metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1,3-di­amino­propane-κ2N,N′)bis­­[2-(4-nitro­phen­yl)acetato-κO]zinc(II)

a1601 E Market St., Department of Chemistry, North Carolina, A & T State University, Greensboro, NC 27411, USA, and bUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688-0002 USA
*Correspondence e-mail: zassefa@ncat.edu

Edited by P. C. Healy, Griffith University, Australia (Received 9 October 2015; accepted 23 November 2015; online 6 December 2015)

In the structure of the title compound, [Zn(C8H6NO4)2(C3H10N2)2], the ZnII atom is located on a center of symmetry with one independent Zn—O distance of 2.199 (2) Å, and two Zn—N distances of 2.157 (2) and 2.144 (2) Å. The overall coordination geometry around the ZnII atom is octa­hedral. Several types of hydrogen-bonding inter­actions are evident. Both intra­molecular [2.959 (3) Å] and inter­molecular [3.118 (3) and 3.124 (3) Å inter­actions occur between the O atoms of the acetate group and the amino N atoms, and weak inter­molecular C—H—O inter­actions involving the nitro groups, leading to an extended chain of the molecules aligned along the ac plane.

1. Related literature

For related polymeric ZnII tetra­hedral structural studies, see: Sheng et al. (2014[Sheng, G. H., Cheng, X. S., You, Z. L. & Zhu, H. L. (2014). Bull. Chem. Soc. Eth. 28, 315-319.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C8H6NO4)2(C3H10N2)2]

  • Mr = 573.91

  • Monoclinic, P 21 /c

  • a = 14.3933 (18) Å

  • b = 11.0261 (14) Å

  • c = 8.2453 (11) Å

  • β = 105.119 (13)°

  • V = 1263.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 180 K

  • 0.24 × 0.21 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.952, Tmax = 1.000

  • 5782 measured reflections

  • 2243 independent reflections

  • 1858 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.06

  • 2243 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.90 2.14 2.959 (3) 150
N1—H1A⋯O2i 0.90 2.26 3.118 (3) 158
N2—H2D⋯O2ii 0.90 2.25 3.124 (3) 165
C10—H10A⋯O4iii 0.97 2.70 3.634 (3) 161
C7—H7⋯O3iv 0.93 2.46 3.209 (3) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z-1; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Chemical context top

The structure shows a weak N—H···O intra­molecular H-bonding inter­action involving a N atom of the di­amino­propane ligand and an O atom of the nitro­phenyl­acetic acid ligand. Additional inter­molecular N—H···O H-bonding inter­actions involving these same ligands are also present. Several weak inter­molecular H-bonding inter­actions of the C—H—O type also exist involving the nitro groups and neigbouring phenyl protons. The asymmetric unit consist of half of the molecule as the Zn atom is located at center of symmetry.

Structural commentary top

The structure shows a weak H-bond intra­molecular N—H···O inter­action involving the N atoms of the di­amino­propane ligand and the O atoms of nitro­phenyl­acetic acid ligand. Several weak inter­molecular H-bonding inter­actions of the C—H—O type also exist involving the nitro groups and neigbouring C—H protons. The asymmetric unit consist of half of the molecule as the Zn atom is located at center of symmetry.

Supra­molecular features top

H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for aromatic hydrogens, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.97 Å for secondary methyl hydrogens, and Uiso(H) = 1.2Ueq(N) and N—H distances of 0.90 Å for amino hydrogens.

Synthesis and crystallization top

Undergraduate student participants enrolled in an open inquiry laboratory (OIL) course conducted the synthesis and charcterization procedures. 0.2 mmol (27.2 mg) of anhydrous ZnCl2, 0.4 mmol (29.7 mg) of 1,3-di­amino­propane, and 0.4 mmol (72.5 mg) of 4- nitro­phenyl­acetic acid were weighed and added into a 25-mL round-bottom flask containing 10 mL of 1:1 CH3CN/H2O mixture. The flask was connected to a condenser and placed on a sand bath and refluxed for 1 hr. The flask was then removed from the sandbath and cooled to room temperature. After filtering the solution, the clear supernatant was collected, and covered with a parafilm for slow evaporation. Single crystals suitable for X-ray measurement were found after several days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related polymeric ZnII tetrahedral structural studies, see: Sheng et al. (2014).

Structure description top

The structure shows a weak N—H···O intra­molecular H-bonding inter­action involving a N atom of the di­amino­propane ligand and an O atom of the nitro­phenyl­acetic acid ligand. Additional inter­molecular N—H···O H-bonding inter­actions involving these same ligands are also present. Several weak inter­molecular H-bonding inter­actions of the C—H—O type also exist involving the nitro groups and neigbouring phenyl protons. The asymmetric unit consist of half of the molecule as the Zn atom is located at center of symmetry.

The structure shows a weak H-bond intra­molecular N—H···O inter­action involving the N atoms of the di­amino­propane ligand and the O atoms of nitro­phenyl­acetic acid ligand. Several weak inter­molecular H-bonding inter­actions of the C—H—O type also exist involving the nitro groups and neigbouring C—H protons. The asymmetric unit consist of half of the molecule as the Zn atom is located at center of symmetry.

H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for aromatic hydrogens, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.97 Å for secondary methyl hydrogens, and Uiso(H) = 1.2Ueq(N) and N—H distances of 0.90 Å for amino hydrogens.

For related polymeric ZnII tetrahedral structural studies, see: Sheng et al. (2014).

Synthesis and crystallization top

Undergraduate student participants enrolled in an open inquiry laboratory (OIL) course conducted the synthesis and charcterization procedures. 0.2 mmol (27.2 mg) of anhydrous ZnCl2, 0.4 mmol (29.7 mg) of 1,3-di­amino­propane, and 0.4 mmol (72.5 mg) of 4- nitro­phenyl­acetic acid were weighed and added into a 25-mL round-bottom flask containing 10 mL of 1:1 CH3CN/H2O mixture. The flask was connected to a condenser and placed on a sand bath and refluxed for 1 hr. The flask was then removed from the sandbath and cooled to room temperature. After filtering the solution, the clear supernatant was collected, and covered with a parafilm for slow evaporation. Single crystals suitable for X-ray measurement were found after several days.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: Olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid diagram of the title compound.
[Figure 2] Fig. 2. A packing diagram of the title compound.
Bis(1,3-diaminopropane-κ2N,N')bis[2-(4-nitrophenyl)acetato-κO]zinc(II) top
Crystal data top
[Zn(C8H6NO4)2(C3H10N2)2]F(000) = 600
Mr = 573.91Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3933 (18) ÅCell parameters from 2201 reflections
b = 11.0261 (14) Åθ = 3.2–27.2°
c = 8.2453 (11) ŵ = 1.03 mm1
β = 105.119 (13)°T = 180 K
V = 1263.3 (3) Å3, colourless
Z = 20.24 × 0.21 × 0.08 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
2243 independent reflections
Radiation source: Enhance (Mo) X-ray Source1858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0514 pixels mm-1θmax = 25.1°, θmin = 2.9°
ω scansh = 1617
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1312
Tmin = 0.952, Tmax = 1.000l = 99
5782 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.7294P]
where P = (Fo2 + 2Fc2)/3
2243 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C8H6NO4)2(C3H10N2)2]V = 1263.3 (3) Å3
Mr = 573.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.3933 (18) ŵ = 1.03 mm1
b = 11.0261 (14) ÅT = 180 K
c = 8.2453 (11) Å0.24 × 0.21 × 0.08 mm
β = 105.119 (13)°
Data collection top
Agilent Xcalibur, Eos
diffractometer
2243 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1858 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 1.000Rint = 0.027
5782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2243 reflectionsΔρmin = 0.34 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50001.00000.01900 (13)
N31.03741 (14)0.5615 (2)1.3353 (2)0.0256 (5)
O31.06699 (12)0.46346 (16)1.3979 (2)0.0292 (4)
O20.57083 (13)0.64366 (17)0.6651 (2)0.0351 (5)
C10.63039 (17)0.5747 (2)0.7576 (3)0.0205 (6)
C40.84282 (17)0.4574 (2)0.9699 (3)0.0240 (6)
H40.81480.38510.92350.029*
C30.81098 (16)0.5666 (2)0.8894 (3)0.0197 (5)
O10.61567 (11)0.50684 (15)0.8709 (2)0.0243 (4)
O41.07279 (15)0.65867 (17)1.3915 (2)0.0482 (6)
C60.95606 (16)0.5630 (2)1.1840 (3)0.0196 (5)
C80.85334 (17)0.6733 (2)0.9612 (3)0.0244 (6)
H80.83230.74680.90940.029*
C20.73151 (16)0.5702 (2)0.7286 (3)0.0240 (6)
H2A0.73640.49890.66240.029*
H2B0.74040.64090.66420.029*
C50.91535 (17)0.4548 (2)1.1176 (3)0.0220 (6)
H50.93620.38171.17100.026*
C70.92621 (18)0.6726 (2)1.1082 (3)0.0258 (6)
H70.95450.74471.15510.031*
N20.40460 (13)0.42319 (18)0.7777 (2)0.0230 (5)
H2C0.43130.43340.69130.028*
H2D0.40020.34290.79370.028*
N10.45008 (13)0.67537 (17)0.9027 (2)0.0210 (5)
H1A0.46980.72950.98630.025*
H1B0.48000.69410.82270.025*
C110.30623 (16)0.4742 (2)0.7291 (3)0.0222 (6)
H11A0.27670.46410.82140.027*
H11B0.26790.42960.63340.027*
C90.34572 (17)0.6935 (2)0.8304 (3)0.0273 (6)
H9A0.33400.77650.79180.033*
H9B0.31220.68000.91680.033*
C100.30620 (18)0.6076 (2)0.6844 (3)0.0277 (6)
H10A0.24060.63160.63010.033*
H10B0.34370.61780.60320.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0173 (2)0.0156 (2)0.0208 (2)0.00001 (18)0.00090 (15)0.00156 (17)
N30.0224 (11)0.0271 (13)0.0249 (12)0.0014 (11)0.0017 (9)0.0007 (10)
O30.0300 (10)0.0269 (10)0.0277 (10)0.0089 (9)0.0020 (8)0.0051 (8)
O20.0287 (10)0.0400 (12)0.0358 (11)0.0111 (10)0.0069 (8)0.0188 (9)
C10.0219 (12)0.0209 (14)0.0165 (12)0.0026 (12)0.0010 (10)0.0045 (11)
C40.0234 (13)0.0198 (14)0.0287 (14)0.0019 (12)0.0068 (11)0.0044 (11)
C30.0165 (12)0.0248 (14)0.0204 (13)0.0009 (11)0.0094 (10)0.0001 (11)
O10.0208 (9)0.0283 (10)0.0247 (9)0.0035 (8)0.0074 (7)0.0097 (8)
O40.0500 (13)0.0269 (11)0.0486 (12)0.0097 (11)0.0210 (10)0.0022 (9)
C60.0162 (12)0.0217 (14)0.0204 (13)0.0009 (11)0.0038 (10)0.0010 (11)
C80.0264 (13)0.0195 (14)0.0259 (14)0.0061 (12)0.0043 (11)0.0046 (11)
C20.0225 (13)0.0310 (15)0.0190 (13)0.0002 (12)0.0061 (10)0.0012 (11)
C50.0223 (13)0.0174 (13)0.0263 (14)0.0013 (11)0.0064 (11)0.0027 (11)
C70.0283 (14)0.0186 (13)0.0285 (14)0.0025 (12)0.0039 (11)0.0022 (11)
N20.0236 (11)0.0223 (12)0.0224 (11)0.0005 (10)0.0047 (9)0.0013 (9)
N10.0235 (11)0.0194 (11)0.0182 (10)0.0007 (10)0.0020 (8)0.0002 (9)
C110.0203 (12)0.0263 (15)0.0167 (12)0.0049 (11)0.0012 (10)0.0007 (10)
C90.0245 (14)0.0204 (14)0.0335 (15)0.0062 (12)0.0011 (11)0.0008 (11)
C100.0217 (13)0.0290 (15)0.0262 (14)0.0012 (12)0.0047 (11)0.0050 (11)
Geometric parameters (Å, º) top
Zn1—O12.1989 (16)C8—C71.381 (3)
Zn1—O1i2.1989 (16)C2—H2A0.9700
Zn1—N22.1565 (18)C2—H2B0.9700
Zn1—N2i2.1565 (18)C5—H50.9300
Zn1—N1i2.1444 (19)C7—H70.9300
Zn1—N12.1444 (19)N2—H2C0.9000
N3—O31.226 (3)N2—H2D0.9000
N3—O41.224 (3)N2—C111.478 (3)
N3—C61.472 (3)N1—H1A0.9000
O2—C11.246 (3)N1—H1B0.9000
C1—O11.257 (3)N1—C91.478 (3)
C1—C21.536 (3)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C4—C31.394 (3)C11—C101.517 (3)
C4—C51.382 (3)C9—H9A0.9700
C3—C81.384 (3)C9—H9B0.9700
C3—C21.509 (3)C9—C101.520 (3)
C6—C51.378 (3)C10—H10A0.9700
C6—C71.377 (3)C10—H10B0.9700
C8—H80.9300
O1i—Zn1—O1180.00 (9)C3—C2—H2B108.9
N2—Zn1—O1i90.20 (7)H2A—C2—H2B107.7
N2i—Zn1—O190.20 (7)C4—C5—H5120.8
N2—Zn1—O189.80 (7)C6—C5—C4118.5 (2)
N2i—Zn1—O1i89.80 (7)C6—C5—H5120.8
N2i—Zn1—N2180.0C6—C7—C8118.6 (2)
N1i—Zn1—O189.43 (7)C6—C7—H7120.7
N1—Zn1—O190.57 (7)C8—C7—H7120.7
N1—Zn1—O1i89.43 (7)Zn1—N2—H2C108.4
N1i—Zn1—O1i90.57 (7)Zn1—N2—H2D108.4
N1—Zn1—N287.65 (7)H2C—N2—H2D107.4
N1i—Zn1—N2i87.65 (7)C11—N2—Zn1115.69 (14)
N1i—Zn1—N292.35 (7)C11—N2—H2C108.4
N1—Zn1—N2i92.35 (7)C11—N2—H2D108.4
N1i—Zn1—N1180.0Zn1—N1—H1A107.7
O3—N3—C6118.6 (2)Zn1—N1—H1B107.7
O4—N3—O3123.2 (2)H1A—N1—H1B107.1
O4—N3—C6118.2 (2)C9—N1—Zn1118.60 (15)
O2—C1—O1126.5 (2)C9—N1—H1A107.7
O2—C1—C2116.9 (2)C9—N1—H1B107.7
O1—C1—C2116.5 (2)N2—C11—H11A109.2
C3—C4—H4119.4N2—C11—H11B109.2
C5—C4—H4119.4N2—C11—C10112.0 (2)
C5—C4—C3121.1 (2)H11A—C11—H11B107.9
C4—C3—C2121.4 (2)C10—C11—H11A109.2
C8—C3—C4118.5 (2)C10—C11—H11B109.2
C8—C3—C2120.1 (2)N1—C9—H9A109.3
C1—O1—Zn1132.51 (15)N1—C9—H9B109.3
C5—C6—N3119.3 (2)N1—C9—C10111.5 (2)
C7—C6—N3118.6 (2)H9A—C9—H9B108.0
C7—C6—C5122.0 (2)C10—C9—H9A109.3
C3—C8—H8119.3C10—C9—H9B109.3
C7—C8—C3121.3 (2)C11—C10—C9115.8 (2)
C7—C8—H8119.3C11—C10—H10A108.3
C1—C2—H2A108.9C11—C10—H10B108.3
C1—C2—H2B108.9C9—C10—H10A108.3
C3—C2—C1113.32 (19)C9—C10—H10B108.3
C3—C2—H2A108.9H10A—C10—H10B107.4
Zn1—N2—C11—C1063.2 (2)O4—N3—C6—C72.9 (3)
Zn1—N1—C9—C1059.0 (2)C8—C3—C2—C192.6 (3)
N3—C6—C5—C4176.2 (2)C2—C1—O1—Zn1166.11 (15)
N3—C6—C7—C8176.5 (2)C2—C3—C8—C7180.0 (2)
O3—N3—C6—C50.2 (3)C5—C4—C3—C80.3 (4)
O3—N3—C6—C7176.5 (2)C5—C4—C3—C2179.7 (2)
O2—C1—O1—Zn115.1 (4)C5—C6—C7—C80.1 (4)
O2—C1—C2—C3138.9 (2)C7—C6—C5—C40.4 (4)
C4—C3—C8—C70.7 (4)N2—Zn1—O1—C174.1 (2)
C4—C3—C2—C186.7 (3)N2i—Zn1—O1—C1105.9 (2)
C3—C4—C5—C60.2 (4)N2i—Zn1—N1—C9135.43 (17)
C3—C8—C7—C60.4 (4)N2—Zn1—N1—C944.58 (17)
O1i—Zn1—N2—C1143.83 (16)N2—C11—C10—C970.8 (3)
O1—Zn1—N2—C11136.17 (16)N1i—Zn1—O1—C1166.4 (2)
O1i—Zn1—N1—C945.65 (17)N1—Zn1—O1—C113.6 (2)
O1—Zn1—N1—C9134.35 (17)N1i—Zn1—N2—C11134.41 (16)
O1—C1—C2—C342.2 (3)N1—Zn1—N2—C1145.59 (16)
O4—N3—C6—C5179.6 (2)N1—C9—C10—C1167.2 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.902.142.959 (3)150
N1—H1A···O2ii0.902.263.118 (3)158
N2—H2D···O2iii0.902.253.124 (3)165
C10—H10A···O4iv0.972.703.634 (3)161
C7—H7···O3v0.932.463.209 (3)138
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z1; (v) x+2, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.902.142.959 (3)150.3
N1—H1A···O2i0.902.263.118 (3)158.3
N2—H2D···O2ii0.902.253.124 (3)165.4
C10—H10A···O4iii0.972.703.634 (3)160.5
C7—H7···O3iv0.932.463.209 (3)138.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x1, y, z1; (iv) x+2, y+1/2, z+5/2.
 

Acknowledgements

The Innovation Venture grant provided by the College of Arts and Sciences for curriculum development at NCAT is kindly acknowledged (ZA). The authors also acknowledge support from the National Science Foundation, CHE-0959406 (ZA) and CHE-0846680 (RES).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, G. H., Cheng, X. S., You, Z. L. & Zhu, H. L. (2014). Bull. Chem. Soc. Eth. 28, 315–319.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds