research communications
N-(2,2,2-trichloro-1-hydroxyethyl)formamide
ofaDepartment of Chemistry, St. Xavier's College, Palayamkottai 627 002, India, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch, babymariyatra@gmail.com
The title compound, C3H4Cl3NO2, crystallized with two independent molecules (A and B) in the The two molecules have the same conformation; the molecular overlap gives weighted and unit-weight r.m.s. fits of 0.047 and 0.043 Å, respectively. The conformation of the N-(hydroxethyl)formamide chains are very similar, as indicated by the C—N(H)—C=O and C—N(H)—C—O(H) torsion angles, which are, respectively, −1.8 (3) and −91.5 (2)° for molecule A, and −2.1 (3) and −95.7 (2)° for molecule B. In the crystal, individual molecules are linked by pairs of O—H⋯O hydrogen bonds, forming A–A and B–B inversion dimers with R22(12) ring motifs. The dimers are linked via N—H⋯O hydrogen bonds, forming alternating layers of A and B molecules parallel to the bc plane. Within the layers of B molecules, there are weak C—H⋯Cl hydrogen bonds present.
Keywords: crystal structure; trichlorohydroxyethyl; formamide; hydrogen bonding.
CCDC reference: 1009715
1. Chemical context
The et al., 1995; Chen et al., 2000; Jackson & Meth-Cohn, 1995). While formamides are useful formylating agents they have also found utility as easily accessible Lewis bases for promoting several organic transformations (Kobayashi & Nishio, 1994). Furthermore, in peptide synthesis the formyl group is a valued amino-protecting group (Martinez & Laur, 1982; Kraus, 1973). The title compound and related molecules have been found mentioned in several old patent literatures owing to their biocidal properties; both herbicidal (Schiewald et al., 1974) and fungicidal (Summers & Carter, 1977) action is known. The title compound is easily obtained by the reaction of 2,2,2-trichloroacetaldehyde and formamide (Sethi, 2006) and we describe herein its crystal structure.
of formamide is present in a number of medicinally important compounds. This has led to the use of formamides as key intermediates in numerous organic synthetic endeavours (Kobayashi2. Structural commentary
The title compound, Fig. 1, crystallized with two independent molecules (A and B) in the The arbitrarily chosen of atoms C2 in molecule A and C5 in molecule B is the same. The backbones of the two molecules (O1/O3, C1/C4, C2/C5, N1/N2, C3/C6 and O2/O4) have almost identical conformations with weighted and unit-weight r.m.s. overlay fits of 0.047 and 0.043 Å, respectively, for the six atoms in each molecule (Fig. 2).
3. Supramolecular features
In the crystal, the individual molecules are linked by pairs of O—H⋯O hydrogen bonds, forming A–A and B–B inversion dimers with (12) ring motifs (Table 1 and Figs. 3 and 4). The dimers are linked via N—H⋯O hydrogen bonds, forming layers of A and B molecules parallel to the bc plane (Table 1 and Figs. 3 and 4). These latter hydrogen bonds lead to the formation of R64(20) ring motifs in each layer (Figs. 3 and 4). The layers stack alternately along the a axis, as shown in Fig. 5. Within the layers of B molecules there are weak C—H⋯Cl hydrogen bonds present (Table 1). There are no significant intermolecular interactions linking the layers.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) for the acyclic C(=O)—N(H)—C(OH), viz. N-(hydroxmethyl)formamide, yielded 25 hits. The majority concern metal complexes of the ligand N-(hydroxymethyl)nicotinamide. Only one compound, N,N′-(1,2-dihydroxyethylene)diformamide (OGEJUG; Taheri & Moosavi, 2008) resembles the title compound. In the solid state, the whole molecule of this compound is generated by inversion symmetry. The geometric parameters are similar to those observed for the title compound, for example the conformation of the N-(hydroxmethyl)formamide chain as indicated by the C—N(H)—C—O(H) and C—N(H)—C=O torsion angles: 1.6 (2) and −99.09 (14)° for the above mentioned compound compared to −1.8 (3) and −91.5 (2)° for molecule A and −2.1 (3) and −95.7 (2)° for molecule B of the title compound (see Fig. 1).
5. Synthesis and crystallization
The title compound can be synthesized following a literature procedure (Sethi, 2006), by the reaction of 2,2,2-trichloroacetaldehyde and formamide. An old and discoloured sample of N-(2,2,2-trichloro-1-hydroxyethyl)formamide was dissolved in hot ethanol, followed by treatment with The filtered solution was left to crystallize by slow evaporation, forming colourless block-like crystals (m.p. 393 K).
6. Refinement
Crystal data, data collection and structure . All of the H atoms were located from difference Fourier maps and freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1009715
https://doi.org/10.1107/S2056989015020459/hg5462sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020459/hg5462Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020459/hg5462Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C3H4Cl3NO2 | F(000) = 768 |
Mr = 192.42 | Dx = 1.830 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.7964 (8) Å | Cell parameters from 22309 reflections |
b = 9.0798 (7) Å | θ = 1.6–26.2° |
c = 12.2453 (7) Å | µ = 1.24 mm−1 |
β = 114.413 (4)° | T = 173 K |
V = 1396.80 (16) Å3 | Block, colourless |
Z = 8 | 0.45 × 0.43 × 0.40 mm |
Stoe IPDS 2 diffractometer | 2645 independent reflections |
Radiation source: fine-focus sealed tube | 2468 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.056 |
φ + ω scans | θmax = 25.7°, θmin = 1.6° |
Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009) | h = −15→16 |
Tmin = 0.579, Tmax = 1.000 | k = −11→11 |
16347 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0333P)2 + 1.2964P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.82 e Å−3 |
2645 reflections | Δρmin = −0.55 e Å−3 |
196 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0089 (9) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13449 (5) | 0.04880 (6) | 0.08600 (5) | 0.03428 (17) | |
Cl2 | 0.22308 (4) | 0.28605 (6) | −0.00018 (5) | 0.03123 (16) | |
Cl3 | 0.28102 (5) | 0.25302 (8) | 0.25345 (5) | 0.04298 (19) | |
O1 | −0.00275 (12) | 0.31695 (18) | −0.01499 (14) | 0.0284 (4) | |
H1O | 0.005 (3) | 0.366 (4) | −0.069 (3) | 0.058 (10)* | |
O2 | 0.00144 (13) | 0.53996 (16) | 0.21058 (14) | 0.0295 (4) | |
N1 | 0.04737 (14) | 0.30393 (19) | 0.18967 (16) | 0.0213 (4) | |
H1N | 0.0392 (18) | 0.215 (3) | 0.207 (2) | 0.020 (6)* | |
C1 | 0.17653 (17) | 0.2341 (2) | 0.10963 (19) | 0.0234 (4) | |
C2 | 0.08245 (16) | 0.3364 (2) | 0.09670 (18) | 0.0217 (4) | |
H2 | 0.1107 (18) | 0.434 (3) | 0.1068 (19) | 0.020 (6)* | |
C3 | 0.00885 (17) | 0.4079 (2) | 0.23751 (18) | 0.0237 (4) | |
H3 | −0.0156 (18) | 0.374 (3) | 0.299 (2) | 0.026 (6)* | |
Cl4 | 0.64204 (5) | 0.45558 (5) | 0.52480 (5) | 0.03177 (16) | |
Cl5 | 0.78172 (4) | 0.22393 (6) | 0.51229 (5) | 0.02994 (15) | |
Cl6 | 0.71719 (4) | 0.23240 (7) | 0.70803 (5) | 0.03280 (16) | |
O3 | 0.49315 (12) | 0.20023 (18) | 0.51142 (15) | 0.0274 (3) | |
H3O | 0.497 (2) | 0.153 (3) | 0.564 (3) | 0.036 (8)* | |
O4 | 0.50422 (13) | −0.04575 (15) | 0.29695 (13) | 0.0281 (3) | |
N2 | 0.54593 (14) | 0.19299 (19) | 0.35510 (15) | 0.0208 (4) | |
H2N | 0.5415 (19) | 0.274 (3) | 0.332 (2) | 0.023 (6)* | |
C4 | 0.67565 (16) | 0.2671 (2) | 0.55274 (18) | 0.0216 (4) | |
C5 | 0.57819 (16) | 0.1686 (2) | 0.48142 (18) | 0.0206 (4) | |
H5 | 0.6025 (16) | 0.066 (2) | 0.5015 (18) | 0.012 (5)* | |
C6 | 0.51071 (16) | 0.0854 (2) | 0.27421 (18) | 0.0230 (4) | |
H6 | 0.4911 (19) | 0.119 (3) | 0.190 (2) | 0.028 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0493 (4) | 0.0157 (3) | 0.0449 (3) | 0.0062 (2) | 0.0265 (3) | 0.0024 (2) |
Cl2 | 0.0363 (3) | 0.0317 (3) | 0.0356 (3) | 0.0029 (2) | 0.0248 (2) | 0.0016 (2) |
Cl3 | 0.0250 (3) | 0.0729 (5) | 0.0282 (3) | 0.0012 (3) | 0.0081 (2) | −0.0095 (3) |
O1 | 0.0292 (8) | 0.0315 (9) | 0.0259 (8) | 0.0064 (6) | 0.0127 (7) | 0.0100 (7) |
O2 | 0.0478 (10) | 0.0170 (7) | 0.0307 (8) | 0.0078 (6) | 0.0232 (7) | 0.0031 (6) |
N1 | 0.0268 (9) | 0.0138 (8) | 0.0279 (9) | 0.0012 (7) | 0.0159 (7) | 0.0025 (7) |
C1 | 0.0259 (10) | 0.0227 (10) | 0.0236 (10) | 0.0014 (8) | 0.0121 (9) | −0.0014 (8) |
C2 | 0.0272 (10) | 0.0144 (10) | 0.0275 (10) | 0.0016 (8) | 0.0154 (8) | 0.0010 (8) |
C3 | 0.0288 (11) | 0.0221 (10) | 0.0229 (10) | 0.0034 (8) | 0.0133 (9) | 0.0013 (8) |
Cl4 | 0.0415 (3) | 0.0152 (2) | 0.0346 (3) | −0.0028 (2) | 0.0117 (2) | −0.0021 (2) |
Cl5 | 0.0247 (3) | 0.0366 (3) | 0.0304 (3) | 0.0009 (2) | 0.0133 (2) | 0.0020 (2) |
Cl6 | 0.0336 (3) | 0.0425 (3) | 0.0191 (3) | −0.0029 (2) | 0.0077 (2) | 0.0028 (2) |
O3 | 0.0287 (8) | 0.0303 (8) | 0.0265 (8) | −0.0020 (6) | 0.0150 (7) | 0.0051 (7) |
O4 | 0.0426 (9) | 0.0170 (7) | 0.0273 (8) | −0.0055 (6) | 0.0171 (7) | −0.0019 (6) |
N2 | 0.0271 (9) | 0.0132 (8) | 0.0202 (9) | −0.0017 (7) | 0.0080 (7) | 0.0025 (7) |
C4 | 0.0253 (10) | 0.0199 (10) | 0.0199 (10) | −0.0008 (8) | 0.0096 (8) | 0.0008 (7) |
C5 | 0.0253 (10) | 0.0147 (10) | 0.0216 (10) | −0.0018 (8) | 0.0095 (8) | 0.0016 (7) |
C6 | 0.0270 (10) | 0.0211 (10) | 0.0217 (10) | −0.0021 (8) | 0.0111 (8) | −0.0007 (8) |
Cl1—C1 | 1.764 (2) | Cl4—C4 | 1.769 (2) |
Cl2—C1 | 1.777 (2) | Cl5—C4 | 1.772 (2) |
Cl3—C1 | 1.764 (2) | Cl6—C4 | 1.773 (2) |
O1—C2 | 1.398 (3) | O3—C5 | 1.396 (3) |
O1—H1O | 0.84 (3) | O3—H3O | 0.76 (3) |
O2—C3 | 1.236 (3) | O4—C6 | 1.235 (3) |
N1—C3 | 1.332 (3) | N2—C6 | 1.332 (3) |
N1—C2 | 1.440 (3) | N2—C5 | 1.439 (3) |
N1—H1N | 0.85 (2) | N2—H2N | 0.78 (3) |
C1—C2 | 1.550 (3) | C4—C5 | 1.549 (3) |
C2—H2 | 0.96 (2) | C5—H5 | 0.99 (2) |
C3—H3 | 0.99 (2) | C6—H6 | 1.00 (2) |
C2—O1—H1O | 112 (2) | C5—O3—H3O | 110 (2) |
C3—N1—C2 | 121.88 (17) | C6—N2—C5 | 122.84 (17) |
C3—N1—H1N | 116.3 (16) | C6—N2—H2N | 118.0 (18) |
C2—N1—H1N | 120.8 (16) | C5—N2—H2N | 118.7 (18) |
C2—C1—Cl3 | 110.37 (14) | C5—C4—Cl4 | 110.64 (14) |
C2—C1—Cl1 | 110.49 (14) | C5—C4—Cl5 | 109.84 (14) |
Cl3—C1—Cl1 | 109.52 (11) | Cl4—C4—Cl5 | 109.91 (11) |
C2—C1—Cl2 | 108.24 (14) | C5—C4—Cl6 | 108.82 (14) |
Cl3—C1—Cl2 | 109.15 (11) | Cl4—C4—Cl6 | 108.79 (11) |
Cl1—C1—Cl2 | 109.04 (11) | Cl5—C4—Cl6 | 108.80 (11) |
O1—C2—N1 | 109.04 (17) | O3—C5—N2 | 109.32 (16) |
O1—C2—C1 | 110.74 (16) | O3—C5—C4 | 111.15 (16) |
N1—C2—C1 | 109.73 (16) | N2—C5—C4 | 109.14 (16) |
O1—C2—H2 | 112.1 (13) | O3—C5—H5 | 111.4 (12) |
N1—C2—H2 | 109.8 (14) | N2—C5—H5 | 109.6 (12) |
C1—C2—H2 | 105.3 (14) | C4—C5—H5 | 106.2 (12) |
O2—C3—N1 | 125.03 (19) | O4—C6—N2 | 125.30 (19) |
O2—C3—H3 | 119.1 (14) | O4—C6—H6 | 120.9 (14) |
N1—C3—H3 | 115.9 (14) | N2—C6—H6 | 113.7 (14) |
C3—N1—C2—O1 | −91.5 (2) | C6—N2—C5—O3 | −95.7 (2) |
C3—N1—C2—C1 | 147.08 (19) | C6—N2—C5—C4 | 142.52 (19) |
Cl3—C1—C2—O1 | −177.16 (14) | Cl4—C4—C5—O3 | −58.44 (19) |
Cl1—C1—C2—O1 | −55.9 (2) | Cl5—C4—C5—O3 | −179.96 (13) |
Cl2—C1—C2—O1 | 63.45 (19) | Cl6—C4—C5—O3 | 61.03 (19) |
Cl3—C1—C2—N1 | −56.7 (2) | Cl4—C4—C5—N2 | 62.20 (19) |
Cl1—C1—C2—N1 | 64.54 (19) | Cl5—C4—C5—N2 | −59.31 (19) |
Cl2—C1—C2—N1 | −176.13 (14) | Cl6—C4—C5—N2 | −178.33 (14) |
C2—N1—C3—O2 | −1.8 (3) | C5—N2—C6—O4 | −2.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.84 (3) | 1.90 (4) | 2.731 (2) | 169 (3) |
N1—H1N···O2ii | 0.85 (2) | 2.08 (3) | 2.893 (2) | 159 (2) |
O3—H3O···O4iii | 0.76 (3) | 1.97 (3) | 2.721 (2) | 174 (3) |
N2—H2N···O4iv | 0.78 (3) | 2.17 (3) | 2.917 (2) | 158 (2) |
C6—H6···Cl4v | 1.00 (2) | 2.91 (2) | 3.586 (2) | 125 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
MBM thanks the Department of Chemistry, St Xavier's College, for support of this work. HSE thanks the XRD Laboratory, CSEM, Neuchâtel, for access to the X-ray diffractometer.
References
Chen, B.-C., Bednarz, M. S., Zhao, R., Sundeen, J. E., Chen, P., Shen, Z., Skoumbourdis, A. P. & Barrish, J. C. (2000). Tetrahedron Lett. 41, 5453–5456. Web of Science CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jackson, A. & Meth-Cohn, O. (1995). J. Chem. Soc. Chem. Commun. pp. 1319. Google Scholar
Kobayashi, K., Nagato, S., Kawakita, M., Morikawa, O. & Konishi, H. (1995). Chem. Lett. 24, 575–576. CrossRef Web of Science Google Scholar
Kobayashi, S. & Nishio, K. (1994). J. Org. Chem. 59, 6620–6628. CrossRef CAS Web of Science Google Scholar
Kraus, N. A. (1973). Synthesis, pp. 361–362. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Martinez, J. & Laur, J. (1982). Synthesis, pp. 979–981. CrossRef Google Scholar
Schiewald, E., Naumann, K., Loettge, W., Kochmann, W., Pallas, M. & Hesse, B. (1974). Ger. Patent No. DD 109979. Google Scholar
Sethi, A. (2006). Systematic Lab Experiments in Organic Chemistry, p. 514. New Age International (P) Ltd. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Summers, L. A. & Carter, G. A. (1977). Aust. J. Chem. 30, 663–668. CrossRef CAS Google Scholar
Taheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.