 (18)0.53736 (16)0.0434 (6)
H60.62540.24190.55370.052*
C70.6281 (2)0.40943 (18)0.58244 (16)0.0409 (6)
C80.5030 (2)0.42061 (19)0.61122 (16)0.0463 (6)
H80.44770.36140.60260.056*
C90.4589 (3)0.5176 (2)0.65233 (16)0.0517 (7)
H90.37490.52400.67080.062*
C100.5415 (3)0.60409 (19)0.66531 (16)0.0504 (7)
C110.6661 (3)0.5955 (2)0.63902 (18)0.0576 (7)
H110.72090.65480.64890.069*
C120.7099 (3)0.49840 (19)0.59786 (18)0.0529 (7)
H120.79430.49250.58040.063*
C410.7411 (2)0.08309 (17)0.46264 (17)0.0391 (6)
C420.6659 (2)0.02282 (19)0.39972 (17)0.0446 (6)
H420.65250.04880.33770.054*
C430.6108 (2)0.07542 (19)0.42866 (19)0.0506 (7)
H430.56080.11560.38600.061*
C440.6294 (2)0.1139 (2)0.5200 (2)0.0550 (7)
H440.59160.17990.53940.066*
C450.7037 (2)0.0552 (2)0.58311 (19)0.0553 (7)
H450.71630.08170.64500.066*
C460.7597 (2)0.0428 (2)0.55490 (17)0.0491 (6)
H460.81010.08210.59780.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0614 (5)0.0544 (4)0.0661 (5)0.0084 (3)0.0204 (4)0.0080 (4)
Cl10.1222 (7)0.0502 (4)0.0539 (4)0.0289 (4)0.0068 (4)0.0074 (3)
N10.0567 (14)0.0503 (14)0.0670 (15)0.0007 (11)0.0263 (12)0.0014 (12)
N20.0638 (14)0.0380 (12)0.0614 (13)0.0005 (10)0.0292 (11)0.0016 (11)
N30.0531 (12)0.0375 (11)0.0548 (12)0.0017 (9)0.0176 (11)0.0023 (10)
C10.0433 (14)0.0470 (16)0.0506 (14)0.0010 (11)0.0098 (12)0.0017 (13)
C20.0500 (16)0.0699 (18)0.0710 (19)0.0065 (13)0.0207 (15)0.0061 (16)
C30.078 (2)0.172 (4)0.076 (2)0.021 (2)0.006 (2)0.031 (3)
C40.0426 (14)0.0386 (14)0.0450 (14)0.0014 (10)0.0090 (12)0.0001 (12)
C50.0482 (15)0.0349 (13)0.0500 (14)0.0011 (10)0.0094 (12)0.0001 (11)
C60.0465 (14)0.0378 (14)0.0459 (14)0.0015 (10)0.0062 (12)0.0017 (11)
C70.0491 (15)0.0368 (13)0.0368 (13)0.0022 (11)0.0066 (11)0.0014 (11)
C80.0537 (16)0.0411 (14)0.0442 (14)0.0000 (11)0.0115 (12)0.0051 (12)
C90.0611 (17)0.0494 (16)0.0448 (15)0.0155 (13)0.0141 (13)0.0075 (13)
C100.079 (2)0.0373 (14)0.0348 (13)0.0122 (13)0.0034 (13)0.0021 (12)
C110.0728 (19)0.0446 (16)0.0555 (16)0.0044 (13)0.0035 (15)0.0065 (14)
C120.0543 (17)0.0489 (16)0.0555 (16)0.0019 (12)0.0096 (13)0.0080 (13)
C410.0404 (13)0.0342 (13)0.0427 (14)0.0028 (10)0.0110 (11)0.0028 (11)
C420.0470 (15)0.0450 (14)0.0419 (13)0.0016 (11)0.0075 (12)0.0019 (12)
C430.0538 (16)0.0433 (14)0.0547 (17)0.0066 (12)0.0098 (13)0.0102 (13)
C440.0603 (17)0.0396 (14)0.0652 (18)0.0061 (12)0.0154 (15)0.0042 (14)
C450.0653 (18)0.0503 (16)0.0502 (15)0.0011 (13)0.0076 (14)0.0104 (14)
C460.0532 (16)0.0472 (15)0.0469 (15)0.0046 (12)0.0003 (12)0.0003 (13)
Geometric parameters (Å, º) top
S1—C11.674 (2)C7—C81.392 (3)
Cl1—C101.740 (2)C7—C121.393 (3)
N1—C11.327 (3)C8—C91.383 (3)
N1—C21.459 (3)C8—H80.9300
N1—H1N0.874 (10)C9—C101.372 (4)
N2—C11.361 (3)C9—H90.9300
N2—N31.376 (2)C10—C111.373 (4)
N2—H2N0.878 (10)C11—C121.384 (3)
N3—C41.296 (2)C11—H110.9300
C2—C31.484 (4)C12—H120.9300
C2—H2A0.9700C41—C421.388 (3)
C2—H2B0.9700C41—C461.389 (3)
C3—H3A0.9600C42—C431.380 (3)
C3—H3B0.9600C42—H420.9300
C3—H3C0.9600C43—C441.370 (3)
C4—C51.450 (3)C43—H430.9300
C4—C411.488 (3)C44—C451.375 (4)
C5—C61.330 (3)C44—H440.9300
C5—H50.9300C45—C461.379 (3)
C6—C71.466 (3)C45—H450.9300
C6—H60.9300C46—H460.9300
C1—N1—C2124.9 (2)C9—C8—C7121.6 (2)
C1—N1—H1N119.5 (17)C9—C8—H8119.2
C2—N1—H1N115.1 (17)C7—C8—H8119.2
C1—N2—N3120.56 (18)C10—C9—C8118.7 (2)
C1—N2—H2N115.5 (16)C10—C9—H9120.6
N3—N2—H2N123.6 (16)C8—C9—H9120.6
C4—N3—N2117.15 (18)C9—C10—C11121.3 (2)
N1—C1—N2115.3 (2)C9—C10—Cl1119.1 (2)
N1—C1—S1125.86 (17)C11—C10—Cl1119.6 (2)
N2—C1—S1118.80 (17)C10—C11—C12119.8 (2)
N1—C2—C3112.0 (2)C10—C11—H11120.1
N1—C2—H2A109.2C12—C11—H11120.1
C3—C2—H2A109.2C11—C12—C7120.4 (2)
N1—C2—H2B109.2C11—C12—H12119.8
C3—C2—H2B109.2C7—C12—H12119.8
H2A—C2—H2B107.9C42—C41—C46118.9 (2)
C2—C3—H3A109.5C42—C41—C4120.5 (2)
C2—C3—H3B109.5C46—C41—C4120.7 (2)
H3A—C3—H3B109.5C43—C42—C41120.3 (2)
C2—C3—H3C109.5C43—C42—H42119.8
H3A—C3—H3C109.5C41—C42—H42119.8
H3B—C3—H3C109.5C44—C43—C42120.2 (2)
N3—C4—C5115.73 (19)C44—C43—H43119.9
N3—C4—C41123.63 (19)C42—C43—H43119.9
C5—C4—C41120.64 (18)C43—C44—C45120.1 (2)
C6—C5—C4124.7 (2)C43—C44—H44119.9
C6—C5—H5117.6C45—C44—H44119.9
C4—C5—H5117.6C44—C45—C46120.2 (2)
C5—C6—C7126.8 (2)C44—C45—H45119.9
C5—C6—H6116.6C46—C45—H45119.9
C7—C6—H6116.6C45—C46—C41120.2 (2)
C8—C7—C12118.1 (2)C45—C46—H46119.9
C8—C7—C6119.6 (2)C41—C46—H46119.9
C12—C7—C6122.3 (2)
C1—N2—N3—C4179.6 (2)C9—C10—C11—C120.5 (4)
C2—N1—C1—N2176.5 (2)Cl1—C10—C11—C12179.8 (2)
C2—N1—C1—S13.9 (4)C10—C11—C12—C70.3 (4)
N3—N2—C1—N10.2 (4)C8—C7—C12—C111.2 (4)
N3—N2—C1—S1179.39 (19)C6—C7—C12—C11178.8 (2)
C1—N1—C2—C387.9 (4)N3—C4—C41—C4265.7 (3)
N2—N3—C4—C5178.8 (2)C5—C4—C41—C42114.7 (2)
N2—N3—C4—C410.9 (4)N3—C4—C41—C46114.5 (3)
N3—C4—C5—C6173.2 (2)C5—C4—C41—C4665.2 (3)
C41—C4—C5—C67.1 (4)C46—C41—C42—C430.0 (3)
C4—C5—C6—C7179.0 (2)C4—C41—C42—C43179.9 (2)
C5—C6—C7—C8152.8 (2)C41—C42—C43—C440.3 (3)
C5—C6—C7—C1227.2 (4)C42—C43—C44—C450.4 (4)
C12—C7—C8—C91.3 (3)C43—C44—C45—C460.1 (4)
C6—C7—C8—C9178.7 (2)C44—C45—C46—C410.2 (4)
C7—C8—C9—C100.4 (4)C42—C41—C46—C450.2 (3)
C8—C9—C10—C110.5 (4)C4—C41—C46—C45179.6 (2)
C8—C9—C10—Cl1179.87 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.88 (2)2.25 (2)2.629 (3)106 (2)
N1—H1N···S1i0.88 (2)2.84 (2)3.693 (2)165 (2)
C43—H43···Cl1ii0.932.823.708 (3)160
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.876 (19)2.25 (2)2.629 (3)106.1 (15)
N1—H1N···S1i0.876 (19)2.841 (18)3.693 (2)164.5 (19)
C43—H43···Cl1ii0.932.823.708 (3)160
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No. 06–01-04-SF810). MYT wishes to thank the UPM for the award of a Graduate Research Fellowship.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKayed, S. F., Farina, Y. & Simpson, J. (2009). Acta Cryst. E65, o180–o181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds