metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­[5,10,15,20-tetra­kis­(4-meth­­oxy­phen­yl)porphyrinato-κ4N]iron(III) di­aqua­(18-crown-6)potassium bis­­(tri­fluoro­methane­sulfonate)–18-crown-6 (1/2)

aUniversity of Monastir, Laboratoire de Physico-chimie des Matriaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bUniversity of Burgundy, ICMUB–UMR 6302, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: hnasri1@gmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 1 October 2015; accepted 5 November 2015; online 11 November 2015)

In the title compound, [FeIII(C48H36N4O2)(H2O)2][K(C12H24O6)(H2O)2](SO3CF3)2·2C12H24O6, the FeIII atom is situated on an inversion centre and is octa­hedrally coordin­ated by four pyrrole N atoms of the deprotenated 5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porphyrinate ligand and two water mol­ecules. The average equatorial Fe—N(pyrrole) bond length [2.043 (6) Å] is consistent with a high-spin (S = 5/2) iron(III) metalloporphyrin derivative. The K+ cation, which also lies on an inversion centre, is chelated by the six O atoms of one 18-crown-6 mol­ecule and is additionally coordinated by two water mol­ecules in a distorted hexa­gonal–bipyramidal geometry. In the crystal, the cations, anions and one non-coordinating 18-crown-6 mol­ecule are linked by classical O—H⋯O hydrogen bonds and non-conventional C—H⋯O hydrogen bonds, leading to a one-dimensional supra­molecular architecture along [10-1]. The crystal packing is further stabilized by weak C—H⋯π inter­actions involving pyrrole and phenyl rings of the porphyrins, as well as weak C—H⋯F contacts involving the (SO3CF3) counter-ion and the 18-crown-6 mol­ecules.

1. Related literature

For the synthesis, see: Gismelseed et al. (1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]). For related structures, see: Gismelseed et al. (1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]); Denden et al. (2015[Denden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. pp. 2596-2610.]); Scheidt et al. (1979[Scheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979). Biochemistry, 18, 3546-3552.], 1981[Scheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543-555.]); Cheng et al. (1994[Cheng, B., Safo, M. K., Orosz, R. D., Reed, C. A., Debrunner, P. G. & Scheidt, W. R. (1994). Inorg. Chem. 33, 1319-1324.]); Xu et al. (2011[Xu, N., Powell, D. R. & Richter-Addo, G. B. (2011). Angew. Chem. Int. Ed. 50, 9694-9696.]); Ben Haj Hassen et al. (2014[Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y. & Nasri, H. (2014). Acta Cryst. E70, m296-m297.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Fe(C48H36N4O4)(H2O)2][K(C12H24O6)(H2O)2](CF3SO3)2·2C12H24O6

  • Mr = 1990.89

  • Triclinic, [P \overline 1]

  • a = 12.1294 (4) Å

  • b = 14.1636 (6) Å

  • c = 15.5934 (5) Å

  • α = 84.081 (3)°

  • β = 72.567 (2)°

  • γ = 64.895 (2)°

  • V = 2313.50 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 115 K

  • 0.52 × 0.50 × 0.50 mm

2.2. Data collection

  • Nonius Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.746

  • 63523 measured reflections

  • 10707 independent reflections

  • 8615 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.07

  • 10700 reflections

  • 602 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg9 ae the centroids of the N1/C1–C4, N2/C6′–C9′, N2′/C6–C9 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O9i 0.87 1.96 2.797 (2) 160
O3—H3A⋯O7i 0.87 1.94 2.778 (2) 161
O16—H16A⋯O8 0.87 2.15 2.922 (3) 147
O16—H16B⋯O12 0.87 2.38 3.107 (3) 141
C7—H7⋯O2ii 0.95 2.52 3.303 (3) 139
C12—H12⋯O4iii 0.95 2.48 3.270 (3) 141
C16—H16⋯O11iii 0.95 2.39 3.319 (3) 164
C22—H22⋯O5iv 0.95 2.46 3.390 (3) 168
C24—H24A⋯O5v 0.98 2.46 3.184 (4) 130
C28—H28A⋯F2iii 0.99 2.50 2.983 (4) 110
C30—H30B⋯O5vi 0.99 2.49 3.248 (5) 133
C38—H38A⋯O4vi 0.99 2.55 3.429 (4) 148
C40—H40B⋯O6vii 0.99 2.51 3.402 (4) 150
C41—H41A⋯O11 0.99 2.33 3.030 (4) 127
C17—H17CCg9ii 0.98 2.84 3.753 (4) 155
C34—H34BCg1viii 0.99 2.93 3.894 (3) 164
C38—H38BCg1iii 0.99 2.78 3.706 (3) 155
C41—H41BCg2viii 0.99 2.95 3.584 (3) 123
C41—H41BCg3iii 0.99 2.95 3.584 (3) 123
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) x+1, y+1, z; (vi) -x, -y+1, -z+1; (vii) x, y, z-1; (viii) x-1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

To a solution of [FeIII(TMPP)(SO3CF3)](Gismelseed et al., 1990) (20 mg, 0.021 mmol) in di­chloro­methane (10 mL) was added an excess of 18-crown-6 (100 mg, 0.378 mmol) and potassium nitrite (60 mg, 0.705 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution changed from brown red to blood red. Crystals of the title complex were obtained as impurities by diffusion of hexanes through the di­chloro­methane solution. The X-ray analysis was recorded in the "Pôle de Chimie Moléculaire", the technological platform for chemical analysis and molecular synthesis (http://www.wpcm.fr) which relies on the Institute of the Molecular Chemistry of University of Burgundy and Welience "TM", a Burgundy University private subsidiar.

Comment top

In continuation of our research on the crystal structures of porphyrin complexes (Denden et al., 2015) we herein report the synthesis and crystal structure of the title compound.

The asymmetric unit of (I) is made by one half [FeIII(TMPP)(H2O)2]+ (TMPP = 5, 10, 15, 20-tetra­kis(4-meth­oxy­phenyl)­porphyrinato) and one half [K(18-crown-6)(H2O)2]+ (18-crown-6 is a crown ether with the formula C12H24O6) cationic complexes, one (SO3CF3)- counterion and one non-coordinated 18-crown-6 molecule.

It has been noticed for iron(III) porphyrins that there is a relationship between the spin-state of the iron(III) and the value of the average equatorial iron-pyrrole N atoms distance (Fe—Np) (Scheidt & Reed, 1981; Cheng et al., 1994). On the other hand, Fe(III)-mono­aqua porphyrins are inter­mediate-spin (S = 3/2) with an Fe—Np distances around 1.978 Å while Fe(III)-di­aqua metalloporphyrins are high-spin (S = 5/2) with an Fe—Np distance around 2.045 Å (Cheng et al., 1994) . Thus, for [FeIII(TPP)(H2O)]+ (Xu et al., 2011), the Fe—Np distance is 1.982 (3) Å and [FeIII(TClPP)(H2O)2]+ (TClPP is the 5, 10, 15, 20-tetra­(para-chloro­phenyl)­porphyrinato ligand) exhibits an Fe—Np bond length of 2.042 (2) Å (Ben Haj Hassen et al., 2014). For Fe(III) mixed-ligands porphyrins type [FeIII(Porph)(H2O)(L)]+ (Porph = porphyrinato) the spin state depends on the nature of the axial L ligand. For example, the Fe—Np distance is 2.022 (8) Å for [FeIII(TpivPP)(SO3CF3)(H2O)] (TpivPP is the α,α,α,α-tetra­kis(o-pivalamido­phenyl)­porphinato ligand) leading to a mixed inter­mediate-spin derivative [S = (5/2,3/2)] (Gismelseed et al., 1990). The Fe—Np bond length value of our derivative [FeIII(TMPP)(H2O)2]+ which is 2.0428 (16) Å is an indication that this species is high-spin (S = 5/2). For (I), the axial Fe—O(H2O) bond length is 2.1048 (14) Å while for the [FeIII(TPP)(H2O)2]+ and [FeIII(ClTPP)(H2O)2]+ related species (Scheidt et al., 1979; Ben Haj Hassen, 2014), the values of this distance are 2.095 (2) Å and 2.051 (2) Å / 2.157 (2) Å, respectively . These bond lengths are comparable to those of several iron(III)-aqua porphyrin complexes [1.961 (3) Å - 2.134 (6) Å] (CSD refcodes ECADET; Xu et al., 2011 and SICFAL; Gismelseed et al., 1990) (CDS, version 5.35). The o­cta-coordinated K+ ion is bonded to the six O atoms of the 18-crown-6 molecule with an average K–O(18-crown-6) bond length of 2.780 (2) Å and to the oxygen atoms of the two trans aqua axial ligands with a K—O(H2O) bond length of 2.484 (2) Å.

The crystal structure of the title compound resembles to an one-dimensional coordination polymer (Fig. 2). Indeed, each porphyrin [FeIII(TMPP)(H2O)2]+ cation is linked via strong O—H···O H bonds to two symmetry-related 18-crown-6 molecules through the O3 and O3i atoms (symmetry code: (i) 1+x, y, z) of the aqua axial ligands of the iron moiety and the oxygens O7/O9 (and O7'/O9') of the two trans 18-crown-6 molecules (O3—H3A···O7 and O3—H3B···O9 distances are 2.778 (2) Å and 2.797 (2) Å, respectively). On the other hand, the symmetry related 18-crown-6 molecule is also hydrogen bonded to the oxygen O16 of the aqua axial ligands of the [K(18-crown-6)(H2O)2]+ cation through the oxygen O8 (O16—H16···O8 bond length is 2.922 (3) Å). This leads to a one-dimensional supra­molecular network which is further consolidated by weak C—H···π inter­actions involving the centroids Cg1, Cg2, Cg3 and Cg9 of pyrroles and phenyls rings of the porphyrins and carbons of adjacent 18-crown-6 molecules (Fig. 2, Table 1).

Notably, the oxygen atoms O4, O6 and O5 of the (SO3CF3)- counterion are weakly linked to the carbon C38, C40 and C30 of two adjacent 18-crown-6 molecules and the [K(18-crown-6)(H2O)2]+ cation respectively (C38—H38···O4, C40—H40B···O6 and C30—H30B···O5 distances are 3.492 (4) Å, 3.402 (4) Å and 3.248 (5) Å respectively). The fluorine F2 of the same species is weakly bonded via C—H···F contacts to carbon C28 of a neighboring 18-crown-6 molecule (C28—H28A···F2 bond length is 2.983 (4) Å).

Refinement top

The positions of H atoms of the two aqua ligands coordinated to Fe(III) and the two aqua ligands coordinated to the potassium of the [K(18-crown-6)(H2O)2]+ counterion, were found in difference maps and then refined with Uiso(H) = 1.5Ueqiso(H) = 1.2Ueq(Cmethyl­ene, methyl, aromatic).

Related literature top

For the synthesis, see: Gismelseed et al. (1990). For related structures, see: Gismelseed et al. (1990); Denden et al. (2015); Scheidt et al. (1979, 1981); Cheng et al. (1994); Xu et al. (2011); Ben Haj Hassen et al. (2014).

Structure description top

In continuation of our research on the crystal structures of porphyrin complexes (Denden et al., 2015) we herein report the synthesis and crystal structure of the title compound.

The asymmetric unit of (I) is made by one half [FeIII(TMPP)(H2O)2]+ (TMPP = 5, 10, 15, 20-tetra­kis(4-meth­oxy­phenyl)­porphyrinato) and one half [K(18-crown-6)(H2O)2]+ (18-crown-6 is a crown ether with the formula C12H24O6) cationic complexes, one (SO3CF3)- counterion and one non-coordinated 18-crown-6 molecule.

It has been noticed for iron(III) porphyrins that there is a relationship between the spin-state of the iron(III) and the value of the average equatorial iron-pyrrole N atoms distance (Fe—Np) (Scheidt & Reed, 1981; Cheng et al., 1994). On the other hand, Fe(III)-mono­aqua porphyrins are inter­mediate-spin (S = 3/2) with an Fe—Np distances around 1.978 Å while Fe(III)-di­aqua metalloporphyrins are high-spin (S = 5/2) with an Fe—Np distance around 2.045 Å (Cheng et al., 1994) . Thus, for [FeIII(TPP)(H2O)]+ (Xu et al., 2011), the Fe—Np distance is 1.982 (3) Å and [FeIII(TClPP)(H2O)2]+ (TClPP is the 5, 10, 15, 20-tetra­(para-chloro­phenyl)­porphyrinato ligand) exhibits an Fe—Np bond length of 2.042 (2) Å (Ben Haj Hassen et al., 2014). For Fe(III) mixed-ligands porphyrins type [FeIII(Porph)(H2O)(L)]+ (Porph = porphyrinato) the spin state depends on the nature of the axial L ligand. For example, the Fe—Np distance is 2.022 (8) Å for [FeIII(TpivPP)(SO3CF3)(H2O)] (TpivPP is the α,α,α,α-tetra­kis(o-pivalamido­phenyl)­porphinato ligand) leading to a mixed inter­mediate-spin derivative [S = (5/2,3/2)] (Gismelseed et al., 1990). The Fe—Np bond length value of our derivative [FeIII(TMPP)(H2O)2]+ which is 2.0428 (16) Å is an indication that this species is high-spin (S = 5/2). For (I), the axial Fe—O(H2O) bond length is 2.1048 (14) Å while for the [FeIII(TPP)(H2O)2]+ and [FeIII(ClTPP)(H2O)2]+ related species (Scheidt et al., 1979; Ben Haj Hassen, 2014), the values of this distance are 2.095 (2) Å and 2.051 (2) Å / 2.157 (2) Å, respectively . These bond lengths are comparable to those of several iron(III)-aqua porphyrin complexes [1.961 (3) Å - 2.134 (6) Å] (CSD refcodes ECADET; Xu et al., 2011 and SICFAL; Gismelseed et al., 1990) (CDS, version 5.35). The o­cta-coordinated K+ ion is bonded to the six O atoms of the 18-crown-6 molecule with an average K–O(18-crown-6) bond length of 2.780 (2) Å and to the oxygen atoms of the two trans aqua axial ligands with a K—O(H2O) bond length of 2.484 (2) Å.

The crystal structure of the title compound resembles to an one-dimensional coordination polymer (Fig. 2). Indeed, each porphyrin [FeIII(TMPP)(H2O)2]+ cation is linked via strong O—H···O H bonds to two symmetry-related 18-crown-6 molecules through the O3 and O3i atoms (symmetry code: (i) 1+x, y, z) of the aqua axial ligands of the iron moiety and the oxygens O7/O9 (and O7'/O9') of the two trans 18-crown-6 molecules (O3—H3A···O7 and O3—H3B···O9 distances are 2.778 (2) Å and 2.797 (2) Å, respectively). On the other hand, the symmetry related 18-crown-6 molecule is also hydrogen bonded to the oxygen O16 of the aqua axial ligands of the [K(18-crown-6)(H2O)2]+ cation through the oxygen O8 (O16—H16···O8 bond length is 2.922 (3) Å). This leads to a one-dimensional supra­molecular network which is further consolidated by weak C—H···π inter­actions involving the centroids Cg1, Cg2, Cg3 and Cg9 of pyrroles and phenyls rings of the porphyrins and carbons of adjacent 18-crown-6 molecules (Fig. 2, Table 1).

Notably, the oxygen atoms O4, O6 and O5 of the (SO3CF3)- counterion are weakly linked to the carbon C38, C40 and C30 of two adjacent 18-crown-6 molecules and the [K(18-crown-6)(H2O)2]+ cation respectively (C38—H38···O4, C40—H40B···O6 and C30—H30B···O5 distances are 3.492 (4) Å, 3.402 (4) Å and 3.248 (5) Å respectively). The fluorine F2 of the same species is weakly bonded via C—H···F contacts to carbon C28 of a neighboring 18-crown-6 molecule (C28—H28A···F2 bond length is 2.983 (4) Å).

For the synthesis, see: Gismelseed et al. (1990). For related structures, see: Gismelseed et al. (1990); Denden et al. (2015); Scheidt et al. (1979, 1981); Cheng et al. (1994); Xu et al. (2011); Ben Haj Hassen et al. (2014).

Synthesis and crystallization top

To a solution of [FeIII(TMPP)(SO3CF3)](Gismelseed et al., 1990) (20 mg, 0.021 mmol) in di­chloro­methane (10 mL) was added an excess of 18-crown-6 (100 mg, 0.378 mmol) and potassium nitrite (60 mg, 0.705 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution changed from brown red to blood red. Crystals of the title complex were obtained as impurities by diffusion of hexanes through the di­chloro­methane solution. The X-ray analysis was recorded in the "Pôle de Chimie Moléculaire", the technological platform for chemical analysis and molecular synthesis (http://www.wpcm.fr) which relies on the Institute of the Molecular Chemistry of University of Burgundy and Welience "TM", a Burgundy University private subsidiar.

Refinement details top

The positions of H atoms of the two aqua ligands coordinated to Fe(III) and the two aqua ligands coordinated to the potassium of the [K(18-crown-6)(H2O)2]+ counterion, were found in difference maps and then refined with Uiso(H) = 1.5Ueqiso(H) = 1.2Ueq(Cmethyl­ene, methyl, aromatic).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the [FeIII(TMPP)(H2O)2]+ and [K(18-crown-6)(H2O)2]+ cations, the (SO3CF3)- anion and the 18-crown-6 molecule. Displacement ellipsoids are drawn at 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 + x, y, z].
[Figure 2] Fig. 2. A drawing showing the one-dimensional supramolecular structure of the title compound viewed down the b axis. The O—H···O classic H bonds are drawn as dashed light blue lines, the C—H···O contacts as dashed dark red lines while the C—H···Cg intermolecular interactions are shown as dashed green lines.
Diaqua[5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato-κ4N]iron(III) diaqua(18-crown-6)potassium bis(trifluoromethanesulfonate–18-crown-6 (1/2) top
Crystal data top
[Fe(C48H36N4O4)(H2O)2][K(C12H24O6)(H2O)2](CF3SO3)2·2C12H24O6Z = 1
Mr = 1990.89F(000) = 1047
Triclinic, P1Dx = 1.429 Mg m3
a = 12.1294 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1636 (6) ÅCell parameters from 9914 reflections
c = 15.5934 (5) Åθ = 2.6–27.6°
α = 84.081 (3)°µ = 0.35 mm1
β = 72.567 (2)°T = 115 K
γ = 64.895 (2)°Cube, dark blue
V = 2313.50 (15) Å30.52 × 0.50 × 0.50 mm
Data collection top
Nonius Kappa APEXII
diffractometer
10707 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1808615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 512 x 512 pixels mm-1θmax = 27.6°, θmin = 1.4°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1818
Tmin = 0.685, Tmax = 0.746l = 2020
63523 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0677P)2 + 3.3297P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
10700 reflectionsΔρmax = 0.57 e Å3
602 parametersΔρmin = 1.75 e Å3
Crystal data top
[Fe(C48H36N4O4)(H2O)2][K(C12H24O6)(H2O)2](CF3SO3)2·2C12H24O6γ = 64.895 (2)°
Mr = 1990.89V = 2313.50 (15) Å3
Triclinic, P1Z = 1
a = 12.1294 (4) ÅMo Kα radiation
b = 14.1636 (6) ŵ = 0.35 mm1
c = 15.5934 (5) ÅT = 115 K
α = 84.081 (3)°0.52 × 0.50 × 0.50 mm
β = 72.567 (2)°
Data collection top
Nonius Kappa APEXII
diffractometer
10707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
8615 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.033
63523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
10700 reflectionsΔρmin = 1.75 e Å3
602 parameters
Special details top

Experimental. Absorption correction: SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0499 before and 0.0451 after correction. The Ratio of minimum to maximum transmission is 0.9191. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.20881 (18)0.42471 (15)0.59436 (13)0.0125 (4)
C21.2657 (2)0.46241 (16)0.64338 (14)0.0155 (4)
H21.33480.42120.66690.019*
C31.2026 (2)0.56745 (16)0.64990 (14)0.0159 (4)
H31.21860.61360.67960.019*
C41.10711 (19)0.59648 (15)0.60380 (13)0.0124 (4)
C51.02670 (19)0.69995 (15)0.59077 (13)0.0128 (4)
C60.93703 (19)0.72775 (15)0.54243 (13)0.0126 (4)
C70.8508 (2)0.83289 (16)0.53189 (14)0.0154 (4)
H70.84810.89470.55270.018*
C80.7741 (2)0.82731 (16)0.48687 (14)0.0160 (4)
H80.70790.88450.46990.019*
C90.81131 (19)0.71873 (15)0.46954 (13)0.0127 (4)
C100.75323 (19)0.68074 (15)0.42513 (13)0.0127 (4)
C110.63875 (19)0.75727 (15)0.39930 (14)0.0136 (4)
C120.6415 (2)0.78155 (17)0.31039 (15)0.0179 (4)
H120.71950.75250.26450.021*
C130.5315 (2)0.84799 (17)0.28738 (15)0.0202 (4)
H130.53480.86460.22630.024*
C140.4173 (2)0.88964 (16)0.35441 (16)0.0201 (4)
C150.4140 (2)0.86738 (18)0.44410 (16)0.0230 (5)
H150.33620.89690.49020.028*
C160.5238 (2)0.80237 (17)0.46579 (15)0.0184 (4)
H160.52110.78810.52710.022*
C170.3015 (3)0.9781 (2)0.24935 (19)0.0339 (6)
H17A0.32930.91420.21450.051*
H17B0.35911.01200.22310.051*
H17C0.21521.02550.24820.051*
C181.03715 (19)0.78442 (15)0.63316 (14)0.0139 (4)
C191.0706 (2)0.86013 (16)0.58204 (15)0.0170 (4)
H191.08440.85970.51880.020*
C201.0840 (2)0.93562 (17)0.62209 (15)0.0194 (4)
H201.10580.98710.58650.023*
C211.0655 (2)0.93647 (16)0.71476 (16)0.0191 (4)
C221.0296 (2)0.86335 (17)0.76751 (15)0.0178 (4)
H221.01500.86450.83080.021*
C231.0154 (2)0.78829 (16)0.72589 (14)0.0158 (4)
H230.99030.73850.76180.019*
C241.0669 (3)1.0151 (2)0.8425 (2)0.0389 (7)
H24A1.08571.07120.85730.058*
H24B1.12430.94820.86020.058*
H24C0.97881.02780.87480.058*
N11.11191 (16)0.50834 (13)0.57123 (11)0.0115 (3)
N21.08769 (16)0.34051 (13)0.49707 (11)0.0117 (3)
O11.08434 (18)1.01222 (13)0.74747 (12)0.0272 (4)
O20.30280 (16)0.95252 (14)0.34014 (12)0.0308 (4)
O31.13810 (14)0.49687 (11)0.37896 (10)0.0154 (3)
H3A1.13660.55870.36720.023*
H3B1.12440.47560.33420.023*
Fe11.00000.50000.50000.01050 (10)
C320.5833 (2)0.3301 (2)0.33522 (18)0.0273 (5)
H32A0.62630.34920.27590.033*
H32B0.64910.28440.36440.033*
C330.4953 (2)0.4268 (2)0.39253 (17)0.0268 (5)
H33A0.43020.41200.44040.032*
H33B0.54390.44770.42170.032*
C340.3596 (2)0.6035 (2)0.39343 (18)0.0280 (5)
H34A0.41500.62420.41540.034*
H34B0.29790.59140.44630.034*
C350.2903 (2)0.6890 (2)0.33939 (18)0.0278 (5)
H35A0.25400.75680.37190.033*
H35B0.34980.69230.28090.033*
C360.1311 (3)0.7425 (2)0.26473 (19)0.0321 (6)
H36A0.19510.74270.20780.038*
H36B0.08710.81370.29210.038*
C370.0371 (2)0.7098 (2)0.24680 (19)0.0304 (6)
H37A0.02410.70590.30410.037*
H37B0.01070.76130.20870.037*
C380.0238 (2)0.5666 (2)0.19171 (17)0.0260 (5)
H38A0.02280.60710.14830.031*
H38B0.03900.56870.25010.031*
C390.1033 (3)0.4563 (2)0.15811 (17)0.0275 (5)
H39A0.05060.42720.14210.033*
H39B0.17250.45360.10360.033*
C400.2700 (2)0.3065 (2)0.18906 (17)0.0282 (5)
H40A0.33480.32890.14960.034*
H40B0.25260.26430.15230.034*
C410.3176 (2)0.2432 (2)0.26226 (18)0.0318 (6)
H41A0.32570.28700.30360.038*
H41B0.25870.21240.29710.038*
C420.5169 (2)0.1182 (2)0.27862 (18)0.0294 (5)
H42A0.57460.04510.25830.035*
H42B0.46310.11690.34030.035*
C430.5944 (2)0.1764 (2)0.28063 (18)0.0291 (5)
H43A0.65740.13630.31370.035*
H43B0.64090.18520.21850.035*
O70.19160 (16)0.66968 (13)0.32484 (12)0.0257 (4)
O80.10530 (16)0.61021 (13)0.20216 (12)0.0255 (4)
O90.15575 (16)0.39614 (13)0.22710 (11)0.0232 (3)
O100.43816 (17)0.16351 (15)0.22068 (12)0.0314 (4)
O110.51346 (16)0.27633 (13)0.32361 (11)0.0244 (4)
O120.43455 (16)0.51013 (13)0.33994 (12)0.0254 (4)
C260.7238 (3)0.4969 (3)0.1142 (2)0.0439 (7)
H26A0.66820.49110.17380.053*
H26B0.78450.52160.12360.053*
C270.5816 (3)0.6691 (3)0.1040 (2)0.0412 (7)
H27A0.64200.69620.11010.049*
H27B0.52840.66450.16490.049*
C280.5003 (3)0.7409 (2)0.0500 (2)0.0390 (7)
H28A0.45690.81190.07780.047*
H28B0.55350.74430.01140.047*
C290.3298 (3)0.7757 (3)0.0060 (2)0.0472 (8)
H29A0.38190.77930.06770.057*
H29B0.28670.84650.02210.057*
C300.2338 (3)0.7386 (2)0.0098 (2)0.0452 (8)
H30A0.18690.72880.05190.054*
H30B0.17210.79110.03890.054*
C310.2060 (3)0.6066 (3)0.0667 (2)0.0431 (7)
H31A0.14940.65660.10060.052*
H31B0.15310.60040.00610.052*
O130.64972 (18)0.56855 (16)0.06167 (12)0.0327 (4)
O140.4091 (2)0.70619 (16)0.04488 (14)0.0374 (5)
O150.29575 (19)0.64266 (17)0.05957 (14)0.0385 (5)
O160.38103 (19)0.49681 (16)0.15978 (16)0.0418 (5)
H16A0.30250.52260.19380.063*
H16B0.43200.49400.19040.063*
K10.50000.50000.00000.0464 (2)
C250.2987 (3)0.0736 (2)0.9826 (2)0.0363 (6)
O40.1767 (2)0.2174 (2)0.89228 (15)0.0566 (7)
O50.0631 (2)0.1369 (2)1.00466 (16)0.0538 (6)
O60.1311 (3)0.25214 (18)1.05230 (17)0.0550 (7)
F10.3295 (2)0.00132 (16)0.92180 (14)0.0645 (6)
F20.3945 (2)0.1004 (2)0.9639 (2)0.0909 (10)
F30.2917 (2)0.02755 (16)1.06154 (14)0.0636 (6)
S10.15173 (6)0.18346 (5)0.98227 (4)0.02864 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0104 (9)0.0131 (9)0.0134 (9)0.0034 (7)0.0047 (7)0.0003 (7)
C20.0136 (9)0.0157 (10)0.0185 (10)0.0045 (8)0.0082 (8)0.0007 (8)
C30.0142 (9)0.0154 (10)0.0200 (10)0.0050 (8)0.0085 (8)0.0016 (8)
C40.0122 (9)0.0140 (9)0.0119 (9)0.0060 (8)0.0035 (7)0.0007 (7)
C50.0145 (9)0.0118 (9)0.0128 (9)0.0062 (8)0.0034 (7)0.0004 (7)
C60.0134 (9)0.0105 (9)0.0121 (9)0.0037 (7)0.0029 (7)0.0001 (7)
C70.0171 (10)0.0101 (9)0.0188 (10)0.0041 (8)0.0071 (8)0.0001 (7)
C80.0168 (10)0.0113 (9)0.0185 (10)0.0033 (8)0.0069 (8)0.0006 (7)
C90.0122 (9)0.0103 (9)0.0127 (9)0.0019 (7)0.0036 (7)0.0001 (7)
C100.0103 (9)0.0134 (9)0.0130 (9)0.0027 (7)0.0047 (7)0.0009 (7)
C110.0130 (9)0.0100 (9)0.0180 (10)0.0026 (7)0.0075 (8)0.0001 (7)
C120.0134 (10)0.0184 (10)0.0170 (10)0.0013 (8)0.0052 (8)0.0005 (8)
C130.0219 (11)0.0173 (10)0.0188 (10)0.0018 (9)0.0110 (9)0.0006 (8)
C140.0165 (10)0.0127 (10)0.0274 (12)0.0026 (8)0.0127 (9)0.0038 (8)
C150.0146 (10)0.0238 (11)0.0224 (11)0.0000 (9)0.0037 (9)0.0055 (9)
C160.0175 (10)0.0177 (10)0.0160 (10)0.0026 (8)0.0057 (8)0.0007 (8)
C170.0310 (14)0.0269 (13)0.0375 (15)0.0054 (11)0.0257 (12)0.0027 (11)
C180.0109 (9)0.0117 (9)0.0183 (10)0.0025 (7)0.0057 (8)0.0016 (7)
C190.0165 (10)0.0161 (10)0.0171 (10)0.0057 (8)0.0045 (8)0.0001 (8)
C200.0192 (10)0.0152 (10)0.0252 (11)0.0082 (8)0.0069 (9)0.0014 (8)
C210.0178 (10)0.0121 (9)0.0282 (12)0.0021 (8)0.0120 (9)0.0045 (8)
C220.0183 (10)0.0159 (10)0.0176 (10)0.0027 (8)0.0082 (8)0.0031 (8)
C230.0157 (10)0.0129 (9)0.0170 (10)0.0036 (8)0.0054 (8)0.0004 (7)
C240.0619 (19)0.0242 (13)0.0409 (16)0.0130 (13)0.0347 (15)0.0038 (11)
N10.0107 (8)0.0098 (7)0.0128 (8)0.0025 (6)0.0043 (6)0.0005 (6)
N20.0116 (8)0.0110 (8)0.0120 (8)0.0034 (6)0.0044 (6)0.0006 (6)
O10.0375 (10)0.0175 (8)0.0359 (10)0.0113 (7)0.0220 (8)0.0024 (7)
O20.0201 (8)0.0276 (9)0.0339 (10)0.0089 (7)0.0179 (7)0.0076 (7)
O30.0165 (7)0.0148 (7)0.0139 (7)0.0062 (6)0.0033 (6)0.0001 (5)
Fe10.01064 (19)0.00882 (19)0.01182 (19)0.00256 (15)0.00491 (15)0.00027 (14)
C320.0217 (12)0.0300 (13)0.0318 (13)0.0119 (10)0.0087 (10)0.0036 (10)
C330.0262 (12)0.0302 (13)0.0277 (12)0.0144 (10)0.0098 (10)0.0041 (10)
C340.0227 (12)0.0303 (13)0.0296 (13)0.0110 (10)0.0032 (10)0.0057 (10)
C350.0237 (12)0.0250 (12)0.0344 (13)0.0127 (10)0.0028 (10)0.0019 (10)
C360.0352 (14)0.0196 (12)0.0389 (15)0.0095 (11)0.0124 (12)0.0084 (10)
C370.0266 (13)0.0219 (12)0.0355 (14)0.0037 (10)0.0102 (11)0.0067 (10)
C380.0233 (12)0.0298 (13)0.0248 (12)0.0095 (10)0.0105 (10)0.0051 (10)
C390.0301 (13)0.0314 (13)0.0214 (11)0.0113 (11)0.0107 (10)0.0026 (10)
C400.0273 (13)0.0254 (12)0.0234 (12)0.0035 (10)0.0038 (10)0.0072 (9)
C410.0241 (12)0.0348 (14)0.0246 (12)0.0003 (11)0.0058 (10)0.0064 (10)
C420.0259 (13)0.0230 (12)0.0327 (13)0.0013 (10)0.0109 (10)0.0043 (10)
C430.0215 (12)0.0299 (13)0.0273 (13)0.0030 (10)0.0052 (10)0.0035 (10)
O70.0238 (8)0.0226 (8)0.0301 (9)0.0106 (7)0.0074 (7)0.0068 (7)
O80.0211 (8)0.0247 (9)0.0267 (9)0.0075 (7)0.0055 (7)0.0040 (7)
O90.0223 (8)0.0226 (8)0.0189 (8)0.0041 (7)0.0050 (6)0.0010 (6)
O100.0217 (9)0.0352 (10)0.0270 (9)0.0008 (8)0.0079 (7)0.0098 (8)
O110.0210 (8)0.0259 (9)0.0248 (8)0.0095 (7)0.0042 (7)0.0007 (7)
O120.0246 (9)0.0244 (9)0.0260 (9)0.0097 (7)0.0061 (7)0.0007 (7)
C260.0436 (17)0.066 (2)0.0354 (15)0.0302 (16)0.0206 (13)0.0076 (14)
C270.0373 (16)0.0532 (18)0.0305 (14)0.0210 (14)0.0033 (12)0.0177 (13)
C280.0417 (16)0.0365 (15)0.0330 (15)0.0189 (13)0.0053 (12)0.0104 (12)
C290.0525 (19)0.0336 (16)0.0535 (19)0.0162 (15)0.0198 (16)0.0167 (14)
C300.0379 (16)0.0346 (16)0.0523 (19)0.0059 (13)0.0160 (14)0.0147 (14)
C310.0319 (15)0.0553 (19)0.0440 (17)0.0172 (14)0.0187 (13)0.0138 (14)
O130.0335 (10)0.0413 (11)0.0253 (9)0.0179 (9)0.0066 (8)0.0021 (8)
O140.0393 (11)0.0363 (11)0.0370 (11)0.0179 (9)0.0101 (9)0.0066 (8)
O150.0311 (10)0.0456 (12)0.0395 (11)0.0164 (9)0.0126 (9)0.0090 (9)
O160.0235 (10)0.0375 (11)0.0629 (14)0.0106 (9)0.0127 (9)0.0002 (10)
K10.0438 (5)0.0525 (6)0.0406 (5)0.0206 (5)0.0075 (4)0.0003 (4)
C250.0344 (15)0.0311 (14)0.0418 (16)0.0133 (12)0.0127 (12)0.0118 (12)
O40.0476 (14)0.0621 (15)0.0347 (12)0.0033 (12)0.0124 (10)0.0224 (11)
O50.0368 (12)0.0881 (19)0.0431 (13)0.0349 (13)0.0009 (10)0.0176 (12)
O60.0767 (18)0.0347 (12)0.0575 (15)0.0124 (12)0.0361 (13)0.0112 (10)
F10.0709 (15)0.0407 (11)0.0472 (12)0.0009 (10)0.0011 (10)0.0089 (9)
F20.0396 (12)0.0733 (16)0.173 (3)0.0298 (12)0.0521 (16)0.0453 (18)
F30.0876 (16)0.0455 (11)0.0465 (11)0.0116 (11)0.0333 (11)0.0187 (9)
S10.0270 (3)0.0356 (3)0.0222 (3)0.0087 (3)0.0109 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—N11.378 (2)C35—O71.419 (3)
C1—C10i1.400 (3)C35—H35A0.9900
C1—C21.434 (3)C35—H35B0.9900
C2—C31.352 (3)C36—O71.432 (3)
C2—H20.9500C36—C371.502 (4)
C3—C41.436 (3)C36—H36A0.9900
C3—H30.9500C36—H36B0.9900
C4—N11.368 (3)C37—O81.423 (3)
C4—C51.409 (3)C37—H37A0.9900
C5—C61.405 (3)C37—H37B0.9900
C5—C181.492 (3)C38—O81.422 (3)
C6—N2i1.372 (3)C38—C391.494 (4)
C6—C71.439 (3)C38—H38A0.9900
C7—C81.352 (3)C38—H38B0.9900
C7—H70.9500C39—O91.431 (3)
C8—C91.437 (3)C39—H39A0.9900
C8—H80.9500C39—H39B0.9900
C9—N2i1.377 (2)C40—O91.433 (3)
C9—C101.399 (3)C40—C411.478 (4)
C10—C1i1.400 (3)C40—H40A0.9900
C10—C111.494 (3)C40—H40B0.9900
C11—C121.388 (3)C41—O101.419 (3)
C11—C161.393 (3)C41—H41A0.9900
C12—C131.395 (3)C41—H41B0.9900
C12—H120.9500C42—O101.421 (3)
C13—C141.388 (3)C42—C431.499 (4)
C13—H130.9500C42—H42A0.9900
C14—O21.366 (3)C42—H42B0.9900
C14—C151.394 (3)C43—O111.427 (3)
C15—C161.379 (3)C43—H43A0.9900
C15—H150.9500C43—H43B0.9900
C16—H160.9500C26—O131.416 (4)
C17—O21.428 (3)C26—C31ii1.486 (5)
C17—H17A0.9800C26—H26A0.9900
C17—H17B0.9800C26—H26B0.9900
C17—H17C0.9800C27—O131.419 (4)
C18—C231.393 (3)C27—C281.479 (5)
C18—C191.396 (3)C27—H27A0.9900
C19—C201.380 (3)C27—H27B0.9900
C19—H190.9500C28—O141.413 (4)
C20—C211.395 (3)C28—H28A0.9900
C20—H200.9500C28—H28B0.9900
C21—O11.362 (3)C29—O141.420 (4)
C21—C221.389 (3)C29—C301.484 (5)
C22—C231.395 (3)C29—H29A0.9900
C22—H220.9500C29—H29B0.9900
C23—H230.9500C30—O151.419 (4)
C24—O11.434 (3)C30—H30A0.9900
C24—H24A0.9800C30—H30B0.9900
C24—H24B0.9800C31—O151.420 (4)
C24—H24C0.9800C31—C26ii1.486 (5)
N1—Fe12.0388 (16)C31—H31A0.9900
N2—C6i1.372 (3)C31—H31B0.9900
N2—C9i1.377 (2)O13—K12.8108 (19)
N2—Fe12.0468 (16)O14—K12.731 (2)
O3—Fe12.1048 (14)O15—K12.798 (2)
O3—H3A0.8699O16—K12.484 (2)
O3—H3B0.8715O16—H16A0.8742
Fe1—N1i2.0387 (16)O16—H16B0.8734
Fe1—N2i2.0469 (16)K1—O16ii2.484 (2)
Fe1—O3i2.1049 (14)K1—O14ii2.731 (2)
C32—O111.414 (3)K1—O15ii2.798 (2)
C32—C331.501 (4)K1—O13ii2.8108 (19)
C32—H32A0.9900K1—H16B2.8356
C32—H32B0.9900C25—F21.314 (4)
C33—O121.426 (3)C25—F11.323 (4)
C33—H33A0.9900C25—F31.329 (3)
C33—H33B0.9900C25—S11.803 (3)
C34—O121.423 (3)O4—S11.422 (2)
C34—C351.495 (4)O5—S11.429 (2)
C34—H34A0.9900O6—S11.432 (2)
C34—H34B0.9900
N1—C1—C10i126.52 (18)H37A—C37—H37B108.4
N1—C1—C2109.00 (17)O8—C38—C39108.3 (2)
C10i—C1—C2124.47 (18)O8—C38—H38A110.0
C3—C2—C1107.28 (18)C39—C38—H38A110.0
C3—C2—H2126.4O8—C38—H38B110.0
C1—C2—H2126.4C39—C38—H38B110.0
C2—C3—C4107.47 (18)H38A—C38—H38B108.4
C2—C3—H3126.3O9—C39—C38108.9 (2)
C4—C3—H3126.3O9—C39—H39A109.9
N1—C4—C5126.13 (18)C38—C39—H39A109.9
N1—C4—C3109.11 (17)O9—C39—H39B109.9
C5—C4—C3124.69 (18)C38—C39—H39B109.9
C6—C5—C4124.34 (18)H39A—C39—H39B108.3
C6—C5—C18118.69 (17)O9—C40—C41109.3 (2)
C4—C5—C18116.97 (18)O9—C40—H40A109.8
N2i—C6—C5125.68 (18)C41—C40—H40A109.8
N2i—C6—C7109.38 (17)O9—C40—H40B109.8
C5—C6—C7124.83 (18)C41—C40—H40B109.8
C8—C7—C6107.28 (18)H40A—C40—H40B108.3
C8—C7—H7126.4O10—C41—C40106.6 (2)
C6—C7—H7126.4O10—C41—H41A110.4
C7—C8—C9107.27 (18)C40—C41—H41A110.4
C7—C8—H8126.4O10—C41—H41B110.4
C9—C8—H8126.4C40—C41—H41B110.4
N2i—C9—C10126.08 (18)H41A—C41—H41B108.6
N2i—C9—C8109.32 (17)O10—C42—C43112.4 (2)
C10—C9—C8124.60 (18)O10—C42—H42A109.1
C9—C10—C1i124.99 (18)C43—C42—H42A109.1
C9—C10—C11118.12 (18)O10—C42—H42B109.1
C1i—C10—C11116.85 (17)C43—C42—H42B109.1
C12—C11—C16118.53 (19)H42A—C42—H42B107.9
C12—C11—C10122.08 (18)O11—C43—C42109.9 (2)
C16—C11—C10119.32 (18)O11—C43—H43A109.7
C11—C12—C13121.1 (2)C42—C43—H43A109.7
C11—C12—H12119.5O11—C43—H43B109.7
C13—C12—H12119.5C42—C43—H43B109.7
C14—C13—C12119.5 (2)H43A—C43—H43B108.2
C14—C13—H13120.3C35—O7—C36111.93 (19)
C12—C13—H13120.3C38—O8—C37112.56 (19)
O2—C14—C13124.9 (2)C39—O9—C40110.73 (18)
O2—C14—C15115.2 (2)C41—O10—C42114.24 (19)
C13—C14—C15119.9 (2)C32—O11—C43111.96 (19)
C16—C15—C14119.9 (2)C34—O12—C33110.40 (19)
C16—C15—H15120.1O13—C26—C31ii108.9 (2)
C14—C15—H15120.1O13—C26—H26A109.9
C15—C16—C11121.1 (2)C31ii—C26—H26A109.9
C15—C16—H16119.4O13—C26—H26B109.9
C11—C16—H16119.4C31ii—C26—H26B109.9
O2—C17—H17A109.5H26A—C26—H26B108.3
O2—C17—H17B109.5O13—C27—C28109.9 (2)
H17A—C17—H17B109.5O13—C27—H27A109.7
O2—C17—H17C109.5C28—C27—H27A109.7
H17A—C17—H17C109.5O13—C27—H27B109.7
H17B—C17—H17C109.5C28—C27—H27B109.7
C23—C18—C19118.14 (19)H27A—C27—H27B108.2
C23—C18—C5120.10 (18)O14—C28—C27110.3 (2)
C19—C18—C5121.75 (19)O14—C28—H28A109.6
C20—C19—C18120.9 (2)C27—C28—H28A109.6
C20—C19—H19119.5O14—C28—H28B109.6
C18—C19—H19119.5C27—C28—H28B109.6
C19—C20—C21120.1 (2)H28A—C28—H28B108.1
C19—C20—H20119.9O14—C29—C30109.6 (2)
C21—C20—H20119.9O14—C29—H29A109.7
O1—C21—C22124.2 (2)C30—C29—H29A109.7
O1—C21—C20115.7 (2)O14—C29—H29B109.7
C22—C21—C20120.1 (2)C30—C29—H29B109.7
C21—C22—C23118.8 (2)H29A—C29—H29B108.2
C21—C22—H22120.6O15—C30—C29109.3 (3)
C23—C22—H22120.6O15—C30—H30A109.8
C18—C23—C22121.8 (2)C29—C30—H30A109.8
C18—C23—H23119.1O15—C30—H30B109.8
C22—C23—H23119.1C29—C30—H30B109.8
O1—C24—H24A109.5H30A—C30—H30B108.3
O1—C24—H24B109.5O15—C31—C26ii108.4 (3)
H24A—C24—H24B109.5O15—C31—H31A110.0
O1—C24—H24C109.5C26ii—C31—H31A110.0
H24A—C24—H24C109.5O15—C31—H31B110.0
H24B—C24—H24C109.5C26ii—C31—H31B110.0
C4—N1—C1107.13 (16)H31A—C31—H31B108.4
C4—N1—Fe1127.17 (13)C26—O13—C27111.1 (2)
C1—N1—Fe1125.70 (13)C26—O13—K1115.41 (17)
C6i—N2—C9i106.74 (16)C27—O13—K1113.69 (16)
C6i—N2—Fe1127.25 (13)C28—O14—C29110.4 (2)
C9i—N2—Fe1125.93 (13)C28—O14—K1115.77 (17)
C21—O1—C24117.2 (2)C29—O14—K1114.69 (19)
C14—O2—C17117.2 (2)C30—O15—C31110.7 (2)
Fe1—O3—H3A110.7C30—O15—K1111.85 (17)
Fe1—O3—H3B110.7C31—O15—K1116.69 (17)
H3A—O3—H3B108.2K1—O16—H16A138.5
N1i—Fe1—N1180.00 (6)K1—O16—H16B104.8
N1i—Fe1—N289.38 (7)H16A—O16—H16B109.9
N1—Fe1—N290.62 (7)O16ii—K1—O16180.0
N1i—Fe1—N2i90.63 (7)O16ii—K1—O14ii81.03 (6)
N1—Fe1—N2i89.37 (7)O16—K1—O14ii98.97 (6)
N2—Fe1—N2i180.0O16ii—K1—O1498.97 (6)
N1i—Fe1—O389.90 (6)O16—K1—O1481.03 (6)
N1—Fe1—O390.10 (6)O14ii—K1—O14180.0
N2—Fe1—O387.90 (6)O16ii—K1—O15ii97.81 (6)
N2i—Fe1—O392.10 (6)O16—K1—O15ii82.19 (6)
N1i—Fe1—O3i90.10 (6)O14ii—K1—O15ii61.71 (6)
N1—Fe1—O3i89.90 (6)O14—K1—O15ii118.29 (6)
N2—Fe1—O3i92.10 (6)O16ii—K1—O1582.19 (6)
N2i—Fe1—O3i87.90 (6)O16—K1—O1597.81 (6)
O3—Fe1—O3i180.00 (8)O14ii—K1—O15118.29 (6)
O11—C32—C33109.6 (2)O14—K1—O1561.71 (6)
O11—C32—H32A109.8O15ii—K1—O15180.0
C33—C32—H32A109.8O16ii—K1—O1392.35 (6)
O11—C32—H32B109.8O16—K1—O1387.64 (6)
C33—C32—H32B109.8O14ii—K1—O13119.02 (6)
H32A—C32—H32B108.2O14—K1—O1360.98 (6)
O12—C33—C32111.0 (2)O15ii—K1—O1359.38 (6)
O12—C33—H33A109.4O15—K1—O13120.62 (6)
C32—C33—H33A109.4O16ii—K1—O13ii87.64 (6)
O12—C33—H33B109.4O16—K1—O13ii92.36 (6)
C32—C33—H33B109.4O14ii—K1—O13ii60.98 (6)
H33A—C33—H33B108.0O14—K1—O13ii119.02 (6)
O12—C34—C35110.2 (2)O15ii—K1—O13ii120.62 (6)
O12—C34—H34A109.6O15—K1—O13ii59.37 (6)
C35—C34—H34A109.6O13—K1—O13ii180.0
O12—C34—H34B109.6O16ii—K1—H16B162.7
C35—C34—H34B109.6O16—K1—H16B17.3
H34A—C34—H34B108.1O14ii—K1—H16B101.1
O7—C35—C34109.4 (2)O14—K1—H16B78.9
O7—C35—H35A109.8O15ii—K1—H16B68.9
C34—C35—H35A109.8O15—K1—H16B111.1
O7—C35—H35B109.8O13—K1—H16B71.5
C34—C35—H35B109.8O13ii—K1—H16B108.5
H35A—C35—H35B108.2F2—C25—F1106.4 (3)
O7—C36—C37108.0 (2)F2—C25—F3107.9 (3)
O7—C36—H36A110.1F1—C25—F3106.6 (2)
C37—C36—H36A110.1F2—C25—S1112.2 (2)
O7—C36—H36B110.1F1—C25—S1111.6 (2)
C37—C36—H36B110.1F3—C25—S1111.9 (2)
H36A—C36—H36B108.4O4—S1—O5114.42 (16)
O8—C37—C36108.2 (2)O4—S1—O6117.80 (17)
O8—C37—H37A110.1O5—S1—O6112.46 (16)
C36—C37—H37A110.1O4—S1—C25102.95 (14)
O8—C37—H37B110.1O5—S1—C25102.34 (15)
C36—C37—H37B110.1O6—S1—C25104.46 (15)
N1—C1—C2—C30.4 (2)C5—C4—N1—Fe13.1 (3)
C10i—C1—C2—C3179.0 (2)C3—C4—N1—Fe1179.94 (13)
C1—C2—C3—C40.9 (2)C10i—C1—N1—C4179.67 (19)
C2—C3—C4—N11.1 (2)C2—C1—N1—C40.3 (2)
C2—C3—C4—C5175.8 (2)C10i—C1—N1—Fe11.2 (3)
N1—C4—C5—C60.9 (3)C2—C1—N1—Fe1179.41 (13)
C3—C4—C5—C6177.28 (19)C22—C21—O1—C240.6 (3)
N1—C4—C5—C18179.63 (18)C20—C21—O1—C24179.6 (2)
C3—C4—C5—C184.0 (3)C13—C14—O2—C170.8 (3)
C4—C5—C6—N2i1.6 (3)C15—C14—O2—C17179.6 (2)
C18—C5—C6—N2i177.13 (18)O11—C32—C33—O1282.9 (2)
C4—C5—C6—C7177.24 (19)O12—C34—C35—O772.0 (2)
C18—C5—C6—C71.5 (3)O7—C36—C37—O863.5 (3)
N2i—C6—C7—C80.5 (2)O8—C38—C39—O967.5 (2)
C5—C6—C7—C8175.75 (19)O9—C40—C41—O10172.8 (2)
C6—C7—C8—C90.4 (2)O10—C42—C43—O1168.4 (3)
C7—C8—C9—N2i1.2 (2)C34—C35—O7—C36173.3 (2)
C7—C8—C9—C10179.16 (19)C37—C36—O7—C35174.8 (2)
N2i—C9—C10—C1i1.6 (3)C39—C38—O8—C37171.00 (19)
C8—C9—C10—C1i178.0 (2)C36—C37—O8—C38172.9 (2)
N2i—C9—C10—C11175.89 (18)C38—C39—O9—C40155.4 (2)
C8—C9—C10—C114.5 (3)C41—C40—O9—C39176.9 (2)
C9—C10—C11—C12109.9 (2)C40—C41—O10—C42159.3 (2)
C1i—C10—C11—C1272.4 (3)C43—C42—O10—C4187.5 (3)
C9—C10—C11—C1673.1 (3)C33—C32—O11—C43171.6 (2)
C1i—C10—C11—C16104.5 (2)C42—C43—O11—C32174.1 (2)
C16—C11—C12—C131.2 (3)C35—C34—O12—C33176.73 (19)
C10—C11—C12—C13175.8 (2)C32—C33—O12—C34175.17 (19)
C11—C12—C13—C140.7 (3)O13—C27—C28—O1462.5 (3)
C12—C13—C14—O2177.6 (2)O14—C29—C30—O1566.2 (3)
C12—C13—C14—C151.9 (3)C31ii—C26—O13—C27179.4 (2)
O2—C14—C15—C16178.3 (2)C31ii—C26—O13—K149.3 (3)
C13—C14—C15—C161.3 (4)C28—C27—O13—C26177.2 (2)
C14—C15—C16—C110.6 (4)C28—C27—O13—K145.0 (3)
C12—C11—C16—C151.9 (3)C27—C28—O14—C29179.3 (2)
C10—C11—C16—C15175.2 (2)C27—C28—O14—K148.3 (3)
C6—C5—C18—C23119.8 (2)C30—C29—O14—C28179.4 (3)
C4—C5—C18—C2359.0 (3)C30—C29—O14—K147.6 (3)
C6—C5—C18—C1961.3 (3)C29—C30—O15—C31178.3 (2)
C4—C5—C18—C19119.9 (2)C29—C30—O15—K149.8 (3)
C23—C18—C19—C201.1 (3)C26ii—C31—O15—C30176.5 (2)
C5—C18—C19—C20177.80 (19)C26ii—C31—O15—K147.1 (3)
C18—C19—C20—C210.7 (3)F2—C25—S1—O461.5 (3)
C19—C20—C21—O1178.2 (2)F1—C25—S1—O457.7 (2)
C19—C20—C21—C222.0 (3)F3—C25—S1—O4177.0 (2)
O1—C21—C22—C23178.8 (2)F2—C25—S1—O5179.5 (3)
C20—C21—C22—C231.4 (3)F1—C25—S1—O561.2 (2)
C19—C18—C23—C221.7 (3)F3—C25—S1—O558.1 (3)
C5—C18—C23—C22177.21 (19)F2—C25—S1—O662.1 (3)
C21—C22—C23—C180.5 (3)F1—C25—S1—O6178.6 (2)
C5—C4—N1—C1176.04 (19)F3—C25—S1—O659.3 (3)
C3—C4—N1—C10.8 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg9 ae the centroids of the N1/C1–C4, N2/C6'–C9', N2'/C6–C9 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3B···O9iii0.871.962.797 (2)160
O3—H3A···O7iii0.871.942.778 (2)161
O16—H16A···O80.872.152.922 (3)147
O16—H16B···O120.872.383.107 (3)141
C7—H7···O2iv0.952.523.303 (3)139
C12—H12···O4v0.952.483.270 (3)141
C16—H16···O11v0.952.393.319 (3)164
C22—H22···O5vi0.952.463.390 (3)168
C24—H24A···O5vii0.982.463.184 (4)130
C28—H28A···F2v0.992.502.983 (4)110
C30—H30B···O5viii0.992.493.248 (5)133
C38—H38A···O4viii0.992.553.429 (4)148
C40—H40B···O6ix0.992.513.402 (4)150
C41—H41A···O110.992.333.030 (4)127
C17—H17C···Cg9iv0.982.843.753 (4)155
C34—H34B···Cg1x0.992.933.894 (3)164
C38—H38B···Cg1v0.992.783.706 (3)155
C41—H41B···Cg2x0.992.953.584 (3)123
C41—H41B···Cg3v0.992.953.584 (3)123
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x+1, y+1, z; (viii) x, y+1, z+1; (ix) x, y, z1; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg9 ae the centroids of the N1/C1–C4, N2/C6'–C9', N2'/C6–C9 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3B···O9i0.871.962.797 (2)160.2
O3—H3A···O7i0.871.942.778 (2)161.4
O16—H16A···O80.872.152.922 (3)147
O16—H16B···O120.872.383.107 (3)141
C7—H7···O2ii0.952.523.303 (3)139
C12—H12···O4iii0.952.483.270 (3)141
C16—H16···O11iii0.952.393.319 (3)164
C22—H22···O5iv0.952.463.390 (3)168
C24—H24A···O5v0.982.463.184 (4)130
C28—H28A···F2iii0.992.502.983 (4)110
C30—H30B···O5vi0.992.493.248 (5)133
C38—H38A···O4vi0.992.553.429 (4)148
C40—H40B···O6vii0.992.513.402 (4)150
C41—H41A···O110.992.333.030 (4)127
C17—H17C···Cg9ii0.982.843.753 (4)155
C34—H34B···Cg1viii0.992.933.894 (3)164
C38—H38B···Cg1iii0.992.783.706 (3)155
C41—H41B···Cg2viii0.992.953.584 (3)123
C41—H41B···Cg3iii0.992.953.584 (3)123
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+1, z; (vi) x, y+1, z+1; (vii) x, y, z1; (viii) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationBen Haj Hassen, L., Ezzayani, K., Rousselin, Y. & Nasri, H. (2014). Acta Cryst. E70, m296–m297.  CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, B., Safo, M. K., Orosz, R. D., Reed, C. A., Debrunner, P. G. & Scheidt, W. R. (1994). Inorg. Chem. 33, 1319–1324.  CSD CrossRef CAS Web of Science Google Scholar
First citationDenden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. pp. 2596–2610.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979). Biochemistry, 18, 3546–3552.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). J. Am. Chem. Soc. 81, 543–555.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, N., Powell, D. R. & Richter-Addo, G. B. (2011). Angew. Chem. Int. Ed. 50, 9694–9696.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds