research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of tris­­[1-oxo­pyridine-2-olato(1−)]silicon(IV) chloride chloro­form-d1 disolvate, tris­­[1-oxo­pyridine-2-olato(1−)]silicon(IV) chloride aceto­nitrile unqu­anti­fied solvate, and fac-tris­­[1-oxo­pyridine-2-thiol­ato(1−)]silicon(IV) chloride chloro­form-d1 disolvate

aDepartment of Chemistry, St. John Fisher College, Rochester, NY 14618, USA, and bDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: bkraft@sjfc.edu

Edited by P. C. Healy, Griffith University, Australia (Received 16 November 2015; accepted 19 November 2015; online 28 November 2015)

The cations in the title salts, [Si(OPO)3]Cl·2CDCl3, (I), [Si(OPO)3]Cl·xCH3CN, (II), and fac-[Si(OPTO)3]Cl·2CDCl3, (III) (OPO = 1-oxo-2-pyridin­one, C5H4NO2, and OPTO = 1-oxo-2-pyridine­thione, C5H4NOS), have distorted octa­hedral coordination spheres. The first two structures contain the same cation and anion, but different solvents of crystallization led to different solvates and packing arrangements. In structures (I) and (III), the silicon complex cations and chloride anions are well separated, while in (II), there are two C—H⋯Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the planar flips of themselves [(I): 0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15); (II): 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13)], demonstrating that both fac and mer isomers are co-crystallized. In (II), highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] function of program PLATON, which determined there to be 54 electrons in 225 Å3 accounted for per unit cell (25 electrons in 109 Å3 in one channel, and 29 electrons in 115 Å3 in the other). In (I) and (II), all species lie on general positions. In (III), all species are located along crystallographic threefold axes.

1. Chemical context

Dissolution of silica by 1-hy­droxy-2-pyridinone (HOPO) at pH = 6 in aqueous solution has been shown to afford the cationic complex [Si(OPO)3]+, OPO = 1-oxo-2-pyridinone, which has been isolated as its chloride, tetra­chlorido­ferrate(III), and hexa­chlorido­stannate(IV) salts (Weiss & Harvey, 1964[Weiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698-699.]). Three other analogs, having tri­fluoro­methane­sulfonate, ethyl sulfate, and the isopropyl sulfate anion, were later synthesized by reaction of Si(OCH3)4 with HOPO with an appropriate acid and solvent and characterized by NMR spectroscopy (Tacke, Willeke & Penka, 2001[Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236-1240.]). Our encounter with this stable cation occurred through an Si—C bond cleavage reaction involving (CH2)3Si(OPO)2 to yield (I)[link] and through siloxane bond cleavage in Me3SiOSi(OPO)2Cl to form (II)[link]. We have additionally encountered the formation of the novel related sulfur analog, [Si(OPTO)3]+, OPTO = 1-oxo-2-pyridine­thione, also by an Si—C bond cleavage reaction involving (η1-all­yl)2Si(OPTO)Cl to afford (III)[link]. The driving force for the formation of the complexes is likely due to a combination of stabilizing lattice energy due to salt formation, ligand-binding strength enhanced by the chelate effect, and the added stabilization due to π-electron delocalization that occurs within the OPO and OPTO ligands upon chelation.

[Scheme 1]
[Scheme 2]
[Scheme 3]

2. Structural commentary

The silicon atom in the structures of (I)[link] and (II)[link] is hexa­coordinate, chelated by three bidentate OPO ligands (Figs. 1[link] and 2[link]). The isosteric ligands are disordered over the two possible coplanar orientations, such that each nitro­gen atom and its neighboring carbon atom are modeled as disordered with each other, which indicates both fac and mer isomers in each. The Si—O bond lengths in (I)[link] and (II)[link] span a narrow range from 1.7695 (10)–1.7774 (10) Å and 1.7727 (10)–1.7830 (10) Å, respectively (Tables 1[link] and 2[link]). The O—Si—O ligand bite angles in (I)[link] and (II)[link] range from 86.99 (5)–87.24 (4)° and 87.28 (4)–87.38 (4)°, respectively. The trans-O—Si—O angles in (I)[link] and (II)[link] have a maximum deviation from ideal (i.e., 180°) of 7.06 (5) and 5.98 (5)°, respectively. The planes formed by the O2Si chelate rings and the corresponding planar OPO ligand deviate from coplanarity by 9.98 (4), 4.96 (2), and 1.29 (2)° in (I)[link] and by 4.91 (4), 2.15 (2), and 0.61 (4)° in (II)[link].

Table 1
Selected bond lengths (Å) for (I)[link]

Si1—O3 1.7695 (10) Si1—O1 1.7767 (10)
Si1—O2 1.7727 (10) Si1—O4 1.7773 (10)
Si1—O6 1.7736 (10) Si1—O5 1.7774 (10)

Table 2
Selected bond lengths (Å) for (II)[link]

Si1—O1 1.7727 (10) Si1—O5 1.7803 (10)
Si1—O6 1.7729 (9) Si1—O4 1.7808 (10)
Si1—O3 1.7782 (9) Si1—O2 1.7830 (10)
[Figure 1]
Figure 1
The structures of the molecular components in (I)[link], with displacement ellipsoids drawn at the 50% probability level. The minor components of the ligand disorders are not shown.
[Figure 2]
Figure 2
The molecular structure of the cation and the Cl anion in (II)[link], with displacement ellipsoids drawn at the 50% probability level. The minor components of the ligand disorders and the unmodeled solvent (see text) are not shown.

The cationic complex (III)[link] is octa­hedral (Fig. 3[link]) with the central Si atom being chelated by three OPTO ligands in a facial arrangement. The trans-O—Si—S angles deviate by 6.00 (5)° from ideal (only one unique value due to threefold symmetry, Table 3[link]). The O—Si—S bite angles are 88.33 (4)°, ∼1° larger than those of the OPO structures. The Si—O distance is 1.7784 (14) Å, and compares similarly with those of (I)[link] and (II)[link] and is typical of Si—O single-bond lengths. The N—O bond is shorter than in the protonated HOPTO ligand [1.359 (2) versus 1.373 (2) Å; CSD refcode GIJCAD01, Bond & Jones, 1999[Bond, A. & Jones, W. (1999). Acta Cryst. C55, 1536-1538.], Cambridge Structural Database (CSD), Version 5.36, update No. 3, May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). Evidence of a π-electron delocalized structure is given by (1): the Si—S distance of 2.2654 (7) Å, which is similar to Si—S single-bond lengths in hexa­coordinate neutral thio­pheno­late complexes (range = 2.231–2.314 Å, CSD refcodes BOHQIZ, BOXQOV, BOXQUB, BOXRAI, WALTOU, WALTUA) and (2): the C—S bond length of 1.7184 (19) Å, which compares inter­mediately between the C=S double bond of HOPTO [1.693 (2) Å] and the mean C—S single bonds of 155 phenyl­thiols (C—Savg 1.764 Å). However, all four C—C bond lengths in the pyridine ring are unchanged or slightly longer than those in HOPTO, which is inconsistent with the canonical pattern of bond shortening and lengthening that might be expected with π-electron delocalization. The OSSi chelate rings and the corresponding planar OPTO ligands are folded with a dihedral angle of 12.08 (3)°.

Table 3
Selected geometric parameters (Å, °) for (III)[link]

Si1—O1 1.7784 (14) Si1—S1 2.2654 (7)
       
O1—Si1—S1 88.33 (4) O1—Si1—S1i 174.00 (5)
Symmetry code: (i) y, z, x.
[Figure 3]
Figure 3
The structures of the molecular components and the Cl anion (III)[link] with displacement ellipsoids drawn at the 50% probability level. All species lie along crystallographic threefold axes, and full mol­ecules are generated with the following symmetry codes. Si(OPTO)3+: (y, z, x) and (z, x, y); CDCl3 (containing atom C6): (y, z, x) and (z, x, y); CDCl3 (containing atom C7): (−[{1\over 2}] + z, [{1\over 2}] − x, 1 − y) and ([{1\over 2}] − y, 1 − z, [{1\over 2}] + x).

3. Supra­molecular features

In (II)[link] there are two C—H⋯Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms, 3.45 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Atom C2 is 3.4206 (14) Å from atom Cl1 (symmetry operator: −x, −y + 1, −z + 2) and atom C10 is 3.4018 (18) Å from atom Cl1 (symmetry operator: x, y − 1, z).

4. Database survey

A CSD search (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed one hit of the homoleptic cation in the form of [Si(OPO)3][CF3SO3]·0.5HOPO (CSD refcode QOXSIF; Tacke, Willeke & Penka, 2001[Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236-1240.]). The Si—O bond lengths and bite angles in (I)[link] and (II)[link] are similar to those of QOXSIF. The dihedral angles formed between the O2Si chelate and OPO ligands are also similar to those of QOXSIF (9.39, 3.08, and 2.41°). Structures of monodentate organosilicon OPO complexes include Ph3Si(OPO)·Ph3Si(OH)·0.5n-pentane, Me3Si(OPO), and tBu2Si(κ1-OPO)(κ2-OPO) (respective CSD refcodes NITRIT, NITROZ, and NITSOA; Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]), and of bidentate organosilicon OPO complexes include Ph2Si(OPO)2, Me2Si(OPO)Cl, Ph3Si(OPO), Me2Si(OPO)2, Et2Si(OPO)2, iPr2Si(OPO)2, tBu2Si(κ1-OPO)(κ2-OPO), and (CH2)3Si(OPO)2 (respective CSD refcodes NISMIN, NISMOT, NITRUF, NITSAM, NITSEQ, NITSOA, NITSIU, and NITSUG; Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]), and [Si(OPO)2(μ-CH2CH2SCH2C(=O)O)]2·2CH3CN and [O(CH2)3]Si(OPO)2 (respective CSD refcodes UBUWET and UBUWIX; Tacke, Burschka et al., 2001[Tacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671-1674.]). (I)[link] and (II)[link] have 0.06–0.17 Å shorter Si—O bond lengths and 3–5° larger ligand bite angles than those in chelated R2Si(OPO)2 (R = alkyl, phen­yl) complexes, indicating a stronger chelate presumably due, in part, to their cationic character. As a result of C/N site disorders, the N—O, C—O, and C—N bond lengths are unreliable in providing evidence of π-electron delocalization. Only small changes (± ∼0.02–0.06 Å) or no change (in C3—C4) in the distances of alternating long and short C—C bonds in the pyridine ring are observed compared with the more localized π-bonding structure of the free HOPO ligand (CSD refcode JEMJUG; Ballesteros et al., 1990[Ballesteros, P., Claramunt, R. M., Cañada, T., Foces-Foces, C., Cano, F. H., Elguero, J. & Fruchier, A. J. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 1215-1219.]). The Si—O bond lengths in (I)[link] and (II)[link] are similar to those of other cationic SiO6 cores (CSD refcodes CUZKOX: Ueyama et al., 1985[Ueyama, K., Matsubayashi, G.-E., Shimohara, I., Tanaka, T. & Nakatsu, K. (1985). J. Chem. Res. 2, 48-49.]; EJOBUB: Sarkar et al., 2011[Sarkar, A., Tham, F. S. & Haddon, R. C. (2011). J. Mater. Chem. 21, 1574-1581.], JAZPIK: Pal et al., 2005[Pal, S. K., Tham, F. S., Reed, R. W., Oakley, R. T. & Haddon, R. C. (2005). Polyhedron, 24, 2076-2083.]; PUMBUU: Kira et al., 1998[Kira, M., Zhang, L. C., Kabuto, C. & Sakurai, H. (1998). Organometallics, 17, 887-892.]; VILLUX: Thewalt & Link, 1991[Thewalt, U. & Link, U. (1991). Z. Naturforsch. Teil B, 46, 293-296.]). There are two other non-silicon homoleptic M(OPO)3 (M = Fe, Co) structures known (CSD refcodes DAGZOA and DAGZIU01; Scarrow et al., 1985[Scarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. L. & Raymond, K. N. (1985). Inorg. Chem. 24, 954-967.]).

There are currently no structurally characterized silicon OPTO complexes. Other triply ligated homoleptic M(OPTO)3 structures are: M = Cr (CSD refcode ZUZWEW; Wen et al., 1996[Wen, T.-B., Shi, J.-C., Liu, Q.-T., Kang, B.-S., Wu, B.-M. & Mak, T. C. W. (1996). Acta Cryst. C52, 1204-1206.]), M = Mn (IFOPAU: Liaw et al., 2002[Liaw, W.-F., Hsieh, C.-H., Peng, S.-M. & Lee, G.-H. (2002). Inorg. Chim. Acta, 332, 153-159.]; SUJYEB: Manivannan et al., 1993[Manivannan, V., Dutta, S., Basu, P. & Chakravorty, A. (1993). Inorg. Chem. 32, 769-771.]), M = Fe (PEDEKO; Hu et al., 1993[Hu, Y.-H., Chen, X.-T., Dai, L., Weng, L.-H. & Kang, B.-S. (1993). Jiegou Huaxue, 12, 38-42.]), M = Co (VOGHAA: Hu et al., 1991[Hu, Y., Weng, L., Huang, L., Chen, X., Wu, D. & Kang, B. (1991). Acta Cryst. C47, 2655-2656.]; SUJYAX, SUJYEB: Manivannan et al., 1993[Manivannan, V., Dutta, S., Basu, P. & Chakravorty, A. (1993). Inorg. Chem. 32, 769-771.]; WINFUU, WINGAB: Xu et al., 1995[Xu, Y.-J., Kang, B.-S., Chen, X.-T. & Huang, L.-R. (1995). Acta Cryst. C51, 370-374.]; ROLQUE: Tong et al., 2001[Tong, Y. X., Cai, Y. P., Zhang, H. X., Deng, L. R., Yu, X. L., Chen, X. M. & Kang, B. S. (2001). Pol. J. Chem. 75, 1219-1228.]; UGUCUU: Fang et al., 2002[Fang, Y.-P., Chen, C.-L., Wang, X.-J., Kang, B.-S., Yu, K. & Su, C.-Y. (2002). Acta Cryst. E58, m480-m481.]), M = In, Tl (JIVQAG, JIVQE; Rodríguez et al., 1998[Rodríguez, A., Romero, J., García-Vázquez, J. A., Sousa, A., Zubieta, J., Rose, D. J. & Maresca, K. (1998). Inorg. Chim. Acta, 281, 70-76.]), M = Bi (BEHDOI; Niu et al., 2003[Niu, D.-Z., Mu, L.-L., Yu, S.-Z. & Chen, J.-T. (2003). J. Chem. Crystallogr. 33, 27-31.]).

There are currently nine CSD entries for other group 14 complexes containing an OPTO ligand, all with tin: CSD refcodes ENEWEZ, ENEWID, FOFNAP/FOFNAP10, FOTBOF, IMECAE, IMECEI, IMECIM, and YEDVEI.

5. Synthesis and crystallization

[Si(OPO)3]Cl·2CDCl3 (I): (CH2)3Si(OPO)2 was prepared according to the literature method (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). (CH2)3Si(OPO)2 was heated in an oil bath at 463 K for 3 days in CDCl3 upon which crystals of (I)[link] deposited.

[Si(OPO)3]Cl·xCH3CN (II): A solution of Me3Si(OPO) (0.183 g, 1.00 mmol) in 8 ml of CH3CN was added to a solution of Me3SiOSiCl3 (98 µL, d = 1.14 g/ml, 0.50 mmol) in 4 ml of CH3CN. Me3SiOSi(OPO)2Cl is formed as an intermediate. Allowing the solution to stand undisturbed for one day resulted in precipitation of colorless crystals of (II)[link] (0.090 g) which were isolated by filtration. Evidence for the presence of fac and mer isomers was given by the presence of closely spaced OPO resonances in the 13C NMR spectrum in accord with those reported in the literature (Tacke, Willeke & Penka, 2001[Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236-1240.]). The synthesis, isolation, and characterization of Me3SiOSi(OPO)2Cl will be reported elsewhere.

[Si(OPTO)3]Cl·2CDCl3 (III): Crystals of (III)[link] deposited from a solution of (η1-all­yl)2Si(OPTO)Cl in CDCl3 upon standing for one year at room temperature in the dark. The synthesis of (η1-all­yl)2Si(OPTO)Cl will be published elsewhere.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The pyridine portions of the OPO ligands in (I)[link] and (II)[link] are modeled as disordered with the coplanar flips of themselves [0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15) for rings containing N1, N2, and N3, respectively, in (I)[link], and 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13) for rings containing N1, N2, and N3 in (II)]. The disorders were modeled by refining the nitro­gen/carbon ratios in each of the specific sites while using a common variable for pairs of sites on the same ligand. Atoms at each of these sites were constrained to be isopositional and to have equivalent anisotropic displacement parameters.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C15H12N3O6Si+·Cl·2CDCl3 C15H12N3O6Si+·Cl C15H12N3O3S3Si+·Cl·2CDCl3
Mr 634.56 393.82 682.74
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Cubic, P213
Temperature (K) 100 100 100
a, b, c (Å) 13.5133 (7), 13.5039 (7), 13.7752 (7) 6.8347 (7), 11.1232 (12), 13.1513 (14) 13.9483 (12), 13.9483 (12), 13.9483 (12)
α, β, γ (°) 90, 101.866 (1), 90 90.479 (2), 93.269 (2), 102.356 (2) 90, 90, 90
V3) 2460.0 (2) 974.85 (18) 2713.7 (7)
Z 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.90 0.29 1.03
Crystal size (mm) 0.20 × 0.18 × 0.16 0.30 × 0.30 × 0.24 0.18 × 0.18 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD Platform Bruker SMART APEXII CCD Platform Bruker SMART APEXII CCD Platform
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.667, 0.748 0.645, 0.748 0.681, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 61259, 13615, 9035 27002, 10311, 6677 66318, 5067, 4360
Rint 0.051 0.037 0.059
(sin θ/λ)max−1) 0.880 0.875 0.877
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.04 0.050, 0.132, 1.03 0.037, 0.088, 1.03
No. of reflections 13615 10311 5067
No. of parameters 310 238 103
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.85 0.45, −0.45 0.88, −0.67
Absolute structure Flack x determined using 1775 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.018 (18)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

In (II)[link] highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) function of the PLATON program, which determined there to be 54 electrons in 225 Å3 accounted for per unit cell (25 electrons in 109 Å3 in one channel, and 29 electrons in 115 Å3 in the other). Although the exact amount of solvent was unknown, the only solvent involved in the reaction was aceto­nitrile and both starting materials were confirmed by 1H NMR to be unsolvated. Thus the structure is represented as an aceto­nitrile solvate of unknown amount. Because no solvent was included in the atom list or mol­ecular formula for (II)[link], all calculated qu­anti­ties that derive from the mol­ecular formula [e.g., F(000), density, mol­ecular weight, etc.] are known to be incorrect.

D and H atoms were placed geometrically and treated as riding atoms: methine, C—D = 1.00 Å, and aromatic, C—H = 0.95 Å, with Uiso(H/D) = 1.2Ueq(C).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012). Program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015) for (I); SHELXL2014 (Sheldrick, 2015) for (II), (III). For all compounds, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) Tris[1-oxopyridine-2-olato(1-)]silicon(IV) chloride chloroform-d1 disolvate top
Crystal data top
C15H12N3O6Si+·Cl·2CDCl3F(000) = 1272
Mr = 634.56Dx = 1.713 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5133 (7) ÅCell parameters from 3986 reflections
b = 13.5039 (7) Åθ = 2.4–37.0°
c = 13.7752 (7) ŵ = 0.90 mm1
β = 101.866 (1)°T = 100 K
V = 2460.0 (2) Å3Block, pale red-yellow
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
13615 independent reflections
Radiation source: sealed tube9035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
area detector, ω scans per φθmax = 38.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 2323
Tmin = 0.667, Tmax = 0.748k = 2323
61259 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4945P]
where P = (Fo2 + 2Fc2)/3
13615 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.23776 (3)0.49175 (3)0.47775 (3)0.01307 (7)
O10.10428 (7)0.47729 (7)0.44717 (7)0.01561 (17)
O20.24538 (7)0.36073 (7)0.48242 (7)0.01631 (17)
O30.22003 (7)0.62136 (7)0.46597 (7)0.01524 (16)
O40.25223 (7)0.49211 (7)0.35240 (7)0.01496 (16)
O50.23135 (7)0.50555 (7)0.60463 (7)0.01575 (17)
O60.37121 (7)0.49674 (7)0.51655 (7)0.01554 (17)
N10.07670 (9)0.38170 (8)0.45015 (8)0.0137 (2)0.574 (15)
N20.21142 (9)0.65110 (8)0.37143 (8)0.0146 (2)0.696 (15)
N30.32336 (9)0.51079 (9)0.66292 (8)0.0149 (2)0.621 (15)
N1'0.15514 (9)0.31791 (9)0.47064 (9)0.0150 (2)0.426 (15)
N2'0.22799 (9)0.57936 (9)0.30881 (9)0.0146 (2)0.304 (15)
N3'0.40015 (9)0.50504 (9)0.61468 (8)0.0135 (2)0.379 (15)
C10.15514 (9)0.31791 (9)0.47064 (9)0.0150 (2)0.574 (15)
C1'0.07670 (9)0.38170 (8)0.45015 (8)0.0137 (2)0.426 (15)
C20.13816 (12)0.21819 (10)0.47797 (10)0.0194 (2)
H20.19290.17280.49360.023*
C30.03977 (12)0.18600 (11)0.46201 (11)0.0228 (3)
H30.02630.11730.46630.027*
C40.04059 (12)0.25241 (12)0.43964 (11)0.0228 (3)
H40.10830.22910.42890.027*
C50.02127 (10)0.35157 (11)0.43323 (10)0.0189 (2)
H50.07500.39800.41740.023*
C60.22799 (9)0.57936 (9)0.30881 (9)0.0146 (2)0.696 (15)
C6'0.21142 (9)0.65110 (8)0.37143 (8)0.0146 (2)0.304 (15)
C70.21831 (10)0.59879 (10)0.20932 (10)0.0177 (2)
H70.22930.54850.16450.021*
C80.19215 (11)0.69353 (11)0.17687 (11)0.0208 (3)
H80.18330.70870.10830.025*
C90.17853 (11)0.76731 (11)0.24355 (11)0.0215 (3)
H90.16250.83280.22050.026*
C100.18812 (11)0.74589 (10)0.34229 (11)0.0187 (2)
H100.17880.79540.38860.022*
C110.40015 (9)0.50504 (9)0.61468 (8)0.0135 (2)0.621 (15)
C11'0.32336 (9)0.51079 (9)0.66292 (8)0.0149 (2)0.379 (15)
C120.49892 (10)0.50876 (10)0.66439 (10)0.0169 (2)
H120.55280.50490.62980.020*
C130.51771 (11)0.51829 (11)0.76596 (10)0.0211 (3)
H130.58540.52040.80250.025*
C140.43758 (12)0.52481 (11)0.81544 (10)0.0214 (3)
H140.45100.53160.88560.026*
C150.33966 (11)0.52145 (10)0.76344 (10)0.0182 (2)
H150.28470.52640.79640.022*
Cl10.20123 (3)0.95652 (2)0.49660 (2)0.01944 (6)
C160.47965 (12)0.85178 (11)0.41139 (11)0.0230 (3)
D160.43480.86960.45810.028*
Cl20.59065 (3)0.92375 (3)0.44147 (3)0.02772 (8)
Cl30.41495 (3)0.87758 (4)0.29021 (3)0.03465 (10)
Cl40.50920 (4)0.72498 (3)0.42591 (4)0.03726 (10)
C170.35128 (11)0.83844 (11)0.70226 (11)0.0211 (3)
D170.31350.88970.65690.025*
Cl50.26553 (3)0.77821 (3)0.76321 (3)0.02750 (8)
Cl60.40505 (3)0.75370 (3)0.63070 (3)0.02850 (8)
Cl70.44653 (3)0.89800 (3)0.78891 (3)0.02811 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01221 (14)0.01345 (15)0.01315 (14)0.00003 (11)0.00173 (11)0.00084 (11)
O10.0135 (4)0.0115 (4)0.0211 (4)0.0006 (3)0.0019 (3)0.0015 (3)
O20.0136 (4)0.0141 (4)0.0207 (4)0.0013 (3)0.0024 (3)0.0007 (3)
O30.0192 (4)0.0140 (4)0.0124 (4)0.0008 (3)0.0031 (3)0.0008 (3)
O40.0167 (4)0.0136 (4)0.0138 (4)0.0025 (3)0.0014 (3)0.0003 (3)
O50.0124 (4)0.0209 (4)0.0140 (4)0.0001 (3)0.0027 (3)0.0001 (3)
O60.0127 (4)0.0227 (5)0.0109 (4)0.0005 (3)0.0015 (3)0.0016 (3)
N10.0142 (5)0.0124 (4)0.0142 (5)0.0003 (4)0.0023 (4)0.0016 (4)
N20.0149 (5)0.0141 (5)0.0145 (5)0.0018 (4)0.0020 (4)0.0007 (4)
N30.0163 (5)0.0142 (5)0.0137 (5)0.0006 (4)0.0023 (4)0.0006 (4)
N1'0.0150 (5)0.0138 (5)0.0158 (5)0.0003 (4)0.0025 (4)0.0002 (4)
N2'0.0142 (5)0.0151 (5)0.0140 (5)0.0000 (4)0.0018 (4)0.0004 (4)
N3'0.0141 (5)0.0136 (5)0.0124 (5)0.0004 (4)0.0017 (4)0.0002 (4)
C10.0150 (5)0.0138 (5)0.0158 (5)0.0003 (4)0.0025 (4)0.0002 (4)
C1'0.0142 (5)0.0124 (4)0.0142 (5)0.0003 (4)0.0023 (4)0.0016 (4)
C20.0271 (7)0.0134 (5)0.0180 (6)0.0015 (5)0.0054 (5)0.0013 (4)
C30.0331 (8)0.0163 (6)0.0188 (6)0.0086 (5)0.0053 (5)0.0004 (5)
C40.0226 (6)0.0255 (7)0.0199 (6)0.0105 (5)0.0037 (5)0.0025 (5)
C50.0138 (5)0.0240 (6)0.0188 (6)0.0017 (5)0.0031 (4)0.0029 (5)
C60.0142 (5)0.0151 (5)0.0140 (5)0.0000 (4)0.0018 (4)0.0004 (4)
C6'0.0149 (5)0.0141 (5)0.0145 (5)0.0018 (4)0.0020 (4)0.0007 (4)
C70.0176 (5)0.0206 (6)0.0148 (5)0.0006 (5)0.0033 (4)0.0002 (4)
C80.0211 (6)0.0234 (6)0.0177 (6)0.0003 (5)0.0037 (5)0.0048 (5)
C90.0236 (6)0.0161 (6)0.0249 (7)0.0003 (5)0.0050 (5)0.0055 (5)
C100.0199 (6)0.0137 (5)0.0229 (6)0.0014 (4)0.0057 (5)0.0001 (4)
C110.0141 (5)0.0136 (5)0.0124 (5)0.0004 (4)0.0017 (4)0.0002 (4)
C11'0.0163 (5)0.0142 (5)0.0137 (5)0.0006 (4)0.0023 (4)0.0006 (4)
C120.0138 (5)0.0169 (5)0.0195 (6)0.0002 (4)0.0019 (4)0.0009 (4)
C130.0207 (6)0.0205 (6)0.0186 (6)0.0009 (5)0.0043 (5)0.0007 (5)
C140.0305 (7)0.0193 (6)0.0127 (5)0.0022 (5)0.0003 (5)0.0003 (4)
C150.0245 (6)0.0172 (5)0.0136 (5)0.0009 (5)0.0054 (5)0.0008 (4)
Cl10.02314 (15)0.01732 (13)0.01640 (13)0.00044 (11)0.00069 (11)0.00007 (10)
C160.0255 (7)0.0195 (6)0.0223 (6)0.0015 (5)0.0013 (5)0.0020 (5)
Cl20.02631 (17)0.02598 (17)0.02676 (17)0.00130 (13)0.00412 (14)0.00140 (13)
Cl30.02946 (19)0.0446 (2)0.02482 (18)0.00543 (17)0.00619 (15)0.00552 (16)
Cl40.0459 (3)0.01883 (17)0.0466 (3)0.00556 (16)0.0084 (2)0.00106 (16)
C170.0231 (6)0.0175 (6)0.0213 (6)0.0024 (5)0.0015 (5)0.0001 (5)
Cl50.02676 (17)0.02573 (17)0.02922 (18)0.00212 (14)0.00391 (14)0.00239 (14)
Cl60.0362 (2)0.02194 (16)0.02728 (18)0.00365 (14)0.00644 (15)0.00488 (13)
Cl70.02268 (16)0.02851 (18)0.03154 (19)0.00142 (13)0.00187 (14)0.01005 (14)
Geometric parameters (Å, º) top
Si1—O31.7695 (10)C5—H50.9500
Si1—O21.7727 (10)C7—C81.377 (2)
Si1—O61.7736 (10)C7—H70.9500
Si1—O11.7767 (10)C8—C91.393 (2)
Si1—O41.7773 (10)C8—H80.9500
Si1—O51.7774 (10)C9—C101.370 (2)
O1—N11.3465 (15)C9—H90.9500
O2—N1'1.3290 (15)C10—H100.9500
O3—N21.3448 (14)C12—C131.376 (2)
O4—N2'1.3323 (15)C12—H120.9500
O5—N31.3361 (15)C13—C141.396 (2)
O6—N3'1.3325 (15)C13—H130.9500
N1—C51.3586 (17)C14—C151.370 (2)
N2—C101.3591 (18)C14—H140.9500
N3—C151.3643 (17)C15—H150.9500
N1'—C21.3732 (18)C16—Cl31.7528 (15)
N2'—C71.3750 (18)C16—Cl41.7603 (15)
N3'—C121.3700 (17)C16—Cl21.7637 (16)
C2—C31.373 (2)C16—D161.0000
C2—H20.9500C17—Cl71.7596 (15)
C3—C41.393 (2)C17—Cl61.7618 (15)
C3—H30.9500C17—Cl51.7634 (16)
C4—C51.371 (2)C17—D171.0000
C4—H40.9500
O3—Si1—O2175.08 (5)N1—C5—H5120.9
O3—Si1—O695.75 (5)C4—C5—H5120.9
O2—Si1—O688.80 (5)N2'—C7—C8117.79 (13)
O3—Si1—O188.58 (5)C8—C7—H7121.1
O2—Si1—O186.99 (5)C7—C8—C9120.70 (13)
O6—Si1—O1174.48 (5)C7—C8—H8119.7
O3—Si1—O487.03 (4)C9—C8—H8119.7
O2—Si1—O491.19 (5)C10—C9—C8120.34 (13)
O6—Si1—O489.11 (4)C10—C9—H9119.8
O1—Si1—O494.54 (5)C8—C9—H9119.8
O3—Si1—O587.33 (5)N2—C10—C9117.44 (13)
O2—Si1—O594.77 (5)N2—C10—H10121.3
O6—Si1—O587.24 (4)C9—C10—H10121.3
O1—Si1—O589.56 (5)N3'—C12—C13117.96 (13)
O4—Si1—O5172.94 (5)C13—C12—H12121.0
N1—O1—Si1111.84 (8)C12—C13—C14120.20 (13)
N1'—O2—Si1112.63 (8)C12—C13—H13119.9
N2—O3—Si1111.55 (8)C14—C13—H13119.9
N2'—O4—Si1111.98 (8)C15—C14—C13120.37 (13)
N3—O5—Si1111.66 (8)C15—C14—H14119.8
N3'—O6—Si1112.15 (8)C13—C14—H14119.8
O1—N1—C5123.22 (11)N3—C15—C14118.12 (13)
O3—N2—C10122.40 (11)N3—C15—H15120.9
O5—N3—C15123.49 (12)C14—C15—H15120.9
O2—N1'—C2125.51 (12)Cl3—C16—Cl4111.02 (9)
O4—N2'—C7125.60 (12)Cl3—C16—Cl2110.35 (8)
O6—N3'—C12124.24 (11)Cl4—C16—Cl2110.31 (8)
C3—C2—N1'118.02 (13)Cl3—C16—D16108.4
C3—C2—H2121.0Cl4—C16—D16108.4
C2—C3—C4121.11 (13)Cl2—C16—D16108.4
C2—C3—H3119.4Cl7—C17—Cl6110.37 (8)
C4—C3—H3119.4Cl7—C17—Cl5110.40 (8)
C5—C4—C3119.54 (13)Cl6—C17—Cl5110.72 (8)
C5—C4—H4120.2Cl7—C17—D17108.4
C3—C4—H4120.2Cl6—C17—D17108.4
N1—C5—C4118.25 (13)Cl5—C17—D17108.4
O3—Si1—O1—N1177.57 (8)O5—Si1—O6—N3'1.60 (9)
O2—Si1—O1—N14.57 (8)Si1—O1—N1—C5177.54 (10)
O4—Si1—O1—N195.53 (8)Si1—O3—N2—C10173.83 (10)
O5—Si1—O1—N190.23 (8)Si1—O5—N3—C15179.99 (10)
O6—Si1—O2—N1'171.18 (9)Si1—O2—N1'—C2175.03 (11)
O1—Si1—O2—N1'5.25 (9)Si1—O4—N2'—C7170.73 (11)
O4—Si1—O2—N1'99.73 (9)Si1—O6—N3'—C12178.86 (10)
O5—Si1—O2—N1'84.05 (9)O2—N1'—C2—C3178.96 (12)
O6—Si1—O3—N297.69 (8)N1'—C2—C3—C40.4 (2)
O1—Si1—O3—N285.74 (8)C2—C3—C4—C50.1 (2)
O4—Si1—O3—N28.88 (8)O1—N1—C5—C4179.05 (12)
O5—Si1—O3—N2175.36 (8)C3—C4—C5—N10.7 (2)
O3—Si1—O4—N2'9.74 (8)O4—N2'—C7—C8179.67 (12)
O2—Si1—O4—N2'165.67 (8)N2'—C7—C8—C91.5 (2)
O6—Si1—O4—N2'105.55 (9)C7—C8—C9—C101.9 (2)
O1—Si1—O4—N2'78.60 (9)O3—N2—C10—C9178.23 (12)
O3—Si1—O5—N396.91 (9)C8—C9—C10—N20.2 (2)
O2—Si1—O5—N387.55 (9)O6—N3'—C12—C13179.45 (12)
O6—Si1—O5—N31.02 (9)N3'—C12—C13—C140.6 (2)
O1—Si1—O5—N3174.49 (8)C12—C13—C14—C150.2 (2)
O3—Si1—O6—N3'88.63 (9)O5—N3—C15—C14179.28 (12)
O2—Si1—O6—N3'93.24 (9)C13—C14—C15—N30.5 (2)
O4—Si1—O6—N3'175.55 (9)
(II) Tris[1-oxopyridine-2-olato(1-)]silicon(IV) chloride acetonitrile unknown solvate top
Crystal data top
C15H12N3O6Si+·ClZ = 2
Mr = 393.82F(000) = 404
Triclinic, P1Dx = 1.342 Mg m3
a = 6.8347 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1232 (12) ÅCell parameters from 4067 reflections
c = 13.1513 (14) Åθ = 2.5–36.4°
α = 90.479 (2)°µ = 0.29 mm1
β = 93.269 (2)°T = 100 K
γ = 102.356 (2)°Block, colorless
V = 974.85 (18) Å30.30 × 0.30 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
6677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω scansθmax = 38.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1111
Tmin = 0.645, Tmax = 0.748k = 1919
27002 measured reflectionsl = 2222
10311 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.1944P]
where P = (Fo2 + 2Fc2)/3
10311 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE function of program PLATON (Spek, 2009), which determined there to be 54 electrons in 225 Å3 accounted for per unit cell (25 electrons in 109 Å3 in one channel, and 29 electrons in 115 Å3 in the other). Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula (e.g., F(000), density, molecular weight, etc.) are known to be incorrect.

The pyridine portions of the oxopyridinone ligands are modeled as disordered with the planar flips of themselves (0.55:0.45, 0.60:0.40, and 0.61:0.39, for rings containing N1, N2, and N3, respectively). The disorders were modeled by refining the nitrogen/carbon ratios at the six particular atom sites, and refining the same ratio variable for pairs that were on the same ligand. Atoms at each of the six sites were constrained to be isopositional and to have equivalent anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.12051 (5)0.29394 (3)0.75582 (3)0.01923 (7)
Cl10.28682 (5)0.69679 (3)0.72923 (3)0.02991 (8)
O10.24002 (13)0.45107 (8)0.77479 (7)0.02124 (16)
O20.07949 (13)0.29060 (9)0.88854 (7)0.02376 (18)
O30.35872 (12)0.25406 (8)0.77135 (7)0.02194 (17)
O40.01261 (14)0.13330 (9)0.74814 (8)0.02702 (19)
O50.15614 (13)0.30843 (9)0.62308 (7)0.02244 (17)
O60.12215 (13)0.32303 (9)0.72917 (7)0.02439 (18)
N10.25249 (16)0.48589 (11)0.87312 (9)0.0221 (2)0.555 (13)
N20.15376 (18)0.06613 (11)0.75335 (10)0.0268 (3)0.604 (14)
N30.00733 (16)0.33084 (10)0.57121 (8)0.0206 (2)0.611 (13)
C10.16641 (16)0.39789 (12)0.93573 (9)0.0230 (2)0.555 (13)
C60.34428 (18)0.13298 (11)0.76534 (10)0.0247 (2)0.604 (14)
C110.15960 (16)0.34008 (11)0.63017 (9)0.0221 (2)0.611 (13)
C1'0.25249 (16)0.48589 (11)0.87312 (9)0.0221 (2)0.445 (13)
C6'0.15376 (18)0.06613 (11)0.75335 (10)0.0268 (3)0.396 (14)
C11'0.00733 (16)0.33084 (10)0.57121 (8)0.0206 (2)0.389 (13)
N1'0.16641 (16)0.39789 (12)0.93573 (9)0.0230 (2)0.445 (13)
N2'0.34428 (18)0.13298 (11)0.76534 (10)0.0247 (2)0.396 (14)
N3'0.15960 (16)0.34008 (11)0.63017 (9)0.0221 (2)0.389 (13)
C20.17350 (19)0.41721 (15)1.03917 (10)0.0288 (3)
H20.11590.35341.08290.035*
C30.2666 (2)0.53190 (17)1.07748 (11)0.0354 (3)
H30.27330.54811.14880.042*
C40.3511 (2)0.62439 (15)1.01246 (12)0.0336 (3)
H40.41190.70401.03940.040*
C50.34709 (19)0.60096 (13)0.90880 (11)0.0279 (3)
H50.40780.66250.86390.034*
C70.5050 (2)0.07662 (16)0.77229 (14)0.0419 (4)
H70.63880.12330.78070.050*
C80.4648 (4)0.0500 (2)0.7667 (2)0.0644 (6)
H80.57230.09190.77130.077*
C90.2670 (4)0.11734 (17)0.75419 (19)0.0637 (6)
H90.24140.20470.75050.076*
C100.1110 (3)0.05921 (14)0.74725 (15)0.0438 (4)
H100.02360.10460.73840.053*
C120.33579 (19)0.36479 (14)0.58824 (12)0.0304 (3)
H120.44230.37200.62970.037*
C130.3527 (2)0.37871 (14)0.48454 (12)0.0357 (3)
H130.47300.39480.45340.043*
C140.1941 (2)0.36936 (13)0.42463 (11)0.0327 (3)
H140.20680.38030.35320.039*
C150.0198 (2)0.34451 (12)0.46814 (10)0.0264 (2)
H150.08820.33710.42790.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01513 (13)0.02434 (16)0.01861 (15)0.00486 (11)0.00187 (11)0.00053 (11)
Cl10.02417 (14)0.03503 (17)0.03014 (17)0.00432 (12)0.00548 (11)0.00471 (13)
O10.0231 (4)0.0246 (4)0.0161 (4)0.0050 (3)0.0017 (3)0.0003 (3)
O20.0223 (4)0.0297 (4)0.0203 (4)0.0069 (3)0.0041 (3)0.0028 (3)
O30.0170 (4)0.0237 (4)0.0257 (4)0.0060 (3)0.0001 (3)0.0006 (3)
O40.0209 (4)0.0258 (4)0.0335 (5)0.0039 (3)0.0018 (4)0.0007 (4)
O50.0179 (4)0.0313 (4)0.0189 (4)0.0073 (3)0.0006 (3)0.0013 (3)
O60.0177 (4)0.0354 (5)0.0218 (4)0.0091 (3)0.0021 (3)0.0042 (4)
N10.0167 (4)0.0310 (6)0.0206 (5)0.0102 (4)0.0003 (4)0.0041 (4)
N20.0251 (5)0.0252 (5)0.0293 (6)0.0052 (4)0.0039 (4)0.0045 (4)
N30.0188 (4)0.0231 (5)0.0196 (5)0.0041 (4)0.0009 (4)0.0017 (4)
C10.0170 (4)0.0368 (6)0.0182 (5)0.0129 (4)0.0007 (4)0.0009 (4)
C60.0230 (5)0.0255 (5)0.0265 (6)0.0081 (4)0.0007 (4)0.0029 (4)
C110.0179 (4)0.0277 (5)0.0211 (5)0.0061 (4)0.0005 (4)0.0013 (4)
C1'0.0167 (4)0.0310 (6)0.0206 (5)0.0102 (4)0.0003 (4)0.0041 (4)
C6'0.0251 (5)0.0252 (5)0.0293 (6)0.0052 (4)0.0039 (4)0.0045 (4)
C11'0.0188 (4)0.0231 (5)0.0196 (5)0.0041 (4)0.0009 (4)0.0017 (4)
N1'0.0170 (4)0.0368 (6)0.0182 (5)0.0129 (4)0.0007 (4)0.0009 (4)
N2'0.0230 (5)0.0255 (5)0.0265 (6)0.0081 (4)0.0007 (4)0.0029 (4)
N3'0.0179 (4)0.0277 (5)0.0211 (5)0.0061 (4)0.0005 (4)0.0013 (4)
C20.0193 (5)0.0548 (9)0.0174 (5)0.0194 (5)0.0010 (4)0.0006 (5)
C30.0226 (6)0.0654 (10)0.0240 (6)0.0243 (6)0.0038 (5)0.0141 (6)
C40.0215 (6)0.0463 (8)0.0354 (8)0.0155 (6)0.0073 (5)0.0177 (6)
C50.0185 (5)0.0335 (7)0.0335 (7)0.0104 (5)0.0019 (5)0.0067 (5)
C70.0306 (7)0.0450 (9)0.0548 (11)0.0208 (7)0.0046 (7)0.0084 (8)
C80.0654 (13)0.0514 (11)0.0862 (17)0.0405 (11)0.0166 (12)0.0175 (11)
C90.0809 (16)0.0280 (8)0.0836 (17)0.0226 (9)0.0216 (13)0.0183 (9)
C100.0499 (10)0.0241 (7)0.0529 (11)0.0030 (6)0.0146 (8)0.0060 (7)
C120.0190 (5)0.0378 (7)0.0359 (7)0.0098 (5)0.0014 (5)0.0046 (6)
C130.0337 (7)0.0370 (7)0.0363 (8)0.0117 (6)0.0141 (6)0.0001 (6)
C140.0476 (8)0.0264 (6)0.0225 (6)0.0076 (6)0.0100 (6)0.0020 (5)
C150.0352 (7)0.0236 (6)0.0199 (6)0.0051 (5)0.0020 (5)0.0032 (4)
Geometric parameters (Å, º) top
Si1—O11.7727 (10)C6'—N2'1.3542 (17)
Si1—O61.7729 (9)C6'—C101.3626 (19)
Si1—O31.7782 (9)C11'—N3'1.3533 (15)
Si1—O51.7803 (10)C11'—C151.3651 (17)
Si1—O41.7808 (10)N1'—C21.3719 (17)
Si1—O21.7830 (10)N2'—C71.3755 (18)
O1—C1'1.3396 (14)N3'—C121.3777 (16)
O1—N11.3396 (14)C2—C31.375 (2)
O2—N1'1.3433 (16)C2—H20.9500
O2—C11.3433 (16)C3—C41.393 (2)
O3—N2'1.3305 (15)C3—H30.9500
O3—C61.3305 (15)C4—C51.383 (2)
O4—C6'1.3399 (15)C4—H40.9500
O4—N21.3399 (15)C5—H50.9500
O5—C11'1.3457 (13)C7—C81.376 (3)
O5—N31.3457 (13)C7—H70.9500
O6—N3'1.3356 (14)C8—C91.398 (3)
O6—C111.3356 (14)C8—H80.9500
N1—C11.3434 (17)C9—C101.360 (3)
N1—C51.3703 (18)C9—H90.9500
N2—C61.3542 (17)C10—H100.9500
N2—C101.3626 (19)C12—C131.375 (2)
N3—C111.3533 (15)C12—H120.9500
N3—C151.3651 (17)C13—C141.397 (2)
C1—C21.3719 (17)C13—H130.9500
C6—C71.3755 (18)C14—C151.374 (2)
C11—C121.3777 (16)C14—H140.9500
C1'—N1'1.3434 (17)C15—H150.9500
C1'—C51.3703 (18)
O1—Si1—O694.90 (5)N3'—C11'—C15122.31 (11)
O1—Si1—O389.28 (4)O2—N1'—C1'114.28 (10)
O6—Si1—O3174.02 (5)O2—N1'—C2123.88 (12)
O1—Si1—O589.48 (4)C1'—N1'—C2121.81 (13)
O6—Si1—O587.36 (4)O3—N2'—C6'114.34 (10)
O3—Si1—O588.40 (4)O3—N2'—C7124.56 (13)
O1—Si1—O4174.42 (5)C6'—N2'—C7121.09 (13)
O6—Si1—O488.77 (5)O6—N3'—C11'114.24 (10)
O3—Si1—O487.38 (4)O6—N3'—C12124.74 (11)
O5—Si1—O494.90 (5)C11'—N3'—C12121.02 (12)
O1—Si1—O287.28 (4)N1'—C2—C3117.86 (14)
O6—Si1—O289.96 (4)C1—C2—C3117.86 (14)
O3—Si1—O294.51 (4)C1—C2—H2121.1
O5—Si1—O2175.60 (5)C3—C2—H2121.1
O4—Si1—O288.53 (5)C2—C3—C4120.44 (13)
C1'—O1—Si1111.97 (8)C2—C3—H3119.8
N1—O1—Si1111.97 (8)C4—C3—H3119.8
N1'—O2—Si1111.62 (8)C5—C4—C3120.34 (14)
C1—O2—Si1111.62 (8)C5—C4—H4119.8
N2'—O3—Si1112.12 (8)C3—C4—H4119.8
C6—O3—Si1112.12 (8)C1'—C5—C4117.69 (14)
C6'—O4—Si1111.55 (8)N1—C5—C4117.69 (14)
N2—O4—Si1111.55 (8)N1—C5—H5121.2
C11'—O5—Si1111.74 (7)C4—C5—H5121.2
N3—O5—Si1111.74 (7)N2'—C7—C8117.54 (17)
N3'—O6—Si1112.42 (7)C6—C7—C8117.54 (17)
C11—O6—Si1112.42 (7)C6—C7—H7121.2
O1—N1—C1114.61 (11)C8—C7—H7121.2
O1—N1—C5123.59 (12)C7—C8—C9120.50 (17)
C1—N1—C5121.79 (12)C7—C8—H8119.7
O4—N2—C6114.51 (11)C9—C8—H8119.7
O4—N2—C10123.25 (13)C10—C9—C8120.72 (17)
C6—N2—C10122.24 (13)C10—C9—H9119.6
O5—N3—C11114.23 (10)C8—C9—H9119.6
O5—N3—C15123.46 (11)C9—C10—N2117.90 (17)
C11—N3—C15122.31 (11)C9—C10—C6'117.90 (17)
O2—C1—N1114.28 (10)C9—C10—H10121.1
O2—C1—C2123.88 (12)N2—C10—H10121.1
N1—C1—C2121.81 (13)C13—C12—C11117.91 (13)
O3—C6—N2114.34 (10)C13—C12—N3'117.91 (13)
O3—C6—C7124.56 (13)C13—C12—H12121.0
N2—C6—C7121.09 (13)C11—C12—H12121.0
O6—C11—N3114.24 (10)C12—C13—C14120.48 (13)
O6—C11—C12124.74 (11)C12—C13—H13119.8
N3—C11—C12121.02 (12)C14—C13—H13119.8
O1—C1'—N1'114.61 (11)C15—C14—C13120.58 (13)
O1—C1'—C5123.59 (12)C15—C14—H14119.7
N1'—C1'—C5121.79 (12)C13—C14—H14119.7
O4—C6'—N2'114.51 (11)C11'—C15—C14117.70 (13)
O4—C6'—C10123.25 (13)N3—C15—C14117.70 (13)
N2'—C6'—C10122.24 (13)N3—C15—H15121.1
O5—C11'—N3'114.23 (10)C14—C15—H15121.1
O5—C11'—C15123.46 (11)
O6—Si1—O1—C1'93.66 (8)O5—N3—C11—O61.19 (15)
O3—Si1—O1—C1'90.62 (8)C15—N3—C11—O6179.43 (11)
O5—Si1—O1—C1'179.03 (7)O5—N3—C11—C12178.96 (12)
O2—Si1—O1—C1'3.93 (7)C15—N3—C11—C120.4 (2)
O6—Si1—O1—N193.66 (8)Si1—O1—C1'—N1'2.53 (12)
O3—Si1—O1—N190.62 (8)Si1—O1—C1'—C5176.61 (9)
O5—Si1—O1—N1179.03 (7)Si1—O4—C6'—N2'1.35 (15)
O2—Si1—O1—N13.93 (7)Si1—O4—C6'—C10178.70 (13)
O1—Si1—O2—N1'4.51 (7)Si1—O5—C11'—N3'1.34 (13)
O6—Si1—O2—N1'99.42 (8)Si1—O5—C11'—C15179.29 (10)
O3—Si1—O2—N1'84.55 (8)Si1—O2—N1'—C1'4.17 (12)
O4—Si1—O2—N1'171.81 (8)Si1—O2—N1'—C2174.11 (9)
O1—Si1—O2—C14.51 (7)O1—C1'—N1'—O21.10 (14)
O6—Si1—O2—C199.42 (8)C5—C1'—N1'—O2179.75 (10)
O3—Si1—O2—C184.55 (8)O1—C1'—N1'—C2177.22 (10)
O4—Si1—O2—C1171.81 (8)C5—C1'—N1'—C21.93 (17)
O1—Si1—O3—N2'178.35 (8)Si1—O3—N2'—C6'2.72 (14)
O5—Si1—O3—N2'92.16 (9)Si1—O3—N2'—C7178.47 (13)
O4—Si1—O3—N2'2.82 (9)O4—C6'—N2'—O30.90 (17)
O2—Si1—O3—N2'91.13 (9)C10—C6'—N2'—O3179.05 (14)
O1—Si1—O3—C6178.35 (8)O4—C6'—N2'—C7179.75 (14)
O5—Si1—O3—C692.16 (9)C10—C6'—N2'—C70.2 (2)
O4—Si1—O3—C62.82 (9)Si1—O6—N3'—C11'0.47 (13)
O2—Si1—O3—C691.13 (9)Si1—O6—N3'—C12179.69 (11)
O6—Si1—O4—C6'173.11 (9)O5—C11'—N3'—O61.19 (15)
O3—Si1—O4—C6'2.31 (9)C15—C11'—N3'—O6179.43 (11)
O5—Si1—O4—C6'85.86 (9)O5—C11'—N3'—C12178.96 (12)
O2—Si1—O4—C6'96.90 (9)C15—C11'—N3'—C120.4 (2)
O6—Si1—O4—N2173.11 (9)O2—N1'—C2—C3179.73 (10)
O3—Si1—O4—N22.31 (9)C1'—N1'—C2—C32.12 (17)
O5—Si1—O4—N285.86 (9)O2—C1—C2—C3179.73 (10)
O2—Si1—O4—N296.90 (9)N1—C1—C2—C32.12 (17)
O1—Si1—O5—C11'95.80 (8)N1'—C2—C3—C40.29 (18)
O6—Si1—O5—C11'0.87 (8)C1—C2—C3—C40.29 (18)
O3—Si1—O5—C11'174.91 (8)C2—C3—C4—C51.73 (19)
O4—Si1—O5—C11'87.67 (8)O1—C1'—C5—C4179.23 (10)
O1—Si1—O5—N395.80 (8)N1'—C1'—C5—C40.15 (17)
O6—Si1—O5—N30.87 (8)O1—N1—C5—C4179.23 (10)
O3—Si1—O5—N3174.91 (8)C1—N1—C5—C40.15 (17)
O4—Si1—O5—N387.67 (8)C3—C4—C5—C1'1.94 (18)
O1—Si1—O6—N3'89.47 (9)C3—C4—C5—N11.94 (18)
O5—Si1—O6—N3'0.22 (9)O3—N2'—C7—C8178.70 (17)
O4—Si1—O6—N3'94.73 (9)C6'—N2'—C7—C80.0 (3)
O2—Si1—O6—N3'176.74 (9)O3—C6—C7—C8178.70 (17)
O1—Si1—O6—C1189.47 (9)N2—C6—C7—C80.0 (3)
O5—Si1—O6—C110.22 (9)N2'—C7—C8—C90.1 (3)
O4—Si1—O6—C1194.73 (9)C6—C7—C8—C90.1 (3)
O2—Si1—O6—C11176.74 (9)C7—C8—C9—C100.1 (4)
Si1—O1—N1—C12.53 (12)C8—C9—C10—N20.3 (3)
Si1—O1—N1—C5176.61 (9)C8—C9—C10—C6'0.3 (3)
Si1—O4—N2—C61.35 (15)O4—N2—C10—C9179.58 (17)
Si1—O4—N2—C10178.70 (13)C6—N2—C10—C90.4 (3)
Si1—O5—N3—C111.34 (13)O4—C6'—C10—C9179.58 (17)
Si1—O5—N3—C15179.29 (10)N2'—C6'—C10—C90.4 (3)
Si1—O2—C1—N14.17 (12)O6—C11—C12—C13179.28 (13)
Si1—O2—C1—C2174.11 (9)N3—C11—C12—C130.6 (2)
O1—N1—C1—O21.10 (14)O6—N3'—C12—C13179.28 (13)
C5—N1—C1—O2179.75 (10)C11'—N3'—C12—C130.6 (2)
O1—N1—C1—C2177.22 (10)C11—C12—C13—C140.8 (2)
C5—N1—C1—C21.93 (17)N3'—C12—C13—C140.8 (2)
Si1—O3—C6—N22.72 (14)C12—C13—C14—C150.9 (2)
Si1—O3—C6—C7178.47 (13)O5—C11'—C15—C14178.84 (12)
O4—N2—C6—O30.90 (17)N3'—C11'—C15—C140.48 (19)
C10—N2—C6—O3179.05 (14)O5—N3—C15—C14178.84 (12)
O4—N2—C6—C7179.75 (14)C11—N3—C15—C140.48 (19)
C10—N2—C6—C70.2 (2)C13—C14—C15—C11'0.7 (2)
Si1—O6—C11—N30.47 (13)C13—C14—C15—N30.7 (2)
Si1—O6—C11—C12179.69 (11)
(III) fac-Tris[1-oxopyridine-2-thiolato(1-)]silicon(IV) chloride chloroform-d1 disolvate top
Crystal data top
C15H12N3O3S3Si+·Cl·2CDCl3Mo Kα radiation, λ = 0.71073 Å
Mr = 682.74Cell parameters from 4002 reflections
Cubic, P213θ = 2.5–33.8°
a = 13.9483 (12) ŵ = 1.03 mm1
V = 2713.7 (7) Å3T = 100 K
Z = 4Tetrahedron, pale yellow
F(000) = 13680.18 × 0.18 × 0.18 mm
Dx = 1.671 Mg m3
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
4360 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
ω scansθmax = 38.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 2424
Tmin = 0.681, Tmax = 0.748k = 2324
66318 measured reflectionsl = 2324
5067 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.2622P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5067 reflectionsΔρmax = 0.88 e Å3
103 parametersΔρmin = 0.67 e Å3
0 restraintsAbsolute structure: Flack x determined using 1775 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47976 (3)0.02024 (3)0.52024 (3)0.01864 (13)
Si10.48307 (3)0.48307 (3)0.48307 (3)0.01248 (14)
S10.47110 (3)0.49896 (3)0.64425 (3)0.01526 (8)
O10.45832 (11)0.35879 (9)0.49722 (10)0.0153 (2)
N10.46124 (12)0.31975 (11)0.58645 (11)0.0138 (2)
C10.46796 (14)0.37754 (13)0.66485 (13)0.0146 (3)
C20.47203 (16)0.33345 (14)0.75505 (14)0.0190 (3)
H20.47720.37130.81140.023*
C30.46853 (18)0.23462 (15)0.76169 (15)0.0220 (4)
H30.47080.20450.82280.026*
C40.46163 (15)0.17883 (14)0.67861 (15)0.0187 (3)
H40.45920.11090.68310.022*
C50.45834 (14)0.22276 (13)0.59068 (14)0.0161 (3)
H50.45410.18580.53370.019*
C60.30918 (15)0.30918 (15)0.30918 (15)0.0212 (6)
D60.35060.35060.35060.025*
Cl20.30061 (7)0.19603 (5)0.36357 (6)0.04462 (19)
C70.12879 (19)0.37121 (19)0.62879 (19)0.0264 (7)
D70.08740.41260.58740.032*
Cl30.21080 (7)0.44529 (6)0.68782 (8)0.0511 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01864 (13)0.01864 (13)0.01864 (13)0.00093 (14)0.00093 (14)0.00093 (14)
Si10.01248 (14)0.01248 (14)0.01248 (14)0.00028 (14)0.00028 (14)0.00028 (14)
S10.01940 (18)0.01277 (16)0.01360 (16)0.00101 (14)0.00168 (14)0.00190 (13)
O10.0215 (6)0.0125 (5)0.0121 (5)0.0009 (4)0.0009 (4)0.0005 (4)
N10.0148 (6)0.0134 (6)0.0132 (6)0.0002 (5)0.0003 (5)0.0004 (5)
C10.0158 (7)0.0144 (6)0.0137 (6)0.0004 (5)0.0008 (5)0.0009 (5)
C20.0252 (9)0.0184 (7)0.0134 (7)0.0009 (7)0.0013 (7)0.0004 (6)
C30.0300 (10)0.0182 (8)0.0176 (8)0.0021 (8)0.0003 (7)0.0049 (6)
C40.0218 (8)0.0144 (7)0.0201 (8)0.0008 (6)0.0004 (7)0.0028 (6)
C50.0177 (7)0.0130 (7)0.0178 (7)0.0005 (5)0.0005 (6)0.0001 (5)
C60.0212 (6)0.0212 (6)0.0212 (6)0.0019 (7)0.0019 (7)0.0019 (7)
Cl20.0654 (5)0.0202 (3)0.0482 (4)0.0016 (3)0.0125 (4)0.0041 (3)
C70.0264 (7)0.0264 (7)0.0264 (7)0.0015 (8)0.0015 (8)0.0015 (8)
Cl30.0493 (5)0.0432 (4)0.0610 (5)0.0147 (3)0.0130 (4)0.0089 (4)
Geometric parameters (Å, º) top
Si1—O1i1.7784 (14)C3—C41.399 (3)
Si1—O1ii1.7784 (14)C3—H30.9500
Si1—O11.7784 (14)C4—C51.372 (3)
Si1—S12.2654 (7)C4—H40.9500
Si1—S1i2.2654 (7)C5—H50.9500
Si1—S1ii2.2654 (7)C6—Cl2i1.7552 (13)
S1—C11.7184 (19)C6—Cl2ii1.7552 (13)
O1—N11.359 (2)C6—Cl21.7552 (13)
N1—C51.355 (2)C6—D61.0000
N1—C11.362 (2)C7—Cl3iii1.7476 (16)
C1—C21.402 (3)C7—Cl3iv1.7476 (16)
C2—C31.383 (3)C7—Cl31.7476 (16)
C2—H20.9500C7—D71.0000
O1i—Si1—O1ii86.60 (7)C3—C2—H2120.1
O1i—Si1—O186.59 (7)C1—C2—H2120.1
O1ii—Si1—O186.59 (7)C2—C3—C4120.09 (18)
O1i—Si1—S196.31 (5)C2—C3—H3120.0
O1ii—Si1—S1174.00 (5)C4—C3—H3120.0
O1—Si1—S188.33 (4)C5—C4—C3119.64 (17)
O1i—Si1—S1i88.33 (4)C5—C4—H4120.2
O1ii—Si1—S1i96.31 (5)C3—C4—H4120.2
O1—Si1—S1i174.00 (5)N1—C5—C4118.94 (17)
S1—Si1—S1i89.04 (3)N1—C5—H5120.5
O1i—Si1—S1ii174.00 (5)C4—C5—H5120.5
O1ii—Si1—S1ii88.33 (4)Cl2i—C6—Cl2ii110.91 (11)
O1—Si1—S1ii96.31 (5)Cl2i—C6—Cl2110.91 (11)
S1—Si1—S1ii89.04 (3)Cl2ii—C6—Cl2110.91 (11)
S1i—Si1—S1ii89.04 (3)Cl2i—C6—D6108.0
C1—S1—Si194.09 (6)Cl2ii—C6—D6108.0
N1—O1—Si1119.10 (11)Cl2—C6—D6108.0
C5—N1—O1116.05 (15)Cl3iii—C7—Cl3iv110.93 (14)
C5—N1—C1123.93 (16)Cl3iii—C7—Cl3110.93 (14)
O1—N1—C1120.02 (14)Cl3iv—C7—Cl3110.93 (14)
N1—C1—C2117.64 (16)Cl3iii—C7—D7108.0
N1—C1—S1116.80 (13)Cl3iv—C7—D7108.0
C2—C1—S1125.56 (14)Cl3—C7—D7108.0
C3—C2—C1119.75 (18)
O1i—Si1—O1—N1108.75 (16)Si1—S1—C1—N17.82 (15)
O1ii—Si1—O1—N1164.47 (14)Si1—S1—C1—C2171.97 (18)
S1—Si1—O1—N112.32 (12)N1—C1—C2—C30.4 (3)
S1ii—Si1—O1—N176.53 (13)S1—C1—C2—C3179.79 (18)
Si1—O1—N1—C5168.92 (13)C1—C2—C3—C40.5 (4)
Si1—O1—N1—C110.3 (2)C2—C3—C4—C50.0 (4)
C5—N1—C1—C20.0 (3)O1—N1—C5—C4179.61 (17)
O1—N1—C1—C2179.14 (18)C1—N1—C5—C40.5 (3)
C5—N1—C1—S1179.76 (15)C3—C4—C5—N10.4 (3)
O1—N1—C1—S10.7 (2)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) z1/2, x+1/2, y+1; (iv) y+1/2, z+1, x+1/2.
 

Acknowledgements

The authors thank St. John Fisher College and the University of Rochester X-ray Crystallographic Facility for support.

References

First citationBallesteros, P., Claramunt, R. M., Cañada, T., Foces-Foces, C., Cano, F. H., Elguero, J. & Fruchier, A. J. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 1215–1219.  CSD CrossRef Web of Science Google Scholar
First citationBond, A. & Jones, W. (1999). Acta Cryst. C55, 1536–1538.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFang, Y.-P., Chen, C.-L., Wang, X.-J., Kang, B.-S., Yu, K. & Su, C.-Y. (2002). Acta Cryst. E58, m480–m481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, Y.-H., Chen, X.-T., Dai, L., Weng, L.-H. & Kang, B.-S. (1993). Jiegou Huaxue, 12, 38–42.  CAS Google Scholar
First citationHu, Y., Weng, L., Huang, L., Chen, X., Wu, D. & Kang, B. (1991). Acta Cryst. C47, 2655–2656.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKira, M., Zhang, L. C., Kabuto, C. & Sakurai, H. (1998). Organometallics, 17, 887–892.  Web of Science CSD CrossRef CAS Google Scholar
First citationKraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiaw, W.-F., Hsieh, C.-H., Peng, S.-M. & Lee, G.-H. (2002). Inorg. Chim. Acta, 332, 153–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationManivannan, V., Dutta, S., Basu, P. & Chakravorty, A. (1993). Inorg. Chem. 32, 769–771.  CSD CrossRef CAS Web of Science Google Scholar
First citationNiu, D.-Z., Mu, L.-L., Yu, S.-Z. & Chen, J.-T. (2003). J. Chem. Crystallogr. 33, 27–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, S. K., Tham, F. S., Reed, R. W., Oakley, R. T. & Haddon, R. C. (2005). Polyhedron, 24, 2076–2083.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez, A., Romero, J., García-Vázquez, J. A., Sousa, A., Zubieta, J., Rose, D. J. & Maresca, K. (1998). Inorg. Chim. Acta, 281, 70–76.  Google Scholar
First citationSarkar, A., Tham, F. S. & Haddon, R. C. (2011). J. Mater. Chem. 21, 1574–1581.  Web of Science CSD CrossRef CAS Google Scholar
First citationScarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. L. & Raymond, K. N. (1985). Inorg. Chem. 24, 954–967.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671–1674.  CrossRef Google Scholar
First citationTacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236–1240.  Web of Science CSD CrossRef CAS Google Scholar
First citationThewalt, U. & Link, U. (1991). Z. Naturforsch. Teil B, 46, 293–296.  CAS Google Scholar
First citationTong, Y. X., Cai, Y. P., Zhang, H. X., Deng, L. R., Yu, X. L., Chen, X. M. & Kang, B. S. (2001). Pol. J. Chem. 75, 1219–1228.  CAS Google Scholar
First citationUeyama, K., Matsubayashi, G.-E., Shimohara, I., Tanaka, T. & Nakatsu, K. (1985). J. Chem. Res. 2, 48–49.  Google Scholar
First citationWeiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698–699.  CrossRef Web of Science Google Scholar
First citationWen, T.-B., Shi, J.-C., Liu, Q.-T., Kang, B.-S., Wu, B.-M. & Mak, T. C. W. (1996). Acta Cryst. C52, 1204–1206.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationXu, Y.-J., Kang, B.-S., Chen, X.-T. & Huang, L.-R. (1995). Acta Cryst. C51, 370–374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds