organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-3-allyl-5-(4-methyl­benzyl­­idene)-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 9 October 2015; accepted 28 October 2015; online 4 November 2015)

In the title compound, C14H13NOS2, the atoms of the allyl group are disordered over two sets of sites, with an occupancy ratio of 0.559 (10):0.441 (10). The rhodanine ring makes a dihedral angle of 5.51 (12)° with the mean plane through the p-tolyl group. There are no specific inter­molecular inter­actions in the crystal packing.

1. Related literature

For biological activities of rhodanine-based mol­ecules, see: Tomasić & Masic (2009[Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596-1629.]); Jiang et al. (2011[Jiang, S., Tala, S. R., Lu, H., Abo-Dya, N. E., Avan, I., Gyanda, K., Lu, L., Katritzky, A. R. & Debnath, A. (2011). J. Med. Chem. 54, 572-579.]); Bulic et al. (2009[Bulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E.-M., Waldmann, H. & Mandelkow, E. (2009). Angew. Chem. Int. Ed. 48, 1740-1752.]); Sing et al. (2001[Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett. 11, 91-94.]); Grant et al. (2000[Grant, E. B., Guiadeen, D., Baum, E. Z., Foleno, B. D., Jin, H., Montenegro, D. A., Nelson, E. A., Bush, K. & Hlasta, D. J. (2000). Bioorg. Med. Chem. Lett. 10, 2179-2182.]); Orchard et al. (2004[Orchard, M. G., Neuss, J. C., Galley, C. M. S., Carr, A., Porter, D. W., Smith, P., Scopes, D. I. C., Haydon, D., Vousden, K., Stubberfield, C. R., Young, K. & Page, M. (2004). Bioorg. Med. Chem. Lett. 14, 3975-3978.]); Cutshall et al. (2005[Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374-3379.]); Sortino et al. (2007[Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]); Kesel (2003[Kesel, A. J. (2003). Biochem. Biophys. Res. Commun. 300, 793-799.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13NOS2

  • Mr = 275.37

  • Triclinic, [P \overline 1]

  • a = 7.3606 (4) Å

  • b = 8.8342 (6) Å

  • c = 11.3134 (7) Å

  • α = 109.736 (2)°

  • β = 95.380 (2)°

  • γ = 96.502 (2)°

  • V = 681.10 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.28 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.746

  • 21519 measured reflections

  • 2853 independent reflections

  • 2241 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 1.07

  • 2853 reflections

  • 182 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Rhodanine-based molecules are known to possess diverse biological activities (Tomasic & Masic, 2009) through the inhibition of numerous targets such as HIV-1 (Jiang et al. 2011), Alzheimer's deseases (Bulic et al. 2009), HCV NS3 protease (Sing et al. 2001), β-la­cta­mase (Grant et al. 2000), PMT1 mannosyl transferase (Orchard et al. 2004), PRL-3 and JSP-1 phosphatases (Cutshall et al. 2005). Additionally, they have been reported to possess anti­microbial (Sortino et al. 2007) and anti­viral (Kesel, 2003) activities. The unusual biological activity displayed by many rhodanine-based molecules have made them attractive synthetic targets.

The rhodanine and p-tolyl ring systems (S2—N1—C9—C10—C11 and C2 to C7) are slightly inclined as indicated by the dihedral angle of 5.51 (12)° between them. The rhodanine moiety is linked to an allyl group at the nitro­gen atom and to a p-tolyl group at C(5) as shown in Fig.1. Moreover, the molecule of the title compound is characterized by a disorder in the allyl group in which all atoms are split with an occupancy factors of 0.559 (9) : 0.441 (9). No specific inter­molecular inter­actions are observed in the crystal packing.

Synthesis and crystallization top

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (4-methyl­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane: ethyl acetate (1/9) as eluent. The title compound was recrystallized from ethanol (Yield: 75%; m.p.: 390 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The reflection (0 0 1) affected by the beamstop was removed during refinement. The refinement of the model requires constraints on the distance C13A—C14A and C13B—C14B of the disordered allyl group. H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å and C–H = 0.93 Å for methyl, methyl­ene and aromatic hydrogen atoms, respectively. All hydrogen atoms were refined with a common thermal displacement parameter of Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for methyl­ene and aromatic hydrogen atoms.

Related literature top

For biological activities of rhodanine-based molecules, see: Tomasić & Masic (2009); Jiang et al. (2011); Bulic et al. (2009); Sing et al. (2001); Grant et al. (2000); Orchard et al. (2004); Cutshall et al. (2005); Sortino et al. (2007); Kesel (2003).

Structure description top

Rhodanine-based molecules are known to possess diverse biological activities (Tomasic & Masic, 2009) through the inhibition of numerous targets such as HIV-1 (Jiang et al. 2011), Alzheimer's deseases (Bulic et al. 2009), HCV NS3 protease (Sing et al. 2001), β-la­cta­mase (Grant et al. 2000), PMT1 mannosyl transferase (Orchard et al. 2004), PRL-3 and JSP-1 phosphatases (Cutshall et al. 2005). Additionally, they have been reported to possess anti­microbial (Sortino et al. 2007) and anti­viral (Kesel, 2003) activities. The unusual biological activity displayed by many rhodanine-based molecules have made them attractive synthetic targets.

The rhodanine and p-tolyl ring systems (S2—N1—C9—C10—C11 and C2 to C7) are slightly inclined as indicated by the dihedral angle of 5.51 (12)° between them. The rhodanine moiety is linked to an allyl group at the nitro­gen atom and to a p-tolyl group at C(5) as shown in Fig.1. Moreover, the molecule of the title compound is characterized by a disorder in the allyl group in which all atoms are split with an occupancy factors of 0.559 (9) : 0.441 (9). No specific inter­molecular inter­actions are observed in the crystal packing.

For biological activities of rhodanine-based molecules, see: Tomasić & Masic (2009); Jiang et al. (2011); Bulic et al. (2009); Sing et al. (2001); Grant et al. (2000); Orchard et al. (2004); Cutshall et al. (2005); Sortino et al. (2007); Kesel (2003).

Synthesis and crystallization top

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (4-methyl­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane: ethyl acetate (1/9) as eluent. The title compound was recrystallized from ethanol (Yield: 75%; m.p.: 390 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The reflection (0 0 1) affected by the beamstop was removed during refinement. The refinement of the model requires constraints on the distance C13A—C14A and C13B—C14B of the disordered allyl group. H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å and C–H = 0.93 Å for methyl, methyl­ene and aromatic hydrogen atoms, respectively. All hydrogen atoms were refined with a common thermal displacement parameter of Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for methyl­ene and aromatic hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
(Z)-3-Allyl-5-(4-methylbenzylidene)-2-sulfanylidene-1,3-thiazolidin- 4-one top
Crystal data top
C14H13NOS2F(000) = 288
Mr = 275.37Dx = 1.343 Mg m3
Triclinic, P1Melting point: 390 K
a = 7.3606 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8342 (6) ÅCell parameters from 2853 reflections
c = 11.3134 (7) Åθ = 2.5–26.6°
α = 109.736 (2)°µ = 0.38 mm1
β = 95.380 (2)°T = 296 K
γ = 96.502 (2)°Block, yellow
V = 681.10 (7) Å30.37 × 0.35 × 0.28 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
2853 independent reflections
Radiation source: fine-focus sealed tube2241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.700, Tmax = 0.746k = 1111
21519 measured reflectionsl = 1414
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2196P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2853 reflectionsΔρmax = 0.34 e Å3
182 parametersΔρmin = 0.21 e Å3
Crystal data top
C14H13NOS2γ = 96.502 (2)°
Mr = 275.37V = 681.10 (7) Å3
Triclinic, P1Z = 2
a = 7.3606 (4) ÅMo Kα radiation
b = 8.8342 (6) ŵ = 0.38 mm1
c = 11.3134 (7) ÅT = 296 K
α = 109.736 (2)°0.37 × 0.35 × 0.28 mm
β = 95.380 (2)°
Data collection top
Bruker X8 APEX
diffractometer
2853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2241 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.746Rint = 0.032
21519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2853 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5130 (4)0.6507 (3)1.2642 (3)0.0784 (7)
H1A0.38570.60241.23760.118*
H1B0.54400.67231.35330.118*
H1C0.53290.75091.24810.118*
C20.6328 (3)0.5359 (3)1.1916 (2)0.0591 (5)
C30.8224 (3)0.5758 (3)1.2117 (2)0.0644 (6)
H30.87730.67541.27200.077*
C40.9323 (3)0.4717 (3)1.1444 (2)0.0608 (6)
H41.05990.50211.16070.073*
C50.8563 (3)0.3212 (2)1.05205 (18)0.0507 (5)
C60.6656 (3)0.2794 (3)1.0338 (2)0.0604 (5)
H60.61030.17910.97470.073*
C70.5571 (3)0.3847 (3)1.1022 (2)0.0659 (6)
H70.42960.35361.08820.079*
C80.9804 (3)0.2217 (3)0.98157 (19)0.0530 (5)
H81.10480.26471.00780.064*
C90.9485 (3)0.0782 (3)0.88491 (19)0.0518 (5)
C101.1041 (3)0.0018 (3)0.8283 (2)0.0552 (5)
C110.8509 (3)0.1882 (3)0.7007 (2)0.0594 (5)
C121.1670 (4)0.2379 (3)0.6539 (2)0.0695 (6)
H12A1.12580.35370.63060.083*
H12B1.29000.21020.70180.083*
C13A1.1640 (13)0.1898 (15)0.5393 (11)0.090 (3)0.441 (10)
H13A1.05260.21810.48520.108*0.441 (10)
C14A1.3042 (16)0.1105 (14)0.5064 (12)0.147 (5)0.441 (10)
H14A1.41850.07940.55730.177*0.441 (10)
H14B1.28760.08630.43260.177*0.441 (10)
C13B1.2460 (12)0.1897 (10)0.5554 (8)0.077 (2)0.559 (10)
H13B1.34150.24080.51960.092*0.559 (10)
C14B1.1877 (12)0.0760 (8)0.5147 (6)0.101 (3)0.559 (10)
H14C1.09230.02310.54910.121*0.559 (10)
H14D1.24230.04970.45190.121*0.559 (10)
N11.0378 (3)0.1426 (2)0.72653 (17)0.0560 (4)
O11.2661 (2)0.0540 (2)0.86169 (17)0.0734 (5)
S10.73489 (11)0.35069 (9)0.59005 (7)0.0874 (3)
S20.73980 (7)0.04619 (7)0.80585 (5)0.0607 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0840 (18)0.0719 (16)0.0752 (17)0.0164 (14)0.0191 (14)0.0170 (14)
C20.0674 (13)0.0592 (13)0.0517 (12)0.0074 (10)0.0086 (10)0.0217 (10)
C30.0730 (15)0.0523 (12)0.0566 (12)0.0057 (11)0.0068 (11)0.0102 (10)
C40.0523 (11)0.0603 (13)0.0602 (13)0.0082 (10)0.0000 (10)0.0165 (11)
C50.0541 (11)0.0526 (11)0.0445 (10)0.0004 (9)0.0024 (8)0.0200 (9)
C60.0567 (12)0.0552 (12)0.0564 (12)0.0027 (10)0.0022 (10)0.0093 (10)
C70.0497 (12)0.0697 (14)0.0679 (14)0.0011 (10)0.0030 (10)0.0149 (12)
C80.0503 (11)0.0537 (11)0.0523 (11)0.0027 (9)0.0008 (9)0.0201 (9)
C90.0527 (11)0.0529 (11)0.0502 (11)0.0019 (9)0.0022 (9)0.0218 (9)
C100.0592 (12)0.0566 (12)0.0521 (11)0.0056 (10)0.0077 (9)0.0231 (10)
C110.0710 (14)0.0527 (12)0.0531 (12)0.0057 (10)0.0007 (10)0.0204 (10)
C120.0810 (16)0.0628 (14)0.0660 (14)0.0176 (12)0.0197 (12)0.0197 (12)
C13A0.078 (6)0.123 (8)0.077 (5)0.049 (7)0.023 (5)0.030 (5)
C14A0.171 (11)0.176 (11)0.163 (10)0.100 (10)0.091 (9)0.106 (9)
C13B0.064 (4)0.102 (4)0.081 (4)0.033 (4)0.036 (4)0.040 (3)
C14B0.128 (7)0.105 (5)0.092 (4)0.026 (4)0.043 (4)0.054 (4)
N10.0635 (11)0.0541 (10)0.0526 (10)0.0100 (8)0.0082 (8)0.0211 (8)
O10.0546 (9)0.0745 (11)0.0810 (11)0.0037 (8)0.0101 (8)0.0164 (9)
S10.0934 (5)0.0627 (4)0.0795 (5)0.0007 (3)0.0076 (4)0.0002 (3)
S20.0540 (3)0.0597 (4)0.0580 (3)0.0004 (2)0.0020 (2)0.0126 (3)
Geometric parameters (Å, º) top
C1—C21.502 (3)C10—O11.204 (3)
C1—H1A0.9600C10—N11.397 (3)
C1—H1B0.9600C11—N11.364 (3)
C1—H1C0.9600C11—S11.633 (2)
C2—C31.378 (3)C11—S21.751 (2)
C2—C71.390 (3)C12—C13B1.465 (8)
C3—C41.374 (3)C12—N11.466 (3)
C3—H30.9300C12—C13A1.493 (12)
C4—C51.399 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.388 (3)C13A—C14A1.3337 (10)
C5—C81.445 (3)C13A—H13A0.9300
C6—C71.378 (3)C14A—H14A0.9300
C6—H60.9300C14A—H14B0.9300
C7—H70.9300C13B—C14B1.3331 (10)
C8—C91.344 (3)C13B—H13B0.9300
C8—H80.9300C14B—H14C0.9300
C9—C101.482 (3)C14B—H14D0.9300
C9—S21.750 (2)
C2—C1—H1A109.5O1—C10—N1123.1 (2)
C2—C1—H1B109.5O1—C10—C9126.5 (2)
H1A—C1—H1B109.5N1—C10—C9110.46 (18)
C2—C1—H1C109.5N1—C11—S1127.64 (18)
H1A—C1—H1C109.5N1—C11—S2110.78 (16)
H1B—C1—H1C109.5S1—C11—S2121.58 (15)
C3—C2—C7117.3 (2)C13B—C12—N1119.7 (3)
C3—C2—C1121.3 (2)N1—C12—C13A103.2 (5)
C7—C2—C1121.4 (2)N1—C12—H12A111.1
C4—C3—C2121.4 (2)C13A—C12—H12A111.1
C4—C3—H3119.3N1—C12—H12B111.1
C2—C3—H3119.3C13A—C12—H12B111.1
C3—C4—C5121.4 (2)H12A—C12—H12B109.1
C3—C4—H4119.3C14A—C13A—C12126.8 (11)
C5—C4—H4119.3C14A—C13A—H13A116.6
C6—C5—C4117.1 (2)C12—C13A—H13A116.6
C6—C5—C8124.73 (19)C13A—C14A—H14A120.0
C4—C5—C8118.14 (19)C13A—C14A—H14B120.0
C7—C6—C5120.8 (2)H14A—C14A—H14B120.0
C7—C6—H6119.6C14B—C13B—C12123.2 (7)
C5—C6—H6119.6C14B—C13B—H13B118.4
C6—C7—C2121.8 (2)C12—C13B—H13B118.4
C6—C7—H7119.1C13B—C14B—H14C120.0
C2—C7—H7119.1C13B—C14B—H14D120.0
C9—C8—C5131.6 (2)H14C—C14B—H14D120.0
C9—C8—H8114.2C11—N1—C10116.69 (19)
C5—C8—H8114.2C11—N1—C12123.1 (2)
C8—C9—C10120.57 (19)C10—N1—C12120.2 (2)
C8—C9—S2130.12 (17)C9—S2—C1192.73 (10)
C10—C9—S2109.31 (15)

Experimental details

Crystal data
Chemical formulaC14H13NOS2
Mr275.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3606 (4), 8.8342 (6), 11.3134 (7)
α, β, γ (°)109.736 (2), 95.380 (2), 96.502 (2)
V3)681.10 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.37 × 0.35 × 0.28
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.700, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21519, 2853, 2241
Rint0.032
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.07
No. of reflections2853
No. of parameters182
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for the financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E.-M., Waldmann, H. & Mandelkow, E. (2009). Angew. Chem. Int. Ed. 48, 1740–1752.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrant, E. B., Guiadeen, D., Baum, E. Z., Foleno, B. D., Jin, H., Montenegro, D. A., Nelson, E. A., Bush, K. & Hlasta, D. J. (2000). Bioorg. Med. Chem. Lett. 10, 2179–2182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, S., Tala, S. R., Lu, H., Abo-Dya, N. E., Avan, I., Gyanda, K., Lu, L., Katritzky, A. R. & Debnath, A. (2011). J. Med. Chem. 54, 572–579.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKesel, A. J. (2003). Biochem. Biophys. Res. Commun. 300, 793–799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrchard, M. G., Neuss, J. C., Galley, C. M. S., Carr, A., Porter, D. W., Smith, P., Scopes, D. I. C., Haydon, D., Vousden, K., Stubberfield, C. R., Young, K. & Page, M. (2004). Bioorg. Med. Chem. Lett. 14, 3975–3978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett. 11, 91–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds