research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(2,2,2-tri­chloro-1-hy­dr­oxy­eth­yl)formamide

aDepartment of Chemistry, St. Xavier's College, Palayamkottai 627 002, India, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch, babymariyatra@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 25 October 2015; accepted 28 October 2015; online 14 November 2015)

The title compound, C3H4Cl3NO2, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The two mol­ecules have the same conformation; the mol­ecular overlap gives weighted and unit-weight r.m.s. fits of 0.047 and 0.043 Å, respectively. The conformation of the N-(hydroxeth­yl)formamide chains are very similar, as indicated by the C—N(H)—C=O and C—N(H)—C—O(H) torsion angles, which are, respectively, −1.8 (3) and −91.5 (2)° for mol­ecule A, and −2.1 (3) and −95.7 (2)° for mol­ecule B. In the crystal, individual mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming AA and BB inversion dimers with R22(12) ring motifs. The dimers are linked via N—H⋯O hydrogen bonds, forming alternating layers of A and B mol­ecules parallel to the bc plane. Within the layers of B mol­ecules, there are weak C—H⋯Cl hydrogen bonds present.

1. Chemical context

The skeletal structure of formamide is present in a number of medicinally important compounds. This has led to the use of formamides as key inter­mediates in numerous organic synthetic endeavours (Kobayashi et al., 1995[Kobayashi, K., Nagato, S., Kawakita, M., Morikawa, O. & Konishi, H. (1995). Chem. Lett. 24, 575-576.]; Chen et al., 2000[Chen, B.-C., Bednarz, M. S., Zhao, R., Sundeen, J. E., Chen, P., Shen, Z., Skoumbourdis, A. P. & Barrish, J. C. (2000). Tetrahedron Lett. 41, 5453-5456.]; Jackson & Meth-Cohn, 1995[Jackson, A. & Meth-Cohn, O. (1995). J. Chem. Soc. Chem. Commun. pp. 1319.]). While formamides are useful formyl­ating agents they have also found utility as easily accessible Lewis bases for promoting several organic transformations (Kobayashi & Nishio, 1994[Kobayashi, S. & Nishio, K. (1994). J. Org. Chem. 59, 6620-6628.]). Furthermore, in peptide synthesis the formyl group is a valued amino-protecting group (Martinez & Laur, 1982[Martinez, J. & Laur, J. (1982). Synthesis, pp. 979-981.]; Kraus, 1973[Kraus, N. A. (1973). Synthesis, pp. 361-362.]). The title compound and related mol­ecules have been found mentioned in several old patent literatures owing to their biocidal properties; both herbicidal (Schiewald et al., 1974[Schiewald, E., Naumann, K., Loettge, W., Kochmann, W., Pallas, M. & Hesse, B. (1974). Ger. Patent No. DD 109979.]) and fungicidal (Summers & Carter, 1977[Summers, L. A. & Carter, G. A. (1977). Aust. J. Chem. 30, 663-668.]) action is known. The title compound is easily obtained by the reaction of 2,2,2-tri­chloro­acetaldehyde and formamide (Sethi, 2006[Sethi, A. (2006). Systematic Lab Experiments in Organic Chemistry, p. 514. New Age International (P) Ltd.]) and we describe herein its crystal structure.

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The arbitrarily chosen chirality of atoms C2 in mol­ecule A and C5 in mol­ecule B is the same. The backbones of the two mol­ecules (O1/O3, C1/C4, C2/C5, N1/N2, C3/C6 and O2/O4) have almost identical conformations with weighted and unit-weight r.m.s. overlay fits of 0.047 and 0.043 Å, respectively, for the six atoms in each mol­ecule (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The torsion angles C2—N1—C3—O2 and C3—N1—C2—O1 are −1.8 (3) and −91.5 (2)°, respectively, for mol­ecule A, and C5—N2—C6—O4 and C6—N2—C5—O3 are −2.1 (3) and −95.7 (2)°, respectively, for mol­ecule B.
[Figure 2]
Figure 2
A view of the mol­ecular fit of the six backbone atoms (O1/O3, C1/C4, C2/C5, N1/N2, C3/C6 and O2/O4) of the A (black) and B (red) mol­ecules of the title compound, calculated using the MolFit routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Supra­molecular features

In the crystal, the individual mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming AA and BB inversion dimers with [R_{2}^{2}](12) ring motifs (Table 1[link] and Figs. 3[link] and 4[link]). The dimers are linked via N—H⋯O hydrogen bonds, forming layers of A and B mol­ecules parallel to the bc plane (Table 1[link] and Figs. 3[link] and 4[link]). These latter hydrogen bonds lead to the formation of R64(20) ring motifs in each layer (Figs. 3[link] and 4[link]). The layers stack alternately along the a axis, as shown in Fig. 5[link]. Within the layers of B mol­ecules there are weak C—H⋯Cl hydrogen bonds present (Table 1[link]). There are no significant inter­molecular inter­actions linking the layers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 (3) 1.90 (4) 2.731 (2) 169 (3)
N1—H1N⋯O2ii 0.85 (2) 2.08 (3) 2.893 (2) 159 (2)
O3—H3O⋯O4iii 0.76 (3) 1.97 (3) 2.721 (2) 174 (3)
N2—H2N⋯O4iv 0.78 (3) 2.17 (3) 2.917 (2) 158 (2)
C6—H6⋯Cl4v 1.00 (2) 2.91 (2) 3.586 (2) 125 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the a axis of the hydrogen-bonded layer of A mol­ecules of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view along the a axis of the hydrogen-bonded layer of B mol­ecules of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.
[Figure 5]
Figure 5
A view along the b axis of the crystal packing of the title compound, showing the alternating layers of hydrogen-bonded A (blue) and B (red) mol­ecules. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the acyclic substructure C(=O)—N(H)—C(OH), viz. N-(hydroxmeth­yl)formamide, yielded 25 hits. The majority concern metal complexes of the ligand N-(hy­droxy­meth­yl)nicotinamide. Only one compound, N,N′-(1,2-di­hydroxy­ethyl­ene)diformamide (OGEJUG; Taheri & Moosavi, 2008[Taheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316.]) resembles the title compound. In the solid state, the whole molecule of this compound is generated by inversion symmetry. The geometric parameters are similar to those observed for the title compound, for example the conformation of the N-(hydroxmeth­yl)formamide chain as indicated by the C—N(H)—C—O(H) and C—N(H)—C=O torsion angles: 1.6 (2) and −99.09 (14)° for the above mentioned compound compared to −1.8 (3) and −91.5 (2)° for mol­ecule A and −2.1 (3) and −95.7 (2)° for mol­ecule B of the title compound (see Fig. 1[link]).

5. Synthesis and crystallization

The title compound can be synthesized following a literature procedure (Sethi, 2006[Sethi, A. (2006). Systematic Lab Experiments in Organic Chemistry, p. 514. New Age International (P) Ltd.]), by the reaction of 2,2,2-tri­chloro­acetaldehyde and formamide. An old and discoloured sample of N-(2,2,2-tri­chloro-1-hy­droxy­eth­yl)formamide was dissolved in hot ethanol, followed by treatment with charcoal. The filtered solution was left to crystallize by slow evaporation, forming colourless block-like crystals (m.p. 393 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the H atoms were located from difference Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C3H4Cl3NO2
Mr 192.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.7964 (8), 9.0798 (7), 12.2453 (7)
β (°) 114.413 (4)
V3) 1396.80 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.24
Crystal size (mm) 0.45 × 0.43 × 0.40
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.579, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16347, 2645, 2468
Rint 0.056
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.08
No. of reflections 2645
No. of parameters 196
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.82, −0.55
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

N-(2,2,2-Trichloro-1-hydroxyethyl)formamide top
Crystal data top
C3H4Cl3NO2F(000) = 768
Mr = 192.42Dx = 1.830 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.7964 (8) ÅCell parameters from 22309 reflections
b = 9.0798 (7) Åθ = 1.6–26.2°
c = 12.2453 (7) ŵ = 1.24 mm1
β = 114.413 (4)°T = 173 K
V = 1396.80 (16) Å3Block, colourless
Z = 80.45 × 0.43 × 0.40 mm
Data collection top
Stoe IPDS 2
diffractometer
2645 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.056
φ + ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1516
Tmin = 0.579, Tmax = 1.000k = 1111
16347 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.2964P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.82 e Å3
2645 reflectionsΔρmin = 0.55 e Å3
196 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0089 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13449 (5)0.04880 (6)0.08600 (5)0.03428 (17)
Cl20.22308 (4)0.28605 (6)0.00018 (5)0.03123 (16)
Cl30.28102 (5)0.25302 (8)0.25345 (5)0.04298 (19)
O10.00275 (12)0.31695 (18)0.01499 (14)0.0284 (4)
H1O0.005 (3)0.366 (4)0.069 (3)0.058 (10)*
O20.00144 (13)0.53996 (16)0.21058 (14)0.0295 (4)
N10.04737 (14)0.30393 (19)0.18967 (16)0.0213 (4)
H1N0.0392 (18)0.215 (3)0.207 (2)0.020 (6)*
C10.17653 (17)0.2341 (2)0.10963 (19)0.0234 (4)
C20.08245 (16)0.3364 (2)0.09670 (18)0.0217 (4)
H20.1107 (18)0.434 (3)0.1068 (19)0.020 (6)*
C30.00885 (17)0.4079 (2)0.23751 (18)0.0237 (4)
H30.0156 (18)0.374 (3)0.299 (2)0.026 (6)*
Cl40.64204 (5)0.45558 (5)0.52480 (5)0.03177 (16)
Cl50.78172 (4)0.22393 (6)0.51229 (5)0.02994 (15)
Cl60.71719 (4)0.23240 (7)0.70803 (5)0.03280 (16)
O30.49315 (12)0.20023 (18)0.51142 (15)0.0274 (3)
H3O0.497 (2)0.153 (3)0.564 (3)0.036 (8)*
O40.50422 (13)0.04575 (15)0.29695 (13)0.0281 (3)
N20.54593 (14)0.19299 (19)0.35510 (15)0.0208 (4)
H2N0.5415 (19)0.274 (3)0.332 (2)0.023 (6)*
C40.67565 (16)0.2671 (2)0.55274 (18)0.0216 (4)
C50.57819 (16)0.1686 (2)0.48142 (18)0.0206 (4)
H50.6025 (16)0.066 (2)0.5015 (18)0.012 (5)*
C60.51071 (16)0.0854 (2)0.27421 (18)0.0230 (4)
H60.4911 (19)0.119 (3)0.190 (2)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0493 (4)0.0157 (3)0.0449 (3)0.0062 (2)0.0265 (3)0.0024 (2)
Cl20.0363 (3)0.0317 (3)0.0356 (3)0.0029 (2)0.0248 (2)0.0016 (2)
Cl30.0250 (3)0.0729 (5)0.0282 (3)0.0012 (3)0.0081 (2)0.0095 (3)
O10.0292 (8)0.0315 (9)0.0259 (8)0.0064 (6)0.0127 (7)0.0100 (7)
O20.0478 (10)0.0170 (7)0.0307 (8)0.0078 (6)0.0232 (7)0.0031 (6)
N10.0268 (9)0.0138 (8)0.0279 (9)0.0012 (7)0.0159 (7)0.0025 (7)
C10.0259 (10)0.0227 (10)0.0236 (10)0.0014 (8)0.0121 (9)0.0014 (8)
C20.0272 (10)0.0144 (10)0.0275 (10)0.0016 (8)0.0154 (8)0.0010 (8)
C30.0288 (11)0.0221 (10)0.0229 (10)0.0034 (8)0.0133 (9)0.0013 (8)
Cl40.0415 (3)0.0152 (2)0.0346 (3)0.0028 (2)0.0117 (2)0.0021 (2)
Cl50.0247 (3)0.0366 (3)0.0304 (3)0.0009 (2)0.0133 (2)0.0020 (2)
Cl60.0336 (3)0.0425 (3)0.0191 (3)0.0029 (2)0.0077 (2)0.0028 (2)
O30.0287 (8)0.0303 (8)0.0265 (8)0.0020 (6)0.0150 (7)0.0051 (7)
O40.0426 (9)0.0170 (7)0.0273 (8)0.0055 (6)0.0171 (7)0.0019 (6)
N20.0271 (9)0.0132 (8)0.0202 (9)0.0017 (7)0.0080 (7)0.0025 (7)
C40.0253 (10)0.0199 (10)0.0199 (10)0.0008 (8)0.0096 (8)0.0008 (7)
C50.0253 (10)0.0147 (10)0.0216 (10)0.0018 (8)0.0095 (8)0.0016 (7)
C60.0270 (10)0.0211 (10)0.0217 (10)0.0021 (8)0.0111 (8)0.0007 (8)
Geometric parameters (Å, º) top
Cl1—C11.764 (2)Cl4—C41.769 (2)
Cl2—C11.777 (2)Cl5—C41.772 (2)
Cl3—C11.764 (2)Cl6—C41.773 (2)
O1—C21.398 (3)O3—C51.396 (3)
O1—H1O0.84 (3)O3—H3O0.76 (3)
O2—C31.236 (3)O4—C61.235 (3)
N1—C31.332 (3)N2—C61.332 (3)
N1—C21.440 (3)N2—C51.439 (3)
N1—H1N0.85 (2)N2—H2N0.78 (3)
C1—C21.550 (3)C4—C51.549 (3)
C2—H20.96 (2)C5—H50.99 (2)
C3—H30.99 (2)C6—H61.00 (2)
C2—O1—H1O112 (2)C5—O3—H3O110 (2)
C3—N1—C2121.88 (17)C6—N2—C5122.84 (17)
C3—N1—H1N116.3 (16)C6—N2—H2N118.0 (18)
C2—N1—H1N120.8 (16)C5—N2—H2N118.7 (18)
C2—C1—Cl3110.37 (14)C5—C4—Cl4110.64 (14)
C2—C1—Cl1110.49 (14)C5—C4—Cl5109.84 (14)
Cl3—C1—Cl1109.52 (11)Cl4—C4—Cl5109.91 (11)
C2—C1—Cl2108.24 (14)C5—C4—Cl6108.82 (14)
Cl3—C1—Cl2109.15 (11)Cl4—C4—Cl6108.79 (11)
Cl1—C1—Cl2109.04 (11)Cl5—C4—Cl6108.80 (11)
O1—C2—N1109.04 (17)O3—C5—N2109.32 (16)
O1—C2—C1110.74 (16)O3—C5—C4111.15 (16)
N1—C2—C1109.73 (16)N2—C5—C4109.14 (16)
O1—C2—H2112.1 (13)O3—C5—H5111.4 (12)
N1—C2—H2109.8 (14)N2—C5—H5109.6 (12)
C1—C2—H2105.3 (14)C4—C5—H5106.2 (12)
O2—C3—N1125.03 (19)O4—C6—N2125.30 (19)
O2—C3—H3119.1 (14)O4—C6—H6120.9 (14)
N1—C3—H3115.9 (14)N2—C6—H6113.7 (14)
C3—N1—C2—O191.5 (2)C6—N2—C5—O395.7 (2)
C3—N1—C2—C1147.08 (19)C6—N2—C5—C4142.52 (19)
Cl3—C1—C2—O1177.16 (14)Cl4—C4—C5—O358.44 (19)
Cl1—C1—C2—O155.9 (2)Cl5—C4—C5—O3179.96 (13)
Cl2—C1—C2—O163.45 (19)Cl6—C4—C5—O361.03 (19)
Cl3—C1—C2—N156.7 (2)Cl4—C4—C5—N262.20 (19)
Cl1—C1—C2—N164.54 (19)Cl5—C4—C5—N259.31 (19)
Cl2—C1—C2—N1176.13 (14)Cl6—C4—C5—N2178.33 (14)
C2—N1—C3—O21.8 (3)C5—N2—C6—O42.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.84 (3)1.90 (4)2.731 (2)169 (3)
N1—H1N···O2ii0.85 (2)2.08 (3)2.893 (2)159 (2)
O3—H3O···O4iii0.76 (3)1.97 (3)2.721 (2)174 (3)
N2—H2N···O4iv0.78 (3)2.17 (3)2.917 (2)158 (2)
C6—H6···Cl4v1.00 (2)2.91 (2)3.586 (2)125 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

MBM thanks the Department of Chemistry, St Xavier's College, for support of this work. HSE thanks the XRD Laboratory, CSEM, Neuchâtel, for access to the X-ray diffractometer.

References

First citationChen, B.-C., Bednarz, M. S., Zhao, R., Sundeen, J. E., Chen, P., Shen, Z., Skoumbourdis, A. P. & Barrish, J. C. (2000). Tetrahedron Lett. 41, 5453–5456.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJackson, A. & Meth-Cohn, O. (1995). J. Chem. Soc. Chem. Commun. pp. 1319.  Google Scholar
First citationKobayashi, K., Nagato, S., Kawakita, M., Morikawa, O. & Konishi, H. (1995). Chem. Lett. 24, 575–576.  CrossRef Web of Science Google Scholar
First citationKobayashi, S. & Nishio, K. (1994). J. Org. Chem. 59, 6620–6628.  CrossRef CAS Web of Science Google Scholar
First citationKraus, N. A. (1973). Synthesis, pp. 361–362.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, J. & Laur, J. (1982). Synthesis, pp. 979–981.  CrossRef Google Scholar
First citationSchiewald, E., Naumann, K., Loettge, W., Kochmann, W., Pallas, M. & Hesse, B. (1974). Ger. Patent No. DD 109979.  Google Scholar
First citationSethi, A. (2006). Systematic Lab Experiments in Organic Chemistry, p. 514. New Age International (P) Ltd.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSummers, L. A. & Carter, G. A. (1977). Aust. J. Chem. 30, 663–668.  CrossRef CAS Google Scholar
First citationTaheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds