organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-formyl-2-nitro­phenyl 4-chloro-2-nitro­benzoate

aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

Edited by P. C. Healy, Griffith University, Australia (Received 22 October 2015; accepted 22 October 2015; online 14 November 2015)

In the title compound, C14H7ClN2O7, the central ester moiety is essentially planar, with an r.m.s. deviation of 0.0113 Å. The ester group is twisted away from the chloro- and formyl-substituted rings by 84.60 (9) and 88.55 (9)°, respectively. The crystal packing shows inter­molecular C—H⋯O inter­actions. These inter­actions generate R22(20) and R44(22) edge-fused rings parallel to (20-2).

1. Related literature

For related structures, see: Moreno-Fuquen et al. (2013[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o793.], 2014[Moreno-Fuquen, R., Hernandez, G. & Kennedy, A. R. (2014). Acta Cryst. E70, o268.]). For hydrogen-bond details, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H7ClN2O7

  • Mr = 350.67

  • Triclinic [P \overline 1]

  • a = 7.7366 (2) Å

  • b = 7.9480 (2) Å

  • c = 12.6539 (5) Å

  • α = 90.0655 (11)°

  • β = 100.3204 (11)°

  • γ = 104.0633 (12)°

  • V = 741.75 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.76 × 0.13 × 0.06 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 5322 measured reflections

  • 3018 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.194

  • S = 1.03

  • 3018 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.44 3.289 (3) 151
C5—H5⋯O3ii 0.93 2.42 3.212 (4) 143
C12—H12⋯O6iii 0.93 2.58 3.317 (3) 137
C12—H12⋯O1iv 0.93 2.68 3.476 (3) 145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound 4-Formyl-2-nitrophenyl 4-chloro-2-nitrobenzoate (FClNB) (I), is part of a series of studies on the structural properties of the formyl nitro aryl benzoates developed by our research group. Of the many formyl aryl derivative systems studied in our group, can be highlighted the 4-formyl-2-nitrophenyl 4-bromo benzoate (FBrB) (Moreno-Fuquen et al., 2013) and 4-Formyl-2-nitrophenyl benzoate (FB) (Moreno-Fuquen et al., 2014) such as those closest to (I). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of central ester segment show marked similarity with (FBrB) and (FB). The central ester moiety, C1-C7(O1)-O2-C8, is essentially planar with a r.m.s deviation of fitted atoms of 0.0113 Å. The ester group is twisted away from the chloro and formyl rings by 84.60 (9)° and 88.55 (9)°, respectively.The nitro groups form dihedral angles with the chloro and formyl rings to which it is attached of 11.6 (2)% and 35.03 (8)°. The nitro groups of different rings are anti to each other. Comparing (I) with the two aforementioned similar structures, reveals that significant differences in bond lengths and bond angles are not observed. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C-H···O intermolecular interactions. The C3-H3···O5i, C5-H5···O3ii and C12-H12···O6iii hydrogen bond interactions are responsible for crystal growth parallel to (2 0 \-2) (see Fig 2). The C3 atom at (x,y,z) acts as hydrogen bond donor to formyl O5 atom at (i= x+1,+y,+z+1), the C5 atom acts as hydrogen bond donor to O3 atom of the nitro group at (ii= x,+y+1,+z) and the C12 atom acts as hydrogen bond donor to O6 atom of the nitro group at (iii= x,+y-1,+z). These interactions generate R22(20) and R44(22) edge-fused rings (see Table 1, Nardelli, 1995). Complement crystal growth, C12-H12···O1 interactions, wherein molecules running parallel to (2 0 2), intertwine with other molecules, forming dimers along [100] (see Fig. 3).

Related literature top

For related structures, see: Moreno-Fuquen et al. (2013, 2014). For hydrogen-bond details, see: Nardelli (1995).

Experimental top

The title molecule was obtained through a two-step reaction: 4-Chloro-2-nitrobenzoic acid (0.200 g, 0.992 mmol) was refluxed with thionyl chloride (5 mL) in acetonitrile for an hour. Then, the thionyl chloride was distilled to purify the 4-chloro-2-nitro benzoyl chloride obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and an equimolar solution of 4-hydroxy-3-nitrobenzaldehyde (0.166 g, 0.992 mmol) in acetonitrile was dropped inside it with 0.03 mL of pyridine. The reaction mixture was taken to room temperature with constant stirring for about an hour. A shiny yellow solid was obtained after leaving the solvent to evaporate. Yellow crystals; m.p 417 (1) K.

Refinement top

All H-atoms were located from difference maps and were positioned geometrically [C—H = 0.93 Å for aromatic and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom. Formyl H141 atom was found from fourier difference maps and its coordinates refined freely.

Structure description top

The title compound 4-Formyl-2-nitrophenyl 4-chloro-2-nitrobenzoate (FClNB) (I), is part of a series of studies on the structural properties of the formyl nitro aryl benzoates developed by our research group. Of the many formyl aryl derivative systems studied in our group, can be highlighted the 4-formyl-2-nitrophenyl 4-bromo benzoate (FBrB) (Moreno-Fuquen et al., 2013) and 4-Formyl-2-nitrophenyl benzoate (FB) (Moreno-Fuquen et al., 2014) such as those closest to (I). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of central ester segment show marked similarity with (FBrB) and (FB). The central ester moiety, C1-C7(O1)-O2-C8, is essentially planar with a r.m.s deviation of fitted atoms of 0.0113 Å. The ester group is twisted away from the chloro and formyl rings by 84.60 (9)° and 88.55 (9)°, respectively.The nitro groups form dihedral angles with the chloro and formyl rings to which it is attached of 11.6 (2)% and 35.03 (8)°. The nitro groups of different rings are anti to each other. Comparing (I) with the two aforementioned similar structures, reveals that significant differences in bond lengths and bond angles are not observed. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C-H···O intermolecular interactions. The C3-H3···O5i, C5-H5···O3ii and C12-H12···O6iii hydrogen bond interactions are responsible for crystal growth parallel to (2 0 \-2) (see Fig 2). The C3 atom at (x,y,z) acts as hydrogen bond donor to formyl O5 atom at (i= x+1,+y,+z+1), the C5 atom acts as hydrogen bond donor to O3 atom of the nitro group at (ii= x,+y+1,+z) and the C12 atom acts as hydrogen bond donor to O6 atom of the nitro group at (iii= x,+y-1,+z). These interactions generate R22(20) and R44(22) edge-fused rings (see Table 1, Nardelli, 1995). Complement crystal growth, C12-H12···O1 interactions, wherein molecules running parallel to (2 0 2), intertwine with other molecules, forming dimers along [100] (see Fig. 3).

For related structures, see: Moreno-Fuquen et al. (2013, 2014). For hydrogen-bond details, see: Nardelli (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(20) and R44(22) edge-fused rings parallel to (202). [Symmetry codes: (i) x+1,+y,+z+1; (ii) x,+y+1,+z; (iii) x,+y-1,+z ].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of dimers along [100]. [Symmetry codes: (iv) -x+1,-y+1,-z].
4-Formyl-2-nitrophenyl 4-chloro-2-nitrobenzoate top
Crystal data top
C14H7ClN2O7F(000) = 356
Mr = 350.67Dx = 1.570 Mg m3
Triclinic, P1Melting point: 417(1) K
a = 7.7366 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9480 (2) ÅCell parameters from 4404 reflections
c = 12.6539 (5) Åθ = 2.9–26.4°
α = 90.0655 (11)°µ = 0.30 mm1
β = 100.3204 (11)°T = 295 K
γ = 104.0633 (12)°Needle, colourless
V = 741.75 (4) Å30.76 × 0.13 × 0.06 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
CCD rotation images, thick slices scansh = 99
5322 measured reflectionsk = 98
3018 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1103P)2 + 0.1814P]
where P = (Fo2 + 2Fc2)/3
3018 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H7ClN2O7γ = 104.0633 (12)°
Mr = 350.67V = 741.75 (4) Å3
Triclinic, P1Z = 2
a = 7.7366 (2) ÅMo Kα radiation
b = 7.9480 (2) ŵ = 0.30 mm1
c = 12.6539 (5) ÅT = 295 K
α = 90.0655 (11)°0.76 × 0.13 × 0.06 mm
β = 100.3204 (11)°
Data collection top
Nonius KappaCCD
diffractometer
2177 reflections with I > 2σ(I)
5322 measured reflectionsRint = 0.046
3018 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.59 e Å3
3018 reflectionsΔρmin = 0.37 e Å3
221 parameters
Special details top

Experimental. IR spectra was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm-1, 3449 and 3090 (aromatic C-H); 1767 (ester, C=O); 1216 (ester C-O); 1040 (ester C8-O6); 1706 (benzaldehyde C=O); 1539, 1349 (nitro-NO2 aryl ring); 1487, 1277 (nitro-NO2 acyl ring); 1090 (C=C): 754 (C-Cl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.36368 (11)1.17195 (11)0.56085 (6)0.0863 (3)
O20.8864 (2)0.8852 (2)0.07551 (13)0.0561 (4)
O60.7439 (2)1.2200 (2)0.13342 (17)0.0714 (5)
O10.6563 (2)0.8349 (3)0.16669 (15)0.0732 (6)
N20.7314 (3)1.1215 (3)0.06000 (19)0.0578 (5)
C31.1840 (4)0.9146 (3)0.4150 (2)0.0606 (6)
H31.24870.84440.45510.073*
C100.5786 (3)0.8747 (3)0.18505 (19)0.0531 (5)
H100.53110.95050.23070.064*
O40.9084 (3)0.5985 (2)0.22127 (17)0.0810 (6)
C90.6900 (3)0.9348 (3)0.08815 (18)0.0482 (5)
C21.0593 (3)0.8503 (3)0.3237 (2)0.0555 (6)
C10.9590 (3)0.9493 (3)0.26146 (18)0.0526 (6)
C130.7251 (4)0.6489 (3)0.0490 (2)0.0625 (6)
H130.77550.57360.00440.075*
C110.5383 (3)0.6984 (3)0.21338 (19)0.0566 (6)
C80.7624 (3)0.8225 (3)0.01961 (19)0.0512 (5)
N11.0326 (4)0.6653 (3)0.2922 (2)0.0769 (7)
C41.2098 (3)1.0881 (3)0.4452 (2)0.0593 (6)
C120.6122 (4)0.5878 (3)0.1456 (2)0.0649 (7)
H120.58530.47030.16540.078*
C60.9911 (4)1.1222 (3)0.2933 (2)0.0657 (7)
H60.92851.19350.25270.079*
C51.1161 (4)1.1901 (3)0.3853 (2)0.0686 (7)
H51.13591.30650.40620.082*
O70.7490 (3)1.1674 (3)0.03363 (18)0.0876 (7)
C70.8143 (3)0.8800 (3)0.1663 (2)0.0557 (6)
O50.3385 (4)0.7111 (4)0.37667 (18)0.1035 (8)
C140.4168 (4)0.6297 (5)0.3168 (3)0.0772 (8)
O31.1442 (5)0.5914 (3)0.3367 (3)0.1369 (13)
H1410.410 (5)0.511 (5)0.334 (3)0.108 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0856 (6)0.0964 (6)0.0681 (5)0.0142 (4)0.0024 (4)0.0178 (4)
O20.0450 (8)0.0656 (10)0.0572 (10)0.0139 (7)0.0080 (7)0.0066 (7)
O60.0663 (11)0.0533 (10)0.0999 (14)0.0223 (8)0.0190 (10)0.0204 (10)
O10.0483 (10)0.0982 (14)0.0721 (12)0.0133 (9)0.0148 (8)0.0026 (10)
N20.0483 (10)0.0498 (11)0.0785 (14)0.0166 (8)0.0136 (9)0.0053 (10)
C30.0641 (14)0.0626 (15)0.0569 (14)0.0214 (12)0.0082 (11)0.0086 (11)
C100.0494 (12)0.0564 (13)0.0582 (13)0.0197 (10)0.0132 (10)0.0118 (10)
O40.0919 (14)0.0577 (11)0.0816 (14)0.0053 (10)0.0037 (11)0.0034 (10)
C90.0442 (11)0.0452 (11)0.0592 (13)0.0149 (9)0.0149 (10)0.0058 (9)
C20.0608 (13)0.0485 (12)0.0578 (13)0.0155 (10)0.0104 (11)0.0047 (10)
C10.0491 (12)0.0541 (13)0.0566 (13)0.0159 (10)0.0106 (10)0.0060 (10)
C130.0693 (15)0.0505 (13)0.0694 (16)0.0229 (11)0.0062 (12)0.0101 (11)
C110.0574 (13)0.0560 (14)0.0584 (14)0.0161 (11)0.0124 (11)0.0032 (10)
C80.0449 (11)0.0550 (13)0.0552 (13)0.0151 (10)0.0091 (9)0.0070 (10)
N10.0989 (18)0.0537 (13)0.0752 (16)0.0240 (13)0.0014 (14)0.0101 (11)
C40.0607 (14)0.0613 (14)0.0554 (13)0.0121 (11)0.0139 (11)0.0029 (11)
C120.0722 (16)0.0493 (13)0.0728 (16)0.0169 (12)0.0101 (13)0.0017 (12)
C60.0697 (15)0.0599 (15)0.0719 (17)0.0282 (12)0.0078 (13)0.0054 (12)
C50.0775 (17)0.0524 (14)0.0781 (17)0.0197 (12)0.0149 (14)0.0040 (12)
O70.1177 (18)0.0639 (12)0.0821 (14)0.0263 (11)0.0157 (13)0.0101 (10)
C70.0505 (13)0.0568 (13)0.0626 (14)0.0177 (10)0.0112 (11)0.0081 (10)
O50.1107 (18)0.121 (2)0.0679 (14)0.0290 (16)0.0113 (13)0.0103 (13)
C140.0740 (18)0.080 (2)0.0723 (19)0.0134 (16)0.0074 (15)0.0048 (16)
O30.186 (3)0.0732 (15)0.137 (2)0.0626 (18)0.048 (2)0.0010 (15)
Geometric parameters (Å, º) top
Cl1—C41.730 (3)C2—N11.478 (3)
O2—C71.360 (3)C1—C61.382 (3)
O2—C81.404 (3)C1—C71.491 (3)
O6—N21.217 (3)C13—C81.376 (3)
O1—C71.189 (3)C13—C121.379 (4)
N2—O71.213 (3)C13—H130.9300
N2—C91.469 (3)C11—C121.380 (3)
C3—C21.373 (3)C11—C141.484 (4)
C3—C41.388 (4)N1—O31.216 (3)
C3—H30.9300C4—C51.359 (4)
C10—C91.377 (3)C12—H120.9300
C10—C111.391 (3)C6—C51.387 (4)
C10—H100.9300C6—H60.9300
O4—N11.205 (3)C5—H50.9300
C9—C81.390 (3)O5—C141.177 (4)
C2—C11.386 (3)C14—H1410.95 (4)
C7—O2—C8115.60 (17)C13—C8—C9120.0 (2)
O7—N2—O6124.5 (2)C13—C8—O2118.7 (2)
O7—N2—C9118.5 (2)C9—C8—O2121.1 (2)
O6—N2—C9117.1 (2)O4—N1—O3123.7 (3)
C2—C3—C4117.5 (2)O4—N1—C2119.0 (2)
C2—C3—H3121.2O3—N1—C2117.2 (3)
C4—C3—H3121.2C5—C4—C3120.8 (2)
C9—C10—C11118.8 (2)C5—C4—Cl1120.7 (2)
C9—C10—H10120.6C3—C4—Cl1118.6 (2)
C11—C10—H10120.6C13—C12—C11121.0 (2)
C10—C9—C8121.0 (2)C13—C12—H12119.5
C10—C9—N2117.9 (2)C11—C12—H12119.5
C8—C9—N2121.1 (2)C1—C6—C5120.5 (2)
C3—C2—C1123.4 (2)C1—C6—H6119.8
C3—C2—N1117.2 (2)C5—C6—H6119.8
C1—C2—N1119.4 (2)C4—C5—C6120.6 (2)
C6—C1—C2117.2 (2)C4—C5—H5119.7
C6—C1—C7118.3 (2)C6—C5—H5119.7
C2—C1—C7124.5 (2)O1—C7—O2123.6 (2)
C8—C13—C12119.2 (2)O1—C7—C1125.7 (2)
C8—C13—H13120.4O2—C7—C1110.53 (18)
C12—C13—H13120.4O5—C14—C11125.2 (3)
C12—C11—C10120.0 (2)O5—C14—H141121 (2)
C12—C11—C14120.1 (2)C11—C14—H141114 (2)
C10—C11—C14119.9 (2)
C11—C10—C9—C80.3 (3)C3—C2—N1—O4170.3 (2)
C11—C10—C9—N2179.76 (19)C1—C2—N1—O49.4 (4)
O7—N2—C9—C10145.2 (2)C3—C2—N1—O313.2 (4)
O6—N2—C9—C1034.1 (3)C1—C2—N1—O3167.1 (3)
O7—N2—C9—C835.4 (3)C2—C3—C4—C50.8 (4)
O6—N2—C9—C8145.3 (2)C2—C3—C4—Cl1179.11 (18)
C4—C3—C2—C10.3 (4)C8—C13—C12—C110.9 (4)
C4—C3—C2—N1180.0 (2)C10—C11—C12—C130.5 (4)
C3—C2—C1—C61.3 (4)C14—C11—C12—C13179.9 (2)
N1—C2—C1—C6179.0 (2)C2—C1—C6—C51.4 (4)
C3—C2—C1—C7175.8 (2)C7—C1—C6—C5175.9 (2)
N1—C2—C1—C73.9 (4)C3—C4—C5—C60.7 (4)
C9—C10—C11—C121.1 (3)Cl1—C4—C5—C6179.2 (2)
C9—C10—C11—C14179.3 (2)C1—C6—C5—C40.5 (4)
C12—C13—C8—C91.6 (4)C8—O2—C7—O14.0 (3)
C12—C13—C8—O2176.0 (2)C8—O2—C7—C1179.86 (17)
C10—C9—C8—C131.0 (3)C6—C1—C7—O181.2 (3)
N2—C9—C8—C13178.4 (2)C2—C1—C7—O195.9 (3)
C10—C9—C8—O2175.29 (18)C6—C1—C7—O294.8 (3)
N2—C9—C8—O24.1 (3)C2—C1—C7—O288.1 (3)
C7—O2—C8—C1389.5 (3)C12—C11—C14—O5175.0 (3)
C7—O2—C8—C996.2 (2)C10—C11—C14—O55.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.443.289 (3)151
C5—H5···O3ii0.932.423.212 (4)143
C12—H12···O6iii0.932.583.317 (3)137
C12—H12···O1iv0.932.683.476 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.443.289 (3)151.2
C5—H5···O3ii0.932.423.212 (4)142.8
C12—H12···O6iii0.932.583.317 (3)137.0
C12—H12···O1iv0.932.683.476 (3)144.5
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o793.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G. & Kennedy, A. R. (2014). Acta Cryst. E70, o268.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds